
Set-Valued Analysis (2005) 13: 213–241 © Springer 2005

Nonsmooth Analysis of Singular Values.
Part I: Theory �

ADRIAN S. LEWIS1 and HRISTO S. SENDOV2

1Department of Combinatorics & Optimization, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada. e-mail: aslewis@math.uwaterloo.ca
2Department of Mathematics, Simon Fraser University, Burnaby, British Columbia V5A 1S6,
Canada. e-mail: hssendov@cecm.sfu.ca

(Received: 4 April 2003; in final form: 29 October 2004)

Abstract. The singular values of a rectangular matrix are nonsmooth functions of its entries. In this
work we study the nonsmooth analysis of functions of singular values. In particular we give simple
formulae for the regular subdifferential, the limiting subdifferential, and the horizon subdifferential,
of such functions. Along the way to the main result we give several applications and in particular
derive von Neumann’s trace inequality for singular values.
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1. Introduction

The singular values of a rectangular matrix are natural analogues of the eigenval-
ues of a square matrix. In this work we are interested in the first-order behaviour
of functions of the singular values of a rectangular matrix variable. The singular
values, like the eigenvalues, are not smooth functions of the entries of the ma-
trix. Hence, in order to gain insight into their behaviour we resort to ‘generalized
gradients’ (which we refer to as ‘subdifferentials’). Clarke introduced the notion of
generalized gradient in [2] and [3]; thorough accounts of more recent developments
may be found in [4] and [16].

The main result of this work gives formulae for the regular subdifferential,
limiting subdifferential, and horizon subdifferential of singular value functions.
Those are the composition of a symmetric and sign invariant function with the
singular values of a rectangular matrix: f ◦ σ . A nonsmooth analyst may propose
to approach the problem of characterizing the subdifferential of f ◦ σ using the
nonsmooth chain rule. A matrix analyst may notice that every singular value is the
difference of two convex functions and the subdifferentials of the latter are easier
to describe. Since we are interested in the more general question about functions
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of the singular values, both approaches will end up using the nonsmooth chain rule
which has the form

∂(f ◦ σ)(X) ⊂
⋃

{∂(yTσ)(X) | y ∈ ∂f (σ (X))}.
There are two potential problems with this formula. First it is an inclusion and the
conditions for equality will unnecessary restrict our generality. Second, even in the
cases when we can establish equality it is not clear whether and how the union of
the sets on the right-hand side can be transformed into the simple formula resulting
from our approach.

We follow the terminology and notation of [16]. The paper closely imitates and
extends the development in [13]. There are obvious patterns between the nota-
tion, techniques, and results there and here which suggest that there is a general
theoretic framework that encompasses them all. One possible unifying path in-
creasingly receiving attention lately uses properties of semisimple Lie groups and
their associated Lie algebras (see [14, 19, 18]).

The results described here were first investigated in the second author’s disser-
tation [17]. In Part II of this paper we extend the results to obtain analogous formu-
lae for the proximal subdifferential and Clarke subdifferential when the function
is either locally Lipschitz or just lower semicontinuous. We use them to calcu-
late the subdifferentials of individual singular values. Another application gives a
nonsmooth proof of Lidskii’s theorem for weak majorization of singular values.

2. The Limiting Subdifferential

DEFINITION 2.1 (Regular Subgradient). Given a Euclidean space E (by which
we mean, a finite-dimensional real inner-product space), a function f : E →
[−∞, +∞], and a point x in E at which f is finite, an element y of E is a regular
subgradient of f at x if it satisfies

f (x + z) � f (x) + 〈y, z〉 + o(z) as z → 0 in E.

As usual, o(·) denotes a real-valued function defined on a neighbourhood of the
origin in E, and satisfying limz→0 ‖z‖−1o(z) = 0. The set of regular subgradients
is denoted ∂̂f (x) and is called the regular subdifferential. It is easy to show that it
is always closed and convex.

This definition is just one-sided version of the classical (Fréchet) derivative.
A weakness of this natural concept of subdifferential is that even for well-behaved
functions f it may be empty as it is for example for the function f (x) = −|x| at
x = 0. The idea of the limiting subdifferential enhances regular subdifferential by
gathering information from the regular subdifferentials at points near x as well.

DEFINITION 2.2 (Limiting Subdifferential). An element y of E is a limiting sub-
gradient if there is a sequence of points xr in E approaching x with values f (xr)

approaching the finite value f (x), and a sequence of regular subgradients yr in
∂̂f (xr) approaching y.
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The set of all subgradients is the limiting subdifferential ∂f (x).

DEFINITION 2.3 (Horizon Subgradient). An element y of E is a horizon subgra-
dient if there is a sequence of points xr in E approaching x with values f (xr)

approaching the finite value f (x), a sequence of reals tr decreasing to 0, and a
sequence of regular subgradients yr in ∂̂f (xr) such that try

r → y.

The set of horizon subgradients is denoted ∂∞f (x). If f (x) is infinite then the
sets ∂f (x) and ∂̂f (x) are defined to be empty, and ∂∞f (x) to be {0}. The reader
can verify that ∂f (x) and ∂̂f (x) are always closed sets, and we have the inclusion
(∂̂f (x))∞ ⊂ ∂∞f (x) (where C∞ denotes the recession cone of a closed convex
set). It is easy to see that ∂∞f (x) is a cone and if f is Lipschitz around the point x

then ∂∞f (x) = {0}.

DEFINITION 2.4 (Subdifferential Regularity). If the function f is finite at the
point x with at least one subgradient there then it is regular at x if it is lower
semicontinuous near x, every subgradient is regular, that is ∂̂f (x) = ∂f (x), and
furthermore

∂∞f (x) = (∂̂f (x))∞.

This definition just says that the set epi f = {(x, α) |α � f (x)} is (Clarke)
regular at the point (x, f (x)): see [16, Corollary 8.11] for the justification.

DEFINITION 2.5 (Tangent Cone). Let L be a subset of the space E, and fix a
point x in E. An element d of E belongs to the regular tangent cone to L at x,
written TL(x), if

xr − x

tr
→ d,

for some sequence xr in L approaching x and a sequence tr decreasing to 0.

DEFINITION 2.6 (Negative Polar Cone). The (negative) polar of a subset H of E

is the set

H− = {y ∈ E : 〈x, y〉 � 0 ∀x ∈ H }.

The proof of the following easy and standard result can be found in [13, Propo-
sition 1].

PROPOSITION 2.7 (Normal Cone). Given a function f : E → [−∞, +∞] and a
point x in E, any regular subgradient of f at x is polar to the tangent cone of the
level set L = {z ∈ E : f (z) � f (x)} at x; that is ∂̂f (x) ⊂ (TL(x))−.
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In this paper we are interested in functions that are invariant under certain or-
thogonal transformations of the space E. A linear transformation g on the space E

is orthogonal if it preserves the inner product:

〈gx, gy〉 = 〈x, y〉 for all elements x and y of E.

Such linear transformations form the orthogonal group O(E). A function f on E

is invariant under a subgroup G of O(E) if f (gx) = f (x) for all points x in E

and transformations g in G.
In the following proposition, f ′(·; ·) denotes the usual directional derivative:

f ′(x; z) = lim
t↓0

f (x + tz) − f (x)

t
(when well-defined)

for elements x and z of E.
The following needed result is Proposition 2 in [13].

PROPOSITION 2.8 (Subgradient Invariance). If the function f : E → [−∞, +∞]
is invariant under a subgroup G of O(E), then any point x in E and transformation
g in G satisfy ∂f (gx) = g∂f (x). Corresponding results hold for regular, horizon,
and (if f is Lipschitz around x) Clarke subgradients, and f is regular at the
point gx if and only if it is regular at x. Furthermore, for any element z of E,
the directional derivative f ′(gx; gz) exists if and only if f ′(x; z) does, and in this
case the two are equal.

This section ends with a lemma which is useful in the later analysis of rregular-
ity. (See [13, Lemma 1].)

LEMMA 2.9 (Recession). For any nonempty closed convex subset C of E, closed
subgroup H of O(E), and transformation g in O(E), the set gHC is closed, and if
it is also convex then its recession cone is gH(C∞).

3. The Normal Space

Throughout the whole paper we will assume that n and m are natural numbers
and n � m. Let Mn,m denote the Euclidean space of n × m real matrices, with
inner product 〈X, Y 〉 = tr XTY . It is easily seen that analogous results to those
we present in this work hold for the space of n × m complex matrices with the
inner product 〈X, Y 〉 = Re(tr X∗Y ), where X∗ denotes transposition and complex
conjugation. With this inner product the complex matrices turn into an Euclidean
space over the reals. Orthogonal matrices below become unitary, but the functions
with matrix argument are still (extended) real valued.

The main goal of this section is to give a straightforward proof that for a fixed
X ∈ Mn,m the set

{UT
n XUm | Un, Um − orthogonal}
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is a smooth manifold and to characterize its tangent and normal spaces at every
point. To do this precisely we need a little of differential geometry and the results
stated below will be needed only in this section.

If M is a smooth manifold and m ∈ M , then TM(m) will denote the tangent
space to M at the point m. The next three results are respectively Proposition 4.5.1,
Proposition 12.9.4, Proposition 13.3.1, and Proposition 13.3.2 in [1].

LEMMA 3.1 (Manifold Sum). Let M and M ′ be smooth manifolds, and let p, p′
denote the projections of M × M ′ onto M, M ′ respectively then the function

λ: TM×M ′(a, a′) → TM(a) ⊕ TM ′(a′)

defined by w → (dp, dp′)w is a linear isomorphism.

THEOREM 3.2 (Quotient Manifold). If H is a closed subgroup of a Lie group G

then either H is open in G (and the quotient set topology on G/H is discrete) or
the quotient G/H admits a differentiable structure such that the natural surjection

π : G → G/H

g → gH

has rank equal to the dimension of G/H at every point; that is, the linear map dπ

between the tangent spaces is onto.

All quotient manifolds below have the differential structure described in Theo-
rem 3.2.

THEOREM 3.3 (Orbit Submanifold). Suppose G is a Lie group that also acts on
the Hausdorff manifold M and satisfies the natural conditions

G × M → M

(g, m) → gm

is differentiable and g1(g2m) = (g1g2)m for all g1, g2 ∈ G and m ∈ M . If the
stabilizer Gm is not an open subgroup of G, then the mapping

φm: G/Gm → M, defined by

g(Gm) → gm, for g in G,

is one-to-one and has rank equal to the dimension of G/Gm at every point. More-
over, the orbit Gm in M can be given the structure of a submanifold of M diffeo-
morphic to G/Gm under φm.

Let O(n) be the Lie group of n × n real orthogonal matrices, and let O(n, m)

denote the Cartesian product O(n) × O(m), which is also a Lie group. An easy
calculation shows that the tangent space to O(n) at the identity matrix I , is just the
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subspace of skew-symmetric matrices, A(n). Consequently, from Lemma 3.1 we
see that TO(n,m)(In, Im) = A(n) × A(m).

Consider the action of the group O(n, m) on the space Mn,m defined by

(Un, Um).X = UT
n XUm, for all (Un, Um) in O(n, m) and X in Mn,m.

For a fixed matrix X in Mn,m, the orbit

O(n, m).X = {UT
n XUm : (Un, Um) ∈ O(n, m)}

is just the set of n × m matrices with the same singular values as X. Here is then
the key fact.

THEOREM 3.4 (Normal Space). The orbit O(n, m).X is a submanifold of the space
Mn,m, with tangent space

TO(n,m).X(X) = {XZm − ZnX : Zn ∈ A(n) and Zm ∈ A(m)} (1)

and normal space

(TO(n,m).X(X))⊥ = {Y ∈ Mn,m : XTY and XY T symmetric}. (2)

Proof. Part I. The tangent space. Consider the stabilizer

O(n, m)X = {(Un, Um) ∈ O(n, m) : UT
n XUm = X}

and the bijection φ between the sets O(n, m)/O(n, m)X and O(n, m).X defined by:

(Un, Um)(O(n, m)X) → UT
n XUm, for (Un, Um) in O(n, m).

Clearly O(n, m)X is a closed subgroup of O(n, m) (it is closed under limit op-
erations). So from Theorem 3.3 it follows that the map φ is a diffeomorphism,
and hence its differential dφ is an isomorphism between the corresponding tangent
spaces

TO(n,m)/O(n,m)X((In, Im)O(n, m)X) and TO(n,m).X(X).

Consider, on the other hand, the quotient map

π : O(n, m) → O(n, m)/O(n, m)X, defined by

(Un, Um) → (Un, Um)(O(n, m)X), for all (Un, Um) in O(n, m).

Theorem 3.2 implies that its differential

dπ : TO(n,m)(In, Im) → TO(n,m)/O(n,m)X((In, Im)O(n, m)X)

is onto. Now consider a third map

ψ : O(n, m) → O(n, m).X, defined by

(Un, Um) → UT
n XUm, for all (Un, Um) in O(n, m).
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Since ψ = φ ◦ π , the chain rule gives dψ = dφ ◦ dπ , that is

(dψ)TO(n,m)(In, Im) = TO(n,m).X(X).

But as we noted above TO(n,m)(In, Im) = A(n) × A(m). Now we show that
(dψ)(Zn, Zm) = XZm − ZnX. Define the map

	: Mn × Mm → Mn,m,

	(U, V ) = UTXV,

where Mn, Mm, and Mn,m have their standard differential structure. Let d	 be its
differential at (In, Im). Then because TMn

(M) = Mn for each M ∈ Mn it is easy to
see that

d	: Mn × Mm → Mn,m,

d	(U, V ) = UTX + XV.

We have that O(n) × O(m) is a submanifold of Mn × Mm, so the tangent space
TO(n)×O(m)(In, Im) is isomorphic to a vector subspace of TMn×Mm

(In, Im). Also the
end of Theorem 3.3 implies that the tangent space TO(n,m).X(X) is isomorphic to a
vector subspace of TMn,m

(X). Let i be the natural injection of O(n) × O(m) into
Mn × Mm, and let j be the natural injection of O(n, m).X into Mn,m. Then from
the definitions j ◦ ψ = 	 ◦ i. So di ◦ dψ = d	 ◦ di, but (di)(Zn, Zm) = (Zn, Zm)

for each (Zn, Zm) in A(n) × A(m), and dj is the identity on TO(n,m).X(X). Thus,
we obtain (dψ)(Zn, Zm) = (d	)(Zn, Zm) = ZT

nX + XZm = XZm − ZnX, as we
claimed.

Part II. The normal space. If a matrix Y in Mn,m satisfies XTY = Y TX, and
XY T = YXT, then for any matrices Zn ∈ A(n), and Zm ∈ A(m) we have

〈Y, XZm − ZnX〉 = tr Y T(XZm − ZnX)

= tr Y TXZm − tr Y TZnX

= tr Y TXZm − tr XY TZn.

We will show now that tr Y TXZm = 0. Indeed,

tr Y TXZm = tr ZT
mXTY = − tr ZmXTY = − tr ZmY TX = − tr Y TXZm.

Analogously we get tr XY TZn = 0, consequently Y ∈ (TXO(n, m).X)⊥.
Conversely suppose that tr Y T(XZm − ZnX) = 0 for all Zn ∈ A(n) and Zm ∈

A(m). For each Zn ∈ A(n) we have

tr Y TZnX = tr XY TZn = tr(XY TZn)
T = tr ZT

nYXT = − tr ZnYXT,

that is

tr XY TZn = − tr ZnYXT.

Let Zm = 0. Then our assumption becomes tr XY TZn = 0 and consequently we
have tr ZnYXT = 0 and so is their difference:

tr(XY TZn − ZnYXT) = 0.
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Choosing Zn = XY T − YXT gives

0 = tr
(
XY T(XY T − YXT) − (XY T − YXT)YXT

)

= tr
(
XY T(XY T − YXT)

) − tr
(
YXT(XY T − YXT)

)

= tr(XY T − YXT)(XY T − YXT) = − tr(XY T − YXT)T(XY T − YXT),

whence XY T = YXT. Analogously by choosing first Zn = 0 and then Zm =
Y TX − XTY we obtain XTY = Y TX. �

Throughout the entire paper all vectors are considered to be column vectors
unless stated otherwise. We denote the cone of vectors x in R

n satisfying x1 �
x2 � · · · � xn by R

n
↓. We denote the standard basis in R

n by e1, e2, . . . , en. For
any vector x in R

n we denote by x̄ the vector with the same entries as x ordered
in nonincreasing order. Let P(n) denote the set of all n × n permutation matrices.
(Those matrices that have only one nonzero entry in every row or column, which
is 1.) Let P(−)(n) denote the set of all n × n signed permutation matrices. (Those
matrices that have only one nonzero entry in every row or column, which is ±1.) If
P(−) ∈ P(−)(n) then we will denote by |P(−)| the permutation matrix obtained from
P(−) by taking the absolute values of its entries. If x is a vector in R

n then |x| will
denote the vector (|x1|, |x2|, . . . , |xn|)T and x2 will denote the vector (x2

1 , . . . , x
2
n)

T.
Finally if x, y ∈ R

n then x · y = (x1y1, . . . , xnyn). We will need the following
standard lemma in our proofs (see [10]).

LEMMA 3.5. Any vectors x and y in R
n we have the inequality

xTy � x̄Tȳ.

Equality holds if and only if some matrix Q in P(n) satisfies Qx = x̄ and Qy = ȳ.

4. Singular Values

Analogously to the eigenvalue decomposition of a symmetric matrix via an or-
thogonal transformation, any rectangular matrix can also be diagonalized via an
orthogonal transformation on Mn,m. We state the precise result below. For the proof
the reader may refer either to [7, Theorem 7.3.5] or to [8, Theorem 3.1.1].

For any matrix X, with Xi,j we denote its (i, j)th entry. For any vector x in R
n

let Diag x denote the matrix with entries (Diag x)i,i = xi for all i, and (Diag x)i,j =
0 for i �= j . We want to turn the readers attention to the fact that sometimes Diag x

will denote an n × m matrix, sometimes n × n and sometimes m × m (this in case
x ∈ R

m), but there will be no confusion because the context will make clear which
is the case.

THEOREM 4.1 (Singular Value Decomposition). Let X ∈ Mn,m (n � m). There
are positive real numbers σ(X) := (σ1(X), σ2(X), . . . , σn(X))T in nonincreasing
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order σ1(X) � σ2(X) � · · · � σn(X), and square orthogonal (unitary if X is
complex) matrices Un and Um such that

X = UT
n

(
Diag σ(X)

)
Um.

The entries of the vector σ(X) = (σ1(X), σ2(X), . . . , σn(X))T are called the
singular values of X. The numbers {σ1(X), σ2(X), . . . , σn(X)} are the nonnegative
square roots of the eigenvalues of XXT and thus are uniquely determined. For
convenience and without loss of generality we have assumed that they are ordered
nonincreasingly.

DEFINITION 4.2. We say that two matrices X and Y in Mn,m have a simultaneous
ordered singular value decomposition if there is an element (Un, Um) in O(n, m)

such that X = UT
n (Diag σ(X))Um and Y = UT

n (Diag σ(Y ))Um.

We need to introduce more notation that will be used in the proof of the next
lemma. Let M be a matrix in Mn,m, and 1 � i1 < i2 < · · · < ir � n, 1 � j1 <

j2 < · · · < js � m be given numbers. Then M(i1, i2, . . . , ir ; j1, j2, . . . , js) will
denote the minor of M (with dimensions r × s) obtained at the intersection of the
rows with indexes i1, i2, . . . , ir , and columns with indexes j1, j2, . . . , js . If v is a
vector in R

n then we will use similar notation to denote a subvector of v. That is,
a subvector of v formed by the entries with indexes 1 � i1 < i2 < · · · < ir � n

will be denoted by v(i1, i2, . . . , ir ). Finally M(i; ·) will denote the row of M with
index i (these are row vectors), and M(·; i) will denote the column of M with
index i. The following lemma gives a necessary and sufficient condition for two
matrices to ‘almost’ have a simultaneous ordered singular value decomposition.
For a necessary and sufficient condition for simultaneous ordered singular value
decomposition see Theorem 4.6.

LEMMA 4.3. Two matrices Y and Z in Mn,m satisfy ZTY = Y TZ and ZY T =
YZT if and only if there exists an element (Un, Um) in O(n, m) and a signed
permutation matrix P(−) in P(−)(n) such that

Y = UT
n

(
Diag P(−)σ (Y )

)
Um, Z = UT

n

(
Diag σ(Z)

)
Um. (3)

Before we prove the result we need to comment on it.

Remark 4.4. There are four interesting variations of this kind of problem that
appear in the literature. Given a set of complex rectangular matrices one may
ask when they can be simultaneously diagonalized with unitary matrices (Un, Um)

where the resulting diagonal matrices are allowed to have complex entries, and a
second variation asks when the same diagonalization can be performed with a pair
of orthogonal matrices. For both those questions we refer the reader to Theorem 1
and Theorem 4 in [5]. The third form of the problem is the one we need and
formulated above: when a set of real rectangular matrices can be simultaneously
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diagonalized with orthogonal pair (Un, Um) (see [20] who also credits the original
result to Wiegmann [22]). The proof we present here is somewhat different and
the reduction steps in it make the main idea quite transparent. The final fourth
variation asks when the set of matrices have simultaneous (ordered) singular value
decomposition. (That is, the resulting diagonal matrices have real, nonnegative
(ordered) diagonal.) A necessary and sufficient condition for the fourth problem
is given by von Neumann in [21]. We address that question below in Theorem 4.6
by giving a variational proof of this result.

Proof. In one direction the lemma is clear. In the other direction, suppose first
that n = m and Y and Z are nonsingular. We will divide the proof into several
reduction stages. It is well known that the eigenvalues of Y TZ are the same as the
eigenvalues of ZY T counting multiplicities. Then because they are both symmetric,
there are two orthogonal matrices A and B in O(n) such that Y TZ = AT
A

and ZY T = BT
B. Consequently Y TZ = (ATB)(ZY T)(BTA). We make the
substitution: Y̆ = (ATB)Y and Z̆ = (ATB)Z. Then we have

Y̆ TZ̆ = Y TZ = (ATB)(ZY T)(BTA) = Z̆Y̆ T,

that is Y̆ T and Z̆ commute. Hence, Y̆ and Z̆T commute as well. Next, because Y̆ T

and Z̆ commute with the symmetric matrix Y̆ TZ̆ it follows that every eigenspace
of Y̆ TZ̆ is invariant under Y̆ T and Z̆. Thus if Vn is an orthogonal matrix in O(n),
whose columns are eigenvectors of Y̆ TZ̆ so that all eigenvectors corresponding to
the same eigenvalues occur one after another, then both V T

n Y̆ TVn and V T
n Z̆Vn must

be block diagonal (recall that eigenvectors corresponding to different eigenvalues
are orthogonal):

V T
n Y̆ TVn = Diag(Y̆ T

1 , Y̆ T
2 , . . . , Y̆ T

l ), V T
n Z̆Vn = Diag(Z̆1, Z̆2, . . . , Z̆l),

where Y̆ T
i ,Z̆i ∈ Mni

, 1 � ni � n, n1 + n2 + · · · nl = n, and each Y̆ T
i Z̆i = Z̆i Y̆

T
i =

λiIni
, where λ1, λ2, . . . , λl are the distinct (all of them are nonzero) eigenvalues of

the symmetric matrix Y̆ TZ̆. For each i choose a singular value decomposition Z̆i =
RT

i DiSi (Ri , Si – orthogonal, Di – diagonal), and observe Y̆ T
i = ST

i (λiD
−1
i )Ri .

Note that the absolute values of the diagonal entries of λiD
−1
i are the singular

values of Y̆ T
i . So we reduced Y and Z to l pairs of matrices Y̆i and Z̆i that satisfy

(3). Clearly the singular values of Z are the same as the singular values of Z̆ and
are the union of diagonal entries of D1, . . . , Dl . Let P be a permutation matrix
in P(n) such that Diag σ(Z) = P T Diag(D1, . . . , Dl)P . Then retracing back the
reductions one sees that the lemma holds in the case when n = m and the matrices
Y , Z are nonsingular. In fact, decomposition (3) holds with

UT
n = BTAVn Diag

(
RT

1 , . . . , RT
l

)
P, Um = P T

(
Diag(S1, . . . , Sl)

)
V T

n .

We now consider the general case n � m. First we observe that the symmetric
matrices Y TY and ZTZ commute. Indeed

(ZTZ)(Y TY ) = ZT(YZT)Y = (ZTY )(ZTY )
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= (Y TZ)(Y TZ) = Y T(ZY T)Z = (Y TY )(ZTZ).

Analogously one sees that the pair of symmetric matrices YY T and ZZT also com-
mute. It is well known that the eigenvalues of Y TY are the same as the eigenvalues
of YY T plus m − n additional zeros. Hence there is a matrix Vm in O(m) and a
matrix Vn in O(n) that simultaneously diagonalize the above two pairs respectively.
(Recall that for any matrix Y , the eigenvalues of YY T are the singular values of Y

squared and similarly for Y T.)

V T
n (YY T)Vn = Diag σ 2(Y ),

V T
m(Y TY )Vm = Diag(σ 2(Y )T, 0, . . . , 0︸ ︷︷ ︸

m−n

)T,

V T
n (ZZT)Vn = Diag Pnσ

2(Z),

V T
m(ZTZ)Vm = Diag Pm(σ 2(Z)T, 0, . . . , 0︸ ︷︷ ︸

m−n

)T,

where Pn is a permutation matrix in P(n), and Pm is in P(m). Now we make the
substitution:

Ŷ = V T
n YVm, Ẑ = V T

n ZVm.

Observe that:

Ŷ TẐ = V T
mY TZVm = V T

mZTYVm = ẐTŶ ,

and similarly one checks that Ŷ ẐT = ẐŶ T. Moreover we have that

Ŷ Ŷ T = Diag σ 2(Y ), Ŷ TŶ = Diag(σ 2(Y )T, 0, . . . , 0︸ ︷︷ ︸
m−n

)T (4)

and

ẐẐT = Diag Pnσ
2(Z), ẐTẐ = Diag Pm(σ 2(Z)T, 0, . . . , 0︸ ︷︷ ︸

m−n

)T. (5)

Next, we investigate the structure of the matrices Ŷ and Ẑ. Let the ranks of Ŷ

and Ẑ be k and l respectively, and let Ŷ (i1, . . . , ik; j1, . . . , jk)

and Ẑ(t1, t2, . . . , tl; p1, p2, . . . , pl) be nonsingular minors. Let I = {i1, i2, . . . , ik},
J = {j1, j2, . . . , jk}, T = {t1, t2, . . . , tl}, P = {p1, p2, . . . , pl}. Equation (4) tells
us that the rows and the columns of Ŷ are mutually orthogonal. If we take a row,
ri of Ŷ , such that i �∈ I then ri is a linear combination of rows with indexes from
the set I . Multiplying this linear combination by ri gives that rT

i ri = 0. Similar
argument for the columns imply that all the entries of Ŷ that don’t belong to the
minor Ŷ (i1, . . . , ik; j1, . . . , jk) are zero. The same arguments apply to Ẑ.

Let A = I ∩ T , B = T \I , C = P \J and D = P ∩ J , see Figure 1. Take
an index i in the set B. From the above paragraph we have that the ith row of Ŷ
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Figure 1. The sets I , J , T , P and A, B, C, D.

is the zero vector: Ŷ (i; ·) = 0. So we get Ŷ (i; ·)Ẑ(x; ·)T = 0 for all 1 � x � n.
Using the relationship Ŷ ẐT = ẐŶ T we get that Ẑ(i; ·)Ŷ (x; ·)T = 0 for all 1 �
x � n. So in particular the vector Ẑ(i; ·)(J ) (that is, the subvector of the ith row
of Ẑ formed from the entries with indexes in J ) is orthogonal to all the vectors
Ŷ (x; ·)(J ) for all x ∈ I . But the last set of vectors form the nonsingular minor
of Ŷ . So Ẑ(i; ·)(J ) = 0. We already knew that Ẑ(i; ·)(J\D) = 0 so what we
get in addition is that Ẑ(i; ·)(D) = 0, and this applies for every i in B. So all
the entries of the submatrix Ẑ(B;D) of the nonsingular minor Ẑ(T ;P), are zero.
Completely analogously but now choosing an index from the set C and using the
relationship Ŷ TẐ = ẐTŶ one sees that all the entries of the submatrix Ẑ(A;C) of
the nonsingular minor Ẑ(T ;P), are zero.

Next, we want to show that |A| = |D| and |C| = |B|. Suppose |C| < |B|, so
the submatrix Ẑ(B;C) has linearly dependent rows. But then the rows of Ẑ(B;P)

are linearly dependent and this contradicts that fact that Ẑ(T ;P) is nonsingular.
Suppose now |C| > |B|, so the columns of Ẑ(B;C) are linearly dependent, and
so will be the columns of Ẑ(T ;C) and we get again the same contradiction. So
|C| = |B|, and because |A| + |B| = l and |C| + |D| = l we obtain that |A| = |D|
as well. In summary, we proved that the nonsingular minor of Ẑ is block diagonal:

Ẑ(T ;P) = Diag
(
Ẑ(B;C), Ẑ(A;D)

)
.

Completely analogously we obtain the same result for Ŷ . That is the nonsingular
minor of Ŷ is block diagonal:

Ŷ (I ; J ) = Diag
(
Ŷ (A;D), Ŷ (I\A; J\D)

)
.

Now, because Ŷ ẐT = ẐŶ T and Ŷ TẐ = ẐTŶ one easily sees that

Ŷ (A;D)Ẑ(A;D)T = Ẑ(A;D)Ŷ (A;D)T
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and

Ŷ (A;D)TẐ(A;D) = Ẑ(A;D)TŶ (A;D).

Moreover Ŷ (A;D), Ẑ(A;D) are square and nonsingular. So from the first part of
the proof they have simultaneous singular value decompositions as described in
the lemma. Next, we find (four) orthogonal matrices that give the singular value
decomposition of Ŷ (I\A; J\D) and Ẑ(B;C) and because (I\A) ∩ B = ∅ and
(J\D) ∩ C = ∅ it is not difficult to see how we can obtain the singular value
decomposition described in the lemma. �

In what follows, for a vector x in R
n, we write x̂ for the vector in R

n with the
same entries as |x| arranged in nonincreasing order. Note that σ(Diag x) = x̂. The
following lemma follows as a particular case of the more general framework in [12,
Theorem 2.2, Example 7.2], we give a direct proof here.

LEMMA 4.5. For any vectors x and y in R
n we have the inequality

xTy � x̂Tŷ (6)

with equality if and only if there is a signed permutation matrix P(−) in P(−)(n)

such that P(−)x = x̂ and P(−)y = ŷ.
Proof. It is clear that the inequality holds since

xTy � |x|T|y| � x̂Tŷ,

where the last inequality follows from Lemma 3.5. The condition for equality
in one direction is clear too. Now suppose we have equalities above. Because
|x|T|y| = x̂Tŷ, from Lemma 3.5, there is a permutation matrix Q in P(n) such
that Q|x| = x̂ and Q|y| = ŷ.

Let I be the n × n identity matrix. The fact that we have the equality xTy =
|x|T|y| makes it possible to assign signs to the entries of the identity matrix I so
that if I(−) is the so-formed matrix, we have I(−)x = |x| and I(−)y = |y|. Indeed,
for every index i, 1 � i � n, we assign the signs as follows:

if xi = 0 and yi = 0 set I
i,i
(−) = 1;

if xi = 0 and yi �= 0 set I
i,i
(−) = sign(yi);

if xi �= 0 and yi = 0 set I
i,i
(−) = sign(xi);

if xi �= 0 and yi �= 0, in order for the equality to hold we must have sign(xi) =
sign(yi), so set I

i,i
(−) = sign(xi). We have that QI(−)x = x̂ and QI(−)y = ŷ;

let P(−) = QI(−). �
The Normal Space Theorem 3.4 will be extremely useful to us in the following

sections. However we can immediately demonstrate its importance by recalling the
variational proof of an inequality essentially due to von Neumann [8, p. 182]. The
following theorem may also be viewed as a necessary and sufficient condition for
two matrices to have a simultaneous ordered singular value decomposition.
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THEOREM 4.6 (Von Neumann’s Trace Theorem). Any matrices X and Y in Mn,m

satisfy the inequality tr XTY � σ(X)Tσ(Y ). Equality holds if and only if X and Y

have a simultaneous ordered singular value decomposition.
Proof. For fixed X and Y , consider the optimization problem

α = sup
Z∈O(n,m).X

tr Y TZ. (7)

Observe first that there is an element (Un, Um) in O(n, m) satisfying Y =
UT

n (Diag σ(Y ))Um, and then choosing Z = UT
n (Diag σ(X))Um shows that α �

σ(X)Tσ(Y ).
Next, since the orbit O(n, m).X is compact, problem (7) has an optimal solution,

Z = Z0 say, and any such Z0 by stationarity must satisfy

Y ⊥ TO(n,m).X(Z0) (= TO(n,m).Z0(Z0)).

The Normal Space Theorem now shows that the matrices Y and Z0 satisfy ZT
0 Y =

Y TZ0 and Z0Y
T = YZT

0 . Then by Lemma 4.3, there is an element (Un, Um) in
O(n, m), and a signed permutation matrix P(−) in P(−)(n) such that

Y = UT
n (Diag P(−)σ (Y ))Um, Z0 = UT

n (Diag σ(Z0))Um. (8)

Hence using Lemma 3.5 we get

α = tr Y TZ0 = σ(Z0)
TP(−)σ (Y ) � σ(Z0)

T|P(−)|σ(Y )

� σ(Z0)
Tσ(Y ) = σ(X)Tσ(Y ) � α.

Hence we can conclude that α = σ(X)Tσ(Y ) and, using Lemma 4.5, there ex-
ists a signed permutation matrix R in P(−)(n) such that RP(−)σ (Y ) = σ(Y ) and
Rσ(Z0) = σ(Z0). Plugging this into Equations (8) we get that

Y = UT
n

(
Diag RTσ(Y )

)
Um, Z0 = UT

n

(
Diag RTσ(Z0)

)
Um.

But

(
Diag RTσ(Y )

) = RT(Diag σ(Y ))

( |R| 0
0 Im−n,m−n

)
,

and there is a similar equation involving Z0. The theorem follows. �
This section ends with two simple linear-algebraic results which are useful later.

The first is Proposition 3 in [13].

PROPOSITION 4.7 (Simultaneous Square Conjugacy).For any vectors x, y, u, v

in R
n, there is a matrix U in O(n) with Diag x = UT(Diag u)U and Diag y =

UT(Diag v)U if and only if there is a matrix P in P(n) with x = Pu and y = Pv.
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PROPOSITION 4.8 (Simultaneous Rectangular Conjugacy). For any vectors x, y,
u, and v in R

n, there is an element (Un, Um) in O(n, m) with Diag x =
UT

n (Diag u)Um and Diag y = UT
n (Diag v)Um if and only if there is a matrix P(−) in

P(−)(n) with x = P(−)u and y = P(−)v.
Proof. In one direction the proof is easy. In the other direction we divide it into

four steps. First we note that

(Diag x)(Diag x)T = UT
n (Diag u)(Diag u)TUn,

(Diag y)(Diag y)T = UT
n (Diag v)(Diag v)TUn.

So from Proposition 4.7, there is a permutation matrix P1 in P(n) such that

x2 = P1u
2 and y2 = P1v

2.

This implies that the number of zero entries in vector u is equal to the number
of zero entries in vector x, and the permutation is such that if P1e

i = ej then
|ui | = |xj | and |vi | = |yj |.

Second we have that

(Diag x)(Diag x)T = UT
n (Diag u)(Diag u)TUn,

(Diag x)(Diag y)T = UT
n (Diag u)(Diag v)TUn.

Again according to the previous proposition, there is a permutation matrix P2 in
P(n) such that

x2 = P2u
2 and x · y = P2(u · v).

Third, let π1 and π2 be the permutations corresponding to the permutation ma-
trices P1 and P2, that is, Pj ei = eπj (i) for all j = 1, 2 and i = 1, . . . , n. We use π1

and π2 to form a new permutation π (with corresponding permutation matrix P )
in the following way:

π(i) =
{

π1(i) if ui = 0,
π2(i) if ui �= 0.

Because P2 also maps the zero entries of u one-to-one onto the zero entries of x,
the above construction is well defined.

In the last step we show that we can turn P into a signed permutation matrix
P(−) with the desired properties and such that |P(−)| = P . Suppose π(i) = j (this
of course means P j,i = 1), then

If ui = 0 and vi = 0 then we set P
j,i

(−) = P j,i = 1.

If ui = 0 and vi �= 0 then set P
j,i

(−) = sign(vi) sign(yj ).

If ui �= 0 and vi = 0 then set P
j,i

(−) = sign(ui) sign(xj ).

If ui �= 0 and vi �= 0 then set again P
j,i

(−) = sign(ui) sign(xj ).

It is easily verified that x = P(−)u andy = P(−)v. �
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5. Simultaneous Diagonalization

The reader can easily check the following elementary statement using the singular
value decomposition theorem.

PROPOSITION 5.1 (Orthogonally Invariant & Absolutely Symmetric). The fol-
lowing two properties of a function F : Mn,m → [−∞, +∞] are equivalent:

(i) F is orthogonally invariant; that is, any matrices X in Mn,m, Un in O(n), and
Um in O(m) satisfy F(UT

n XUm) = F(X).
(ii) F = f ◦σ for some absolutely symmetric function f : R

n → [−∞, +∞] that
is, any vector x in R

n and matrix P in P(−)(n) satisfy f (Px) = f (x).

DEFINITION 5.2 (Singular Value Function). A singular value function is an ex-
tended-real-value function defined on Mn,m of the form f ◦ σ for an absolutely
symmetric function f : R

n → [−∞, +∞].
THEOREM 5.3 (Symmetricity). If a matrix Y in Mn,m is a regular, a limiting, or
a horizon subgradient of a singular value function F at a matrix X in Mn,m, then
X and Y satisfy XTY = Y TX and Y TX = XTY .

Proof. Take first Y ∈ ∂̂F (X) to be a regular subgradient. The orthogonal invari-
ance property of the singular value functions implies that the orbit O(n, m).X is
contained in the level set L = {Z ∈ Mn,m | F(Z) � F(X)} of F at X. Then using
the Normal Cone Proposition 2.7 we get

Y ∈ (
TL(X)

)− ⊂ (
TO(n,m).X(X)

)− = (
TO(n,m).X(X)

)⊥
.

Since by the Normal Space Theorem 3.4 the tangent cone TX of the orbit O(n, m).X

at X is a linear space. Thus we get XTY = Y TX and Y TX = XTY .
Next, let Y be a limiting subgradient of F at X. By the definition, there is a

sequence of matrices Xr in Mn,m approaching X with a corresponding sequence
of regular subgradients Yr in ∂̂F (Xr), approaching Y . By the above paragraph we
have

XTY = lim
r

XT
r Yr = lim

r
Y T

r Xr = Y TX.

The relationship Y TX = XTY is similar.
If Y is a horizon subgradient then there are sequences Yr approaching Y and re-

als tr decreasing to 0 such that trYr approaches Y . Thus, together with the sequence
Xr in Mn,m approaching X we have

XTY = lim
r

XT
r trYr = lim

r
trY

T
r Xr = Y TX. �

The above theorem together with Lemma 4.3 show that if a matrix Y is a sub-
gradient of some singular value function F at the matrix X (where X, Y ∈ Mn,m),
then X and Y can be simultaneously diagonalized:

Y = UT
n

(
Diag P(−)σ (Y )

)
Um, X = UT

n

(
Diag σ(X)

)
Um,
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where (Un, Um) is in O(n, m), and P(−) is a signed permutation matrix in P(−)(n).
Using the Subgradient Invariance Proposition 2.8 applied to the space Mn,m with
the action of the group O(n, m), we see that the matrix Diag P(−)σ (Y ) must be
a subgradient at Diag σ(X). All this shows how we can simplify the problem of
characterizing the nonsmooth subdifferentials of a singular value function. We can
see that it is enough to consider only the case when X and Y are both diagonal (by
that we mean Xi,j = 0 if i �= j ). We make all these observations precise in the
following sections. In the next proposition we show the easy inclusion.

PROPOSITION 5.4. Any vectors x and y in R
n, and singular value function f ◦σ

satisfy

Diag(y) ∈ ∂(f ◦ σ)(Diag x) ⇒ y ∈ ∂f (x).

Corresponding results hold for regular and horizon subgradients.
Proof. We show first that the claim holds when Diag y is a regular subgradient

of f ◦ σ at Diag x. For vectors z in R
n close to the origin we have

f (x + z) = f (|x + z|)
= (f ◦ σ)(Diag x + Diag z)

� (f ◦ σ)(Diag x) + tr(Diag y)T(Diag z) + o(Diag z)

= f (|x|) + yTz + o(z)

= f (x) + yTz + o(z),

whence y ∈ ∂̂f (x).
Next, if Diag y ∈ ∂(f ◦ σ)(Diag x), then there is a matrix sequence Xr in Mn,m

approaching Diag x, with (f ◦σ)(Xr) approaching (f ◦σ)(Diag x), and a sequence
of regular subgradients Yr in ∂̂(f ◦ σ)(Xr) approaching Diag y. By Theorem 5.3
there is a sequence of elements (Ur

n, Ur
m) of O(n, m) and a sequence of matrices

P r
(−) in P(−)(n) such that

Xr = (Ur
n)T

(
Diag P r

(−)σ (Xr)
)
Ur

m and Yr = (Ur
n)T

(
Diag σ(Yr)

)
Ur

m (9)

for every r . The Subgradient Invariance Proposition 2.8 now shows that
Diag σ(Yr) ∈ ∂̂(f ◦ σ)(Diag P r

(−)σ (Xr)). Therefore by the first paragraph σ(Yr) ∈
∂̂f (P r

(−)σ (Xr)).
The groups O(n, m) and P(−)(n) are compact. So without loss of generality

we can assume that (Ur
n, Ur

m) approaches an element (Un, Um) in O(n, m) and
P r

(−) approaches P(−) in P(−)(n). Moreover because P(−)(n) is a discrete group the
elements of the sequence P r

(−) will be equal to P(−) for big enough r’s. Hence from
Equation (9), taking the limit and rearranging we get

Un(Diag x)UT
m = Diag(P(−)σ (Diag x))

and

Un(Diag y)UT
m = Diag σ(Diag y).

(10)



230 ADRIAN S. LEWIS AND HRISTO S. SENDOV

Since P r
(−)σ (Xr) approaches P(−)σ (Diag x), with f (P r

(−)σ (Xr)) = f (σ (Xr)) ap-

proaching f (σ (Diag x)) = f (P(−)σ (Diag x)), and σ(Yr) ∈ ∂̂f (P r
(−)σ (Xr)) ap-

proaching σ(Diag y), then σ(Diag y) belongs to ∂f (P(−)σ (Diag x)).
Combining Equation (10) and Proposition 4.8, there exists a signed permutation

matrix P̂(−) such that x = P̂(−)P(−)σ (Diag x), y = P̂(−)σ (Diag y). Applying the
Subgradient Invariance Proposition 2.8 again, this time to the space R

n with the
group P(−)(n), we get that y belongs to ∂f (x) as we claimed.

In the case when Diag y is a horizon subgradient, the calculations are analo-
gous. �

6. Directional Derivatives of Singular Values

As we said before Proposition 5.4, the opposite inclusion to the one stated there
is the more difficult one. It is our goal in this section to show that. Once we show
the opposite inclusion for regular subgradients, most of the goal will be achieved.
Thus the difficulty is in showing that for vectors x and y in R

n and a singular value
function f ◦ σ we have

y ∈ ∂̂f (x) ⇒ Diag y ∈ ∂̂(f ◦ σ)(Diag x). (11)

We need to state two more propositions. The first is obtained by combining
Theorem 4.3 with Example 7.6 in [12]. The second is Theorem 3.1 in [9].

PROPOSITION 6.1 (Characterization of Convexity). Let the function f : R
n →

(−∞, +∞] be absolutely symmetric. Then the corresponding singular value func-
tion f ◦ σ is convex on Mn,m if and only if f is convex.

PROPOSITION 6.2 (Gradient Formula). If a function f : R
n → (−∞, +∞] is

convex and absolutely symmetric, then the corresponding convex, orthogonally
invariant function f ◦ σ is differentiable at the matrix X if and only if f is dif-
ferentiable at σ(X). In this case

∇(f ◦ σ)(X) = UT
n

(
Diag ∇f (σ (X))

)
Um,

for any matrices Un in O(n) and Um in O(m) with X = UT
n (Diag σ(X))Um.

For each integer k = 0, 1, 2, . . . , n we define the function Sk: Mn,m → R by
Sk(M) = ∑k

i=1 σi(M), the sum of the k largest singular values of the matrix M . For
convenience we define S0 = 0. It is well known result of Fan that Sk is convex (even
sublinear) function on Mn,m (see for example Corollary 3.4.4 in [8]). Another way
to see this is by using Proposition 6.1. We define a new symbol R

n := (Rn
↓ ∩ R

n+).
To simplify the notation in the following several lemmas, if x is a vector from R

n

but the indexing refers to the element xn+1, then we will assume that xn+1 = 0.
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LEMMA 6.3. The function f : R
n → R defined by f (x) = ∑k

i=1 x̂i (k � n) is
differentiable at any point µ ∈ R

n such that µk > µk+1, and its derivative is

∇f (µ) =
k∑

i=1

ei.

Proof. Set v := ∑k
i=1 ei . For all vectors x with sufficiently small norm we have

f (µ + x) = ∑k
i=1(µk + xk). So for all sufficiently small vectors x �= 0,

f (µ + x) − f (µ) − 〈v, x〉
‖x‖ = 0.

Consