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Abstract. A point x is an approximate solution of a generalized equation b ∈ F(x) if the distance
from the point b to the set F(x) is small. ‘Metric regularity’ of the set-valued mapping F means
that, locally, a constant multiple of this distance bounds the distance from x to an exact solution.
The smallest such constant is the ‘modulus of regularity’, and is a measure of the sensitivity or
conditioning of the generalized equation. We survey recent approaches to a fundamental character-
ization of the modulus as the reciprocal of the distance from F to the nearest irregular mapping.
We furthermore discuss the sensitivity of the regularity modulus itself, and prove a version of the
fundamental characterization for mappings on Riemannian manifolds.
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1. Introduction

When we seek to invert a mapping, a central aspect is the sensitivity of the answer
to small changes in data, or in other words, the ‘conditioning’ of the mapping.
For example, consider a smooth map F between Euclidean spaces, and suppose
that F(0) = 0 and that the derivative ∇F(0) is surjective. Then from the classical
inverse function theorem one can easily obtain the existence of a constant κ > 0
such that, for all small vectors b, the set F−1(b) contains vectors of size less than
κ‖b‖. Here b measures the ‘residual’ of how much the equation F(0) = 0 is not
satisfied and the distance from 0 to the set of solutions of the equation b = F(x)

is bounded by the constant κ times the residual. Usually, the residual is easy to
compute or estimate while finding a solution might be considerably more difficult.
The surjectivity of the derivative ∇F(0) gives information about solutions based
on the value of the residual; in particular, if we know the rate of convergence of
the residual to zero, then we will obtain the rate of convergence of approximate
solutions to an exact one.

This fundamental, linear relationship between data change and solution error
is known as metric regularity. Given two metric spaces (X, dX) and (Y, dY ), a set-



418 A. L. DONTCHEV AND A. S. LEWIS

valued mapping F : X ⇒ Y , and points x̄ ∈ X and ȳ ∈ F(x̄), we call F metrically
regular at x̄ for ȳ if there exists a constant κ > 0 such that

dX

(
x, F−1(y)

)
� κdY (y, F (x)) for all (x, y) close to (x̄, ȳ). (1.1)

Here, the inverse mapping F−1: Y ⇒ X is defined as

F−1(y) = {x ∈ X : y ∈ F(x)},
and the distance notation means

dX(x, S) = inf{dX(x, s) : s ∈ S}
for any set S ⊂ X, interpreted as +∞ when S = ∅. The regularity modulus
reg F(ȳ|z̄) is the infimum of all κ > 0 satisfying the above condition. By conven-
tion, reg F(ȳ|z̄) = +∞ when F is not metrically regular at ȳ for z̄.

When F is a linear and bounded mapping acting between Banach spaces X

and Y , denoted F ∈ L(X, Y ), the quantity reg F is the same for every point.
Further, reg F < ∞ if and only if F is surjective. In particular, when X = R

n and
Y = R

m, the m × n matrix F must have full rank or, equivalently, the rows of F

must be linearly independent. When m = n the matrix F is then invertible. When
F is a smooth map as above, reg F(x̄|F(x̄)) is equal to the regularity modulus of
the derivative ∇F(x̄) thus reducing its computation to the linear case.

In this paper we are concerned with the problem of how the metric regularity of
a mapping depends on perturbations acting on the mapping. There is a large body of
literature on this subject written in the last century and some of it is surveyed here.
In this first introductory section we collect a number of results, many supplied with
proofs, on the question ‘how much’ a metrically regular mapping can be perturbed
before losing its regularity. In recent years much progress has been made in this
direction by establishing that the ‘distance’ from a given regular mapping to the
set of nonregular mappings is equal to the reciprocal of the regularity modulus.
This remarkably simple and surprising relationship not only complements some
results in classical analysis, but also gives insights on how to define “conditioning”
of set-valued mappings.

In Section 2 we focus on local analysis of the effect of perturbations on met-
ric regularity by estimates for the sensitivity of the regularity modulus. Section 3
presents a radius theorem for mappings acting on Riemannian manifolds.

We start our presentation with a classical result which describes the effect of
perturbations on the invertibility of linear mappings. Henceforth in this section,
unless otherwise stated, X and Y are Banach spaces.

THEOREM 1.1 (Banach lemma). If F ∈ L(X, Y ) is invertible and B ∈ L(X, Y )

satisfies ‖B‖ � ‖F−1‖−1, then

‖(F + B)−1‖ � (‖F−1‖−1 − ‖B‖)−1.
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The Banach lemma has far-reaching generalizations which we present next.
First we consider positively homogeneous set-valued mappings F : X ⇒ Y , that
is, mappings F whose graphs are cones. For such set-valued mappings, the stan-
dard concept of operator norm is replaced by certain quantities that are also called
“norms” although these mappings do not form a vector space. The outer and the
inner norms are defined as

‖F‖+ = sup
x∈B

sup
y∈F(x)

‖y‖ and ‖F‖− = sup
x∈B

inf
y∈F(x)

‖y‖,

where B denotes the closed unit ball. Next, we give an outer norm version of the
Banach lemma supplied with an elementary proof, which in particular covers the
classical Banach lemma when the mapping F is invertible:

THEOREM 1.2 (Banach lemma for the outer norm, [21]). Let F : X ⇒ Y be pos-
itively homogeneous and let B ∈ L(X, Y ). If [‖F−1‖+]−1 � ‖B‖ then

‖(F + B)−1‖+ � ([‖F−1‖+]−1 − ‖B‖)−1.

Proof. If ‖F−1‖+ = +∞ there is nothing to prove. On the other hand, ‖F−1‖+ =
0 if and only if F(x) = ∅ for all nonzero x in which case ‖F + B‖+ = 0 and the
result follows in this case, too. Suppose 0 < ‖F−1‖+ < +∞. If the result fails,
there exists B ∈ L(X, Y ) with ‖B‖ � ‖F−1‖+ such that

‖(F + B)−1‖+ > ([‖F−1‖+]−1 − ‖B‖)−1.

Then by definition there exist y ∈ Y with ‖y‖ � 1 and x ∈ X with x ∈
(F + B)−1(y) such that

‖x‖ > ([‖F−1‖+]−1 − ‖B‖)−1

which is the same as
1

‖x‖−1 + ‖B‖ > ‖F−1‖+. (1.2)

But then y − B(x) ∈ F(x) and

‖y − Bx‖ � ‖y‖ + ‖B‖ ‖x‖ � 1 + ‖B‖ ‖x‖. (1.3)

If y = Bx then 0 ∈ F(x) which obviously yields x = 0, a contradiction. Hence
α := ‖y − Bx‖ > 0 and by the positive homogeneity, (αx, α(y − Bx)) ∈ gph F

and α‖y − Bx‖ = 1 which implies, by definition,

‖F−1‖+ � ‖x‖
‖y − Bx‖ .

Combining the inequality with (1.2) and (1.3), we have

‖F−1‖+ � ‖x‖
‖y − Bx‖ � ‖x‖

1 + ‖B‖‖x‖ = 1

‖x‖−1 + ‖B‖ > ‖F−1‖+,

which is a contradiction, and the proof is complete. �
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Positively homogeneous mappings whose inverses have infinite outer norm are
called singular. For linear and continuous F : X → Y , nonsingularity in this sense
coincides with the traditional notion when dim X = dim Y < ∞, but it means in
general that F−1 is single-valued relative to rge F , its domain.

We move on to the study of perturbations of the inner norm ‖F−1‖− by the
simple expedient of taking adjoints [22]. With respect to the spaces X∗ and Y ∗ dual
to X and Y , the upper adjoint of a positively homogeneous mapping F : X ⇒ Y is
the mapping F ∗+: Y ∗ ⇒ X∗ defined by

(y∗, x∗) ∈ gph F ∗+ ⇔ 〈x∗, x〉 � 〈y∗, y〉 for all (x, y) ∈ gph F,

whereas the lower adjoint is the mapping F ∗−: Y ∗ ⇒ X∗ defined by

(y∗, x∗) ∈ gph F ∗− ⇔ 〈x∗, x〉 � 〈y∗, y〉 for all (x, y) ∈ gph F.

The graphs of both F ∗+ and F ∗− correspond to the closed convex cone in X∗ ×Y ∗
that is polar to gph F , except for permuting (x∗, y∗) to (y∗, x∗) and introducing
certain changes of sign. Furthermore,

‖F‖+ = ‖F ∗+‖− = ‖F ∗−‖− and ‖F‖− = ‖F ∗+‖+ = ‖F ∗−‖+.

For a mapping B ∈ L(X, Y ) both adjoints coincide with the usual notion B∗, and
a simple calculation shows that

(F + B)∗+ = F ∗+ + B∗,

and analogously for (F +B)∗−. When the mapping F is sublinear, that is, its graph
is not only a cone, but also a convex cone, this allows us to pass via adjoints from
the outer norm to the inner norm. In this case ‖F−1‖− < ∞ if and only if F is
surjective, or, equivalently, F ∗+ is nonsingular. Moreover, ‖F−1‖− = reg F(0|0).
The Banach lemma for the inner norm is completely analogous to that for the outer
norm, with the difference that now the graph of the mapping F must be a convex
and closed cone:

THEOREM 1.3 (Banach lemma for the inner norm, [17]). Let F : X ⇒ Y be sub-
linear with closed graph and let B ∈ L(X, Y ). If [‖F−1‖−]−1 � ‖B‖ then

‖(F + B)−1‖− � ([‖F−1‖−]−1 − ‖B‖)−1.

In order to extend these results to general mappings we need localizations of
the properties involved and quantitative characteristics to replace the inner and
outer norms. Here metric regularity enters the stage as a natural localization of
surjectivity. Also, the perturbations now are allowed to be nonlinear and to measure
their magnitude, we use ‘calmness’ and Lipschitz moduli. We move briefly to more
abstract spaces to define quantities used later in the paper. Given a metric space
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(X, d) and a linear normed space (Y, ‖ · ‖), the calmness modulus of a function
f : X → Y at a point x̄ ∈ dom f is defined as

clm f (x̄) = lim sup
x∈dom f,d(x,x̄)→0,

d(x,x̄)>0

‖f (x) − f (x̄)‖
d(x, x̄)

.

The Lipschitz modulus of f at a point x̄ ∈ int dom f is defined as

lip f (x̄) = lim sup
d(x,x̄)→0,d(x′,x̄)→0

d(x,x′)>0

‖f (x ′) − f (x)‖
d(x ′, x)

.

So lip f (x̄) < ∞ signals that for any κ > lip f (x̄) there exists a neighborhood U

of x̄ such that f is Lipschitz continuous on U with a constant κ .
The calmness and Lipschitz moduli have some of the properties of a norm

such as positive homogeneity and the triangle inequality. For X and Y Banach
spaces, the Fréchet derivative ∇f (x̄) of a function f : X → Y at x̄ can be defined
as a mapping from L(X, Y ) such that clm[f − ∇f (x̄)](x̄) = 0, in which case
clm f (x̄) = ‖∇f (x̄)‖. Analogously, f is strictly differentiable at x̄ exactly when
lip[f − ∇f (x̄)](x̄) = 0. In general, one has clmf (x̄) � lip f (x̄) where the strict
inequality is possible (even with an infinite gap).

The first extension of the Banach lemma (and, in fact, of the Banach open
mapping principle) to nonlinear mappings goes back to the work of Graves.� Up to
some adjustments in notation, Graves’ result is as follows:

THEOREM 1.4 (Graves theorem, [10]). Let a function f : X → Y be continuous
near x̄ and let F ∈ L(X, Y ) be surjective, that is reg F < ∞. If lip(f − F)(x̄) <

(reg F)−1, then

reg f (x̄|f (x̄)) � ((reg F)−1 − lip(f − F)(x̄))−1. (1.4)

The Banach lemma follows for f = F + B.
Long after the publication of Graves theorem, it was observed by Milyutin [7]

that, in order to obtain an estimate of the form (1.4) the mapping F does not need to
be linear. In fact, the perturbation f −F of F to obtain f can be any function with
sufficiently small Lipschitz modulus. Apparently, Milyutin was the first to fully
understand the metric character of the metric regularity.�� In the last two decades,
Graves theorem was further generalized in various ways. We give here a result for
set-valued mappings which fits exactly into the format of the Banach lemma:

� A related result was obtained much earlier by Lyusternik [18] by using a similar iterative pro-
cedure resembling the Newton method. In the Lyusternik theorem, however, the mapping A is the
(continuous) Fréchet derivative of f and then the result does not give a perturbation estimate as in
the Banach lemma.

�� As remarked by A. Ioffe.
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THEOREM 1.5 (Banach lemma for set-valued mappings, [8]). Consider a map-
ping F : X ⇒ Y and any (x̄, ȳ) ∈ gph F at which gph F is locally closed and
0 < reg F(x̄|ȳ) < ∞. Then for any g: X → Y such that reg F(x̄|ȳ) · lip g(x̄) < 1,
one has

reg(g + F)(x̄|ȳ + g(x̄)) < (reg F(x̄|ȳ)−1 − lip g(x̄))−1.

In the original Banach lemma, F and g are linear and bounded mappings.
Theorem 1.5 is equivalent to the following result:

THEOREM 1.6 (Lipschitz perturbations, [8]). Consider a mapping F : X ⇒ Y

and any (x̄, ȳ) ∈ gph F at which gph F is locally closed and a function g: X → Y .
If reg F(x̄|ȳ) < κ < ∞ and lip g(x̄) < δ < κ−1, then

reg(g + F)(x̄|g(x̄) + ȳ) � (κ−1 − δ)−1.

Variants of Theorem 1.6 are proved in the literature by employing iterative
procedures similar to the one used in the proofs of Lyusternik and Graves. Here we
present a different, strikingly simple proof of this theorem, based on the Ekeland
principle, which is a shortcut through some recent results of Ioffe [12]. There is a
price to pay though, and it is an additional assumption which always holds, e.g., in
finite dimensions. We put the nontrivial part of this proof in a lemma:

LEMMA 1.7. Consider a set-valued mapping F : X ⇒ Y and (x̄, ȳ) ∈ gph F

at which gph F is locally closed and suppose that there exists a neighborhood W

of x̄ such that for each y near ȳ the function x 
→ φ(x) = d(y, F (x)) is lower
semicontinuous on W . Also, consider the following condition:

there is a constant µ > 0 and neighborhoods U of x̄ and V of ȳ

such that for every (x, y) ∈ U × V with d(y, F (x)) > 0 there exists
u ∈ U\x satisfying

d(y, F (u)) + µ‖u − x‖ � d(y, F (x)).

(1.5)

If condition (1.5) holds, then F is metrically regular at x̄ for ȳ with a constant
κ = µ−1. Conversely, if F is metrically regular at x̄ for ȳ, then for every κ >

reg F(x̄|ȳ) condition (1.5) holds with µ = κ−1.
Proof. Let the condition (1.5) hold. With no loss of generality, we can suppose

the neighborhood W is closed and coincides with U . Given any y ∈ V , we will
prove

d(x, F−1(y)) � µ−1d(y, F (x)) for all x ∈ W, (1.6)

thus obtaining that reg F(x̄|ȳ) � µ−1. If ϕ(x) = 0 we have x ∈ F−1(y) and (1.6)
holds automatically. Assume ϕ(x) > 0. We apply the Ekeland principle (see, for
example, [5, Thm. 7.5.1]) for the function

f (x)

{
ϕ(x) if x ∈ W ,

+∞ otherwise,
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obtaining that there exists w ∈ W such that

‖w − x‖ � ϕ(x)

µ
and ϕ(w) < ϕ(z) + µ‖z − w‖

for every z ∈ W, z �= w. (1.7)

If ϕ(w) > 0 then, according to the assumed condition (1.5) with x = w, there
exists a corresponding u ∈ W which, when put in (1.7) in place of z, gives us

ϕ(u) + µ‖u − w‖ � ϕ(w) < ϕ(u) + µ‖u − w‖,
a contradiction. Hence ϕ(w) = 0, that is w ∈ F −1(y), and from (1.7) we get
‖x − w‖ � µ−1ϕ(x). Taking the infimum on the left with respect to w ∈ F−1(y)

and returning to the original notation we obtain (1.6).
To prove the converse statement, let F be metrically regular and let κ >

reg F(x̄|ȳ). Choose κ ′ such that κ > κ ′ > reg F(x̄|ȳ ′) and let the neighborhoods U

of x̄ and V of ȳ correspond to the constant κ ′ in the definition of metric regularity.
Let y ∈ V ; then, by the metric regularity of F , we have that F−1(y) �= 0, so let
x ∈ U be such that d(y, F (x)) > 0 (otherwise there is nothing to prove). Then
there is a δ satisfying 0 < δ < (κ − κ ′)d(y, F (x)) and u ∈ F−1(y) such that
0 < ‖u − x‖ < d(x, F−1(y)) + δ. Then u �= x and

‖u − x‖ � d(x, F−1(y)) + δ � κ ′d(y, F (x)) + δ � κd(y, F (x)).

Taking into account that d(u, F−1(y)) = 0 we obtain (1.5) with constant µ =
(κ)−1. �

Next we give a proof of Theorem 1.6 based on Lemma 1.7 under the assumption
of the lemma that, for some neighborhood W of x̄, the distance function x 
→
F(y, x) is lower semicontinuous on W for all y near ȳ. This holds automatically
in finite-dimensional spaces when gph F is closed locally around (x̄, ȳ).

Proof of Theorem 1.6. Let κ > reg F(x̄|ȳ) and lip g(x̄) < δ such that κδ <

1 and let U and V be neighborhoods of x̄ and ȳ, respectively, where the metric
regularity condition (1.1) holds for F and δ is a Lipschitz constant of g in U . Let
a and b be positive constants such that Ba(x̄) ⊂ U and Bb+δa(ȳ) + g(x̄) ⊂ V and
also the set gph F ∩(Ba(x̄)×Bb+δa(ȳ +g(x̄))) is closed. Then for every x ∈ Ba(x̄)

and y ∈ Bb(ȳ) we have y − g(x) ∈ V .
Let x ∈ Ba(x̄) and y ∈ Bb(ȳ + g(x̄)). If d(y, (g + F)(x)) = 0 then the metric

regularity condition for g + F is automatically satisfied with any constant. Let
d(y, (g + F)(x)) > 0. Then d(y − g(x), F (x)) > 0 and hence from the metric
regularity of F at x̄ for ȳ with a constant κ , and Lemma 1.7 there exists u ∈ Ba(x̄),
u �= x such that

d(y − g(x), F (u)) + κ−1‖u − x‖ � d(y − g(x), F (x)).
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Adding and subtracting d(y − g(u), F (u)) in the left-hand side of this inequal-
ity and using the Lipschitz continuity with constant 1 of the distance function
d(·, F (u)) and the Lipschitz continuity of g in Ba(x̄) we obtain

d(y − g(u), F (u)) + (κ−1 − δ)‖u − x‖ � d(y − g(x), F (x)).

But this means that the condition (1.5) holds for g +F with a constant κ−1 − δ and
by Lemma 1.7 we conclude that g + F is metrically regular at x̄ for ȳ + g(x̄) with
reg(g + F)(x̄|ȳ + g(x̄)) � (κ−1 − δ)−1 as claimed. �

In the preceding lines we gave an estimate of how much a metrically regular
mapping can be perturbed before losing its regularity. Next, we study the problem
of how sharp our estimate is, that is, the problem of finding the size of the least
perturbation that destroys the metric regularity. This problem is ultimately related
to the idea of conditioning of mappings.

It has been long recognized by numerical analysts that the ‘closer’ a matrix is to
the set of singular matrices, the ‘harder’ it is to invert it. A qualitative measure for
nonsingularity of a matrix A is its absolute condition number cond(A) = ‖A−1‖.
This distance property of the absolute condition number for matrix inversion is
captured by the classical Eckart–Young theorem:

inf{‖B‖ | A + B not invertible} = ‖A−1‖−1 = 1/cond(A).

This equality is also valid for invertible linear and bounded mappings acting in
Banach spaces.

Results of the type of the Eckart–Young theorem are sometimes called ‘distance
theorems’ and also ‘condition number theorems’: for an extended discussion of dis-
tances to ill-posedness of various problems in numerical analysis, see Demmel [6].
In [8] the term ‘radius of regularity’ was proposed, expanding the idea to general
mappings F : X ⇒ Y in order to measure, with respect to a pair (x̄, ȳ) where
regularity holds, how far F can be perturbed before regularity may be lost. The
formal definition given in [8] for metric regularity is as follows:

RADIUS OF METRIC REGULARITY. For any mapping F : X ⇒ Y and (x̄, ȳ) ∈
gph F , the radius of metric regularity at x̄ for ȳ is the value

rad F(x̄|ȳ)

= inf
G: X→Y

{lip G(x̄) | F + G not metrically regular at x̄ for ȳ + G(x̄)}.

Following the logic of the first part of this section, we present first a radius
theorem for nonsingularity of positively homogeneous mappings:

THEOREM 1.8 (Radius theorem for nonsingularity, [8]). For any F : X ⇒ Y that
is positively homogeneous,

inf
B∈L(X,Y )

{‖B‖ | F + B singular} = 1

‖F−1‖+ . (1.8)
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Proof. The Banach lemma for nonsingularity gives us the inequality �. Let
r > 1/‖F−1‖+. There exists (x̂, ŷ) ∈ gph F with ‖ŷ‖ = 1 and ‖x̂‖ > 1/r . Let
x∗ ∈ X∗ satisfy x∗(x̂) = ‖x̂‖ and ‖x∗‖ = 1. The linear and bounded mapping

B(x) = −x∗(x)ŷ

‖x̂‖
satisfies ‖B‖ = 1/‖x̂‖ < r and also (F +B)(x̂) = F(x̂)−ŷ � 0. Then the nonzero
x̂ ∈ (F + B)−1(0) and hence ‖(F + B)−1‖+ = ∞ which by definition means that
F +B is singular. Hence the infimum in (1.8) is less than r . Appealing to the choice
of r we conclude that the infimum in (1.8) cannot be more than 1/‖F−1‖+ and we
are done. �

By using duality as outlined above, an Eckart–Young theorem for surjectivity of
a sublinear mapping with closed graph can be obtained in a completely analogous
format:

THEOREM 1.9 (Radius theorem for surjectivity, [17]). Let F : X ⇒ Y be sub-
linear and with closed graph. Then

inf
B∈L(X,Y )

{‖B‖ | F + B not surjective} = 1

‖F−1‖− .

In finite dimensions, a radius equality holds for metric regularity of a general
set-valued mapping; the only requirement is that the graph of the mapping be
closed near the reference point:

THEOREM 1.10 (Radius theorem for metric regularity, [8]). For a mapping
F : X ⇒ Y with dim X < ∞ and dim Y < ∞ and any (x̄, ȳ) ∈ gph F at which
gph F is locally closed,

rad F(x̄|ȳ) = 1

reg F(x̄|ȳ)
.

The proof in [8] uses the characterization of the metric regularity of a mapping
through the nonsingularity of its coderivative and then applied the radius theo-
rem for nonsingularity (Theorem 1.8). Ioffe [14] gave recently a direct proof of a
sharper result without using generalized differentiation; in this paper he also de-
rived a radius theorem in infinite dimensions when the mapping F is single-valued
and the perturbations are of the class of locally Lipschitz functions. In another
paper [14] Ioffe also showed that in infinite dimensions, the radius equality does not
hold, in general, for linear perturbations. On the bright side, a radius theorem was
obtained in [19] for mappings acting from Asplund to finite-dimensional spaces.
Such a theorem was also recently derived in [3] for a specific mapping describing
a semi-infinite constraint system. The question of whether or not a radius theorem



426 A. L. DONTCHEV AND A. S. LEWIS

is valid for metric regularity of a general set-valued mappings under Lipschitz
perturbations in infinite dimensions remains open.

Is there a radius theorem valid when the perturbation g is a set-valued mapping
having a suitable Lipschitz-type property? The answer to this question turns out to
be no, in general, as the following example shows:

EXAMPLE 1.11. Consider F : R ⇒ R and G: R ⇒ R of the form

F(x) = {−2x, 1} and G(x) = {x2, −1}, x ∈ R.

Then F is metrically regular while G is Lipschitz continuous with respect to the
Pompeiu–Hausdorff metric on the whole R and moreover, when restricted to a
neighborhood of the origin, G is just a quadratic function. We have reg F(0|0) =
1/2 while the Lipschitz modulus of the single-valued localization of G at zero for
zero is zero. The mapping

(F + G)(x) = {x2 − 2x, x2 + 1, −2x − 1, 0}, x ∈ R

is not metrically regular at the origin. Indeed, if (x, y) is close to zero and y > 0,
then (F +G)−1(y) = 1−√

1 + y, so that d(x, (F +G)−1(y)) = |x−1+√
1 + y|,

but also d(y, (F + G)(x)) = min{|x2 − 2x − y|, y}. Take x = ε > 0 and y = ε2.
Then, since (ε − 1 + √

1 + ε2)/ε2 → ∞, the mapping F + G is not metrically
regular at zero for zero.

Thus, the radius of metric regularity under set-valued perturbation is zero, in
general.

To complete the picture, in the recent paper [9] other regularity properties of set-
valued mappings have been studied and radius theorems were obtained for some
of these properties while for others it was shown that such results do not hold, in
general. A radius theorem of a different type when the perturbations are restricted
to positive definite symmetric linear mappings is given in [23].

In Section 2 we go a step further in the analysis of the effect of perturbations
on metric regularity. By using the observation that the regularity modulus is the
reciprocal of a distance function, we obtain a simple formula for the Lipschitz
modulus of the regularity modulus for a mapping which is subject to Lipschitz
perturbations.

Curiously, the statement of the radius theorem needs no more than the metric
structure on the domain space suggesting the natural question of the theorem’s
validity for other metric spaces. A study of some analogous questions appears
in [13]. In Section 3 we prove a radius theorem when the domain space is a
Riemannian manifold. Our proof technique is conceptually simple. We make no re-
course to recent work developing variational analysis on Riemannian mani-
folds [16]. Instead, we appeal to the Nash embedding theorem to work on a
submanifold of a Euclidean space, endowed with geodesic distance, and then apply
the basic radius theorem (Theorem 1.10).
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2. Sensitivity of the Regularity Modulus

If a radius theorem holds for a mapping F , then its regularity modulus is the
reciprocal to a distance function. In this section, we give a simple argument to
show that in any reasonable metric space X, or even in a ‘pseudo-metric’ space
(where d(x, y) = 0 does not necessarily imply that x = y), the distance function
dS to a subset S of X satisfies

clm d−1
S (ū) = lip d−1

S (ū) = d−2
S (ū). (2.1)

By ‘reasonable’, we just mean that the distance can be defined via the length of
paths in the space: examples include all normed spaces and Riemannian manifolds.

An illuminating example is the absolute condition number of a matrix, which
not only measures the changes of the solution due to perturbations of data but
also indicates, by the Eckart–Young theorem, how far a nonsingular matrix is from
the set of singular matrices. Hence, cond(A) is a reciprocal distance to which the
equality (2.1) can be applied, obtaining

clm(cond(A)) = lim sup
B→0

‖(A + B)−1‖ − ‖A−1‖
‖B‖ = ‖A−1‖2 = [cond(A)]2.

Inasmuch as cond(A) is the normalized calmness modulus of the inverse A−1 itself
and, on the other hand, the larger the condition number is, the harder it is to invert
a matrix, this equality illustrates the common situation in numerical analysis, see,
e.g., Demmel [6], that the condition number has the property of being no easier to
compute than the solution itself.

Consider a set X equipped with a pseudo-metric, that is, a function d: X ×
X → R which obeys the symmetry condition d(x, y) = d(y, x) and the triangle
inequality d(x, y) � d(x, z) + d(z, y) and also x = y yields d(x, y) = 0, but
d(x, y) = 0 need not imply that x = y. For a given x̄ ∈ R

n, such a space is the
space of functions from R

n to R
m with d(f, g) = clm(f − g)(x̄). Clearly, we can

consider the calmness and Lipschitz moduli of functions acting in pseudo-metric
spaces.

The pseudo-metric d is called intrinsic if the ‘distance’ between any two points
coincides with the infimum of the lengths of rectifiable paths between the points [1].
One can check that this is equivalent to the property that, given any two points
u, v ∈ X and any scalar ε > 0, there exists a third point w ∈ X with the distances
d(u, w) and (w, v) both less than ε + d(u, v)/2. In fact, more generally, for any
scalar λ in the interval (0, 1), there then exists a point w satisfying

d(u, w) < λ(d(u, v) + ε) and d(w, v) < (1 − λ)(d(u, v) + ε).

Spaces with an intrinsic metric are also known as ‘length spaces’ or ‘path metric
spaces’. Clearly, in any normed space, the induced metric is intrinsic. The distance
associated with any Riemannian manifold is intrinsic by definition [11].
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Consider the space of functions from R
n to R

m equipped with the pseudo-
metric d(f, g) = lip(f − g)(x̄) for some fixed x̄ ∈ R

n. This pseudo-metric is
intrinsic. Indeed, given functions u and v, from the very definition of the Lipschitz
modulus, the function w = (u + v)/2 satisfies the ‘path’ condition required. The
same conclusion of valid if the pseudo-metric is defined by the calmness modulus.

Given a pseudo-metric space (X, d), the distance function dS : X → R+ asso-
ciated with a nonempty set S ⊂ X is defined by

dS(u) = inf{d(u, v) : v ∈ S}.
We begin by collecting some well-known Lipschitz properties of distance func-
tions.

PROPOSITION 2.1. Given a pseudo-metric space (X, d) and a nonempty set
S ⊂ X, the Lipschitz and calmness moduli of the distance function dS satisfy

0 � clm dS(u) � lip dS(u) � 1 for all u ∈ X. (2.2)

If the pseudo-metric d is intrinsic, then

clm dS(u) = lip dS(u) = 1 for all u with dS(u) > 0. (2.3)

Proof. The inequalities (2.2) are a straightforward application of the triangle
inequality. Now suppose the metric d is intrinsic and dS(u) > 0. For each integer
n = 1, 2, . . . , there exists a point yn ∈ S satisfying

d(yn, u) < (1 + n−2)dS(u).

Since d is intrinsic, there exists a point un ∈ X satisfying

dS(un) � d(yn, un) < (1 − n−1)(1 + n−2)dS(u),

d(un, u) < n−1(1 + n−2)dS(u).

Hence we deduce

lim sup
v→u

|dS(v) − dS(u)|
d(v, u)

� lim sup
n→∞

dS(u) − dS(un)

d(u, un)

� lim sup
n→∞

dS(u) − (1 − n−1)(1 + n−2)dS(u)

n−1(1 + n−2dS(u))

= lim sup
n→∞

n2 − n + 1

n2 + 1
= 1,

so Equation (2.3) now follows. �
In Euclidean spaces the above result can be refined in the following way:
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PROPOSITION 2.2. Suppose that (X, d) is a Euclidean space (with the induced
metric), and that u /∈ int S. Then

lip dS(u) = 1, (2.4)

and if, furthermore, S is Clarke regular at u, then

clm dS(u) = 1. (2.5)

Proof. It suffices to prove Equation (2.4) when the point u lies in the boundary
of the set S, and in this case the normal cone NS(u) contains a unit vector y [22,
Ex. 6.19]. We can measure the Lipschitz modulus of the distance function via its
subdifferential, by [22, Thm. 9.13]:

lip dS(u) = sup{‖w‖ : w ∈ ∂dS(u)}.
Since, by [22, Ex. 8.53], we know y ∈ ∂dS(u), Equation (2.4) now follows.

Suppose, in addition, that the set S is Clarke regular at the point u, and choose
a unit normal vector y ∈ NS(u). By [22, Ex. 8.53], the subderivative of dS at u in
the direction y is the distance from y to the tangent cone TS(u), which by Clarke
regularity equals 1. �

The equality (2.5) can fail in the absence of Clarke regularity. For example, the
set

S = {(x, y) ∈ R
2 : |y| � x2}

has the origin in its boundary, and yet clm dS(0, 0) = 0.
To move from distance functions to their reciprocals, the following chain rule

is helpful.

PROPOSITION 2.3. Consider a pseudo-metric space X, a point ū ∈ X, a function
g: X → R, and a function f : R → [−∞, +∞].

(i) If the modulus of calmness clm g(ū) is finite and f is differentiable at g(ū),
then

clm(f ◦ g)(ū) = |f ′(g(ū))| · clm g(ū).

(ii) If g is Lipschitz around ū and f is strictly differentiable at g(ū), then

lip(f ◦ g)(ū) = |f ′(g(ū))| · lip g(ū).

Proof. The differentiability of the function f implies that the function h: R →
R defined by

h(y) =





f (y) − f (g(ū))

y − g(ū)
(y �= g(ū)),

f ′(g(ū)) (y = g(ū))
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is continuous at g(ū). Since, for all points u with d(u, ū) > 0,

|f (g(u)) − f (g(ū))|
d(u, ū)

= |h(g(u))| · |g(u) − g(ū)|
d(u, ū)

,

part (i) now follows by taking the lim sup as d(u, ū) → 0.
Part (ii) is similar. The strict differentiability of f implies that the function

p: R
2 → R defined

p(y, z) =





f (y) − f (z)

y − z
(y �= z),

f ′(g(ū)) (y = z)

is continuous at the point (g(ū), g(ū)). Since, for all points u, v ∈ X with
d(u, v) > 0,

|f (g(u)) − f (g(v))|
d(u, v)

= |p(g(u), g(v))| · |g(u) − g(v)|
d(u, v)

,

part (ii) now follows by taking the lim sup of each side as d(u, ū) → 0 and
d(v, ū) → 0. �

The following example shows that the differentiability assumptions in Proposi-
tion 2.3 cannot be relaxed to Lipschitz continuity.

EXAMPLE 2.4. Take X = R and f and g of the form

f (x) =
{

x for x � 0,
2x for x > 0

and g(x) =
{

3x for x � 0,
x for x > 0.

Then

f (g(x)) =
{

3x for x � 0,
2x for x > 0

and we have clm f (g(0)) = clm f (0) = 2, clm g(0) = 3; that is,

3 = clm(f ◦ g)(0) < clm f (g(0)) · clm g(0) = 6.

The calmness and the Lipschitz moduli are the same, hence the same strict inequal-
ity holds for clm replaced by lip.

Our basic result about reciprocal distances now follows. An analogous result
was recently announced independently in [4].

THEOREM 2.5. Consider a pseudo-metric space (X, d), a nonempty set S ⊂ X,
and any point ū ∈ X with dS(ū) > 0. Then the Lipschitz and calmness moduli for
the reciprocal distance satisfies

clm d−1
S (ū) � lip d−1

S (ū) � d−2
S (ū).

Equality holds throughout if the metric d is intrinsic (and hence in particular if X
is a normed space or a Riemannian manifold).
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Proof. Apply Proposition 2.3 with the function f (x) = 1/x and use Proposi-
tion 2.1. �

We provide next several illustrations of the above result in the context of moduli
of regularity of set-valued mappings:

COROLLARY 2.6 (Conditioning of surjectivity). Any closed sublinear surjective
set-valued mapping between Banach spaces F : X ⇒ Y satisfies

clm(‖F−1‖−)(F ) = lim sup
H→0 in L(X,Y )

|‖(F + H)−1‖− − ‖F−1‖−|
‖H‖

= (‖F−1‖−)2.

Proof. We apply Theorem 2.5 to the metric space U = L(X, Y ) and the set

S = {H ∈ L(X, Y ) | F + H is not surjective}.
From the radius theorem for surjectivity (Theorem 1.9), we have d−1

S 0 = ‖F−1‖−,
and hence, more generally, for any map H ∈ L(X, Y ), we obtain

d−1
S (H) = ‖(F + H)−1‖−.

The result now follows by direct substitution. �
A parallel result holds for the conditioning of injectivity for a positively homo-

geneous mapping, where the inner norm is replaced by the outer norm. For variety,
we give an expression for the Lipschitz modulus of the outer norm:

lip(‖F−1‖+)(F ) = lim sup
H,H ′→0 ∈ L(X,Y )

|‖(F + H)−1‖+ − ‖(F + H ′)−1‖+|
‖H − H ′‖

= (‖F−1‖+)2.

Turning to the more general, inhomogeneous setting, we have the following
result.

THEOREM 2.7 (Conditioning of regularity modulus). Consider a set-valued map-
ping F : X ⇒ Y between finite-dimensional normed spaces which is metrically
regular at x̄ for ȳ and let gph F be locally closed at (x̄, ȳ). Then

clm(reg F(x̄|ȳ))(F ) = lim sup
lip g(x̄)→0

g(x̄)=0

|reg(F + g)(x̄|ȳ) − reg F(x̄|ȳ)|
lip g(x̄)

= (reg F(x̄|ȳ))2.
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Proof. We again apply Theorem 2.5 to the pseudo-metric space of functions
g: X → Y with g(x̄) = 0 with the pseudo-metric d(u, v) = lip(u − v)(x̄) and the
set S given by

{g: X → Y, g(x̄) = 0 | F + g not metrically regular at x̄ for ȳ}.
According to Theorem 1.10, dS(0) = [reg F(x̄|ȳ)]−1. Hence, more generally, for
any function g: X → Y satisfying g(x̄) = 0 we have

d−1
S (g) = reg(F + g)(x̄|ȳ).

The result now follows. �

3. A Radius Theorem on Riemannian Manifold

A Riemannian manifold M is, briefly, a smooth (C∞) manifold associated with a
smoothly varying inner product on each tangent space. The distance dM(m1, m2)

between two points m1, m2 ∈ M is the infimum of the lengths of connecting paths:
if M is connected, then it becomes a metric space with this induced ‘intrinsic’
metric. A good basic reference is [2].

For our present purpose, we are interested only in the metric structure of the
manifold M . We may therefore appeal to the Nash embedding theorem [20], which
shows that, as a metric space, M is isometric to a smooth submanifold of a Euclid-
ean space E with the induced intrinsic metric. We denote the (smooth) isometry by
ι: M → E and the metric induced by the norm in E by dE . (In fact, since we are
only interested in local properties of the manifold, we only need the easier, local
version of the embedding result.)

Consider a point m̄ ∈ M . Elementary properties of submanifolds of E ensure
that the projection PιM : E → E is smooth on a neighborhood of m̄, with derivative
at m̄ just the projection onto the tangent space to ιM at m̄. Since this projection
therefore has norm one, we immediately deduce

lip PιM(m̄) = 1. (3.1)

PROPOSITION 3.1 (Comparing metrics). Near any point m̄ in the Riemannian
manifold M , the intrinsic distance dM and the distance dE on the embedding ιM

are related by

lim
m1,m2→m̄

m1 �=m2

dM(m1, m2)

dE(ιm1, ιm2)
= 1.

Consequently, both the embedding ι: M → E and its inverse ι−1: ιM → M have
Lipschitz modulus 1 (at m̄ and ιm̄ respectively).
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Proof. By the isometry, dM(m1, m2) is the infimum of the Euclidean length of
paths between ιm1 and ιm2 in the submanifold ιM ⊂ E. These lengths are bounded
below by ‖ιm1 − ιm2‖. On the other hand, since the projection PιM is smooth near
ιm̄ with ‖∇PιM(ιm̄)‖ = 1 given any ε > 0, for all points e ∈ E close to ιm we
have ‖∇PιM(e)‖ < 1 + ε. Hence for points m1, m2 ∈ M near m̄, as the scalar t

ranges from 0 to 1, the point PιM(ιm1 + t (ιm2 − ιm1)) traces a smooth path from
ιm1 to ιm2 with length

∫ 1

0

∥
∥
∥∥

d

dt
PιM(ιm1 + t (ιm2 − ιm1))

∥
∥
∥∥ dt

=
∫ 1

0
‖∇PιM(ιm1 + t (ιm2 − ιm1))(ιm2 − ιm1)‖ dt

�
∫ 1

0
‖∇PιM(ιm1 + t (ιm2 − ιm1))‖ · ‖(ιm2 − ιm1)‖ dt

� (1 + ε)‖ιm2 − ιm1‖.
The result now follows. �

We next extend this result to distances to sets.

PROPOSITION 3.2 (Comparing distances to sets). Consider any sequence of sets
Fr ⊂ M (for r = 1, 2, . . .). As r → ∞, the following conditions are equivalent:

(i) dM(m̄, Fr) → 0;
(ii) dE(ιm̄, ιFr) → 0.

Assuming these conditions hold, consider any sequence of points mr → m̄ in
M with mr /∈ Fr for each r . Then

dM(mr, Fr)

dE(ιmr, ιFr)
→ 1.

Proof. If condition (i) holds, then there exists a sequence of points mr ∈ Fr such
that dM(m̄, mr) → 0. Proposition 3.1 (comparing metrics) shows dE(ιm̄, ιmr) →
0, so condition (ii) follows. The converse is analogous.

For the last claim, there exists sequences ur ∈ Fr and vr ∈ ιFr satisfying

dM(mr, ur) < (1 + r−1)dM(mr, Fr),

dE(ιmr, vr) < (1 + r−1)dE(ιmr, ιFr).

Consequently we have the inequalities

(1 + r−1)dM(mr, ur)

dE(ιmr, ιur)
<

dM(mr, Fr)

dE(ιmr, ιFr)
<

dM(mr, ι
−1vr)

(1 + r−1)−1dE(ιmr, vr)
.
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The claim now follows, since both left- and right-hand sides approach 1 as
r → ∞, by Proposition 3.1. �

Consider a connected Riemannian manifold M , a finite-dimensional normed
space Z, and a set-valued mapping F : M ⇒ Z. Given points m̄ ∈ M and z̄ ∈
F(m̄), the regularity modulus of F at m̄ for z̄ is the infimum of all κ > 0 such that

dM(m, F−1(z)) � κdZ(z, F (m)) for all (m, z) close to (m̄, z̄). (3.2)

As above, we consider an isometric embedding ι: M → E of M into a Euclidean
space E.

Our next step in deriving a radius theorem is to reinterpret the regularity modu-
lus in terms of the embedding.

LEMMA 3.3 (Regularity after embedding). The regularity modulus of F at m̄ for
z̄ is the infimum of all κ > 0 such that

dE(e, ι(F−1(z))) � κdZ(z, F (ι−1e))

for all (e, z) close to (ιm̄, z̄) with e ∈ ιM. (3.3)

Proof. Denote the above infimum by κ̄ , and let κ̂ = reg F(m̄|z̄). Since any two
points m1, m2 ∈ M satisfy

dM(m1, m2) � dE(ιm1, ιm2),

property (3.2) implies property (3.3), so we deduce κ̂ � κ̄ . If κ̄ = +∞, then there
is nothing more to prove, so suppose κ̄ < +∞, and κ̂ > κ̄: we shall derive a
contradiction.

Choose real κ ′, κ ′′ satisfying κ̄ < κ ′ < κ ′′ < κ̂ . By the definition of κ̂ , there
exist sequences of points mr → m̄ in the manifold M and zr → z̄ in the space Z

satisfying

dM(mr, F
−1(zr)) > κ ′′dZ(zr, F (mr)) (3.4)

(and hence in particular zr /∈ F(mr)) for all r = 1, 2, . . . . By the definition of κ̄ ,

dE(ιm̄, ι(F−1(zr))) < κ ′dZ(zr, F (m̄)) (3.5)

and

dE(ιmr, ι(F
−1(zr))) < κ ′dZ(zr, F (mr)) (3.6)

for all large r . Since zr → z̄ ∈ F(m̄), the right-hand side of inequality (3.5)
approaches zero, and hence so does the left. We can now apply Proposition 3.2
(comparing distances to sets) to deduce

dM(mr, F
−1(zr))

dE(ιmr, ιF−1(zr))
→ 1.
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But inequalities (3.4) and (3.6) imply, for all large r , that the left-hand side is at
least κ ′′/κ ′ > 1, which is the desired contradiction. �

In the above result, the inverse of the embedding ι was applied only at points
in the embedded submanifold ιM ⊂ E: since ι is injective, its inverse is a well-
defined function on the submanifold. However, we can also interpret ι as a set-
valued mapping, in which case its inverse ι−1: E → M is given by

ι−1(e)

{ {m}, if ιm = e,
∅, if e /∈ ιM .

With this notation, we can reinterpret Lemma 3.3 (regularity after embedding) as
evaluating the regularity modulus of the mapping F ◦ ι−1, as follows.

LEMMA 3.4 (Regularity after composition).

reg F(m̄|z̄) = reg(F ◦ ι−1)(ιm̄|z̄). (3.7)

Proof. The right-hand side is infimum of all κ > 0 such that

dE(e, ι(F−1(z))) � κdZ(z, F (ι−1e)) for all (e, z) close to (ιm̄, z̄).

But for points e /∈ ιM , we have F(ι−1e) = ∅ and hence dZ(z, F (ι−1e)) = +∞,
so the condition above holds automatically for all such e. Hence this condition is
equivalent to condition (3.3), and the result now follows by Lemma 3.3. �

To study the radius of regularity, it is helpful first to compare Lipschitz functions
on the manifold M and its embedding ιM .

LEMMA 3.5 (Comparing Lipschitz moduli I). Consider any function g: E → Z

satisfying g(ιm̄) = 0. Then

lip(g ◦ ι)(m̄) � lip g(ιm̄)

and

reg(F + (g ◦ ι))(m̄|z̄) = reg((F ◦ ι−1) + g)(ιm̄|z̄).

Proof. The first inequality follows from Proposition 3.1 (comparing metrics).
The second follows from the observation

(F + (g ◦ ι)) ◦ ι−1 = (F ◦ ι−1) + g,

after applying Lemma 3.4 (regularity after composition). �
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LEMMA 3.6 (Comparing Lipschitz moduli II). Given any function h: M → Z

satisfying h(m̄) = 0, the function h ◦ ι−1 ◦ PM is single-valued near ιm̄, and

lip(h ◦ ι−1 ◦ PM)(ιm̄) = lip h(m̄)

and

reg((F ◦ ι−1) + (h ◦ ι−1 ◦ PM))(ιm̄|z̄) = reg(F + h)(m̄|z̄).
Proof. Observe

lip(h ◦ ι−1 ◦ PM)(ιm̄) � lip h(m̄) · lip(ι−1)(ιm̄) · lip PM(ιm̄) = lip h(m̄),

by Equation (3.1) and Proposition 3.1 (comparing metrics). On the other hand,

h ◦ ι−1 ◦ PM ◦ ι = h,

so, again by Proposition 3.1,

lip h(m̄) � lip(h ◦ ι−1 ◦ PM)(ιm̄) · lip ι(m̄) = lip(h ◦ ι−1 ◦ PM)(ιm̄),

and the first equation now follows. The second follows from the observation

(F + h) ◦ ι−1 = (F ◦ ι−1) + (h ◦ ι−1 ◦ PM),

after applying Lemma 3.4 (regularity after composition). �
LEMMA 3.7 (Radius after composition).

rad F(m̄|z̄) = rad(F ◦ ι−1)(ιm̄|z̄).
Furthermore, if the infimum defining either radius of regularity is attained, then so
is the other.

Proof. Consider any real γ > rad(F ◦ ι−1)(ιm̄|z̄). By definition, there exists a
function g: E → Z satisfying g(ιm̄) = 0 and lip g(ιm̄) < γ , and such that the
mapping (F ◦ ι)+g is not metrically regular at ιm̄ for z̄. By Lemma 3.5 (comparing
Lipschitz moduli I), the mapping F + (g ◦ ι) is not metrically regular at m̄ for z̄,
and lip(g ◦ ι)(m̄) < γ , so rad F(m̄|z̄) < γ .

On the other hand, consider any real γ > rad F(m̄|z̄). By definition, there exists
a function h: M → Z satisfying h(m̄) = 0 and lip h(m̄) < γ , and such that the
mapping F + h is not metrically regular at m̄ for z̄. We now apply Lemma 3.6
(comparing Lipschitz moduli II). The mapping h ◦ ι−1 ◦ PM is single-valued near
the point ιm̄, with

lip(h ◦ ι−1 ◦ PM)(ιm̄) = lip h(m̄) < γ,

and the mapping (F ◦ ι−1) + (h ◦ ι−1 ◦ PM) is not metrically regular at ιm̄ for z̄.
A standard construction [22] gives a Lipschitz function g: E → Z agreeing with
h ◦ ι−1 ◦ PM near ιm̄, so now we have g(ιm̄) = h(m̄) = 0 and lip g(ιm̄) <
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γ , and furthermore, (F ◦ ι−1) + g is not metrically regular at ιm̄ for z̄. Hence,
rad(F ◦ ι−1)(ιm̄|z̄) < γ .

The claimed equality of radii now follows. Furthermore, the constructions in the
preceding two paragraphs show how attainment in either radius definition implies
attainment in the other. �

The main result of this section now quickly follows.

RADIUS THEOREM ON MANIFOLDS. If M is a Riemannian manifold, Z is a
finite-dimensional normed space, consider a mapping F : M ⇒ Z. Then for any
(m̄, ȳ) ∈ gph F at which gph F is locally closed,

rad F(m̄|ȳ) = 1

reg F(m̄|ȳ)
. (3.8)

Moreover, the calmness modulus of the regularity modulus with respect to Lipschitz
additive perturbations is

ι−1(e) = clm(reg F(x̄|ȳ))(F ) = (reg F(x̄|ȳ))2. (3.9)

Proof. The equality (3.8) follows immediately from Lemma 3.4 (regularity after
composition), Lemma 3.7 (radius after composition), and the Theorem 1.10 (ra-
dius theorem). To obtain (3.9) we use Theorem 2.7 (conditioning of the regularity
modulus) and Lemma 3.4 again. �
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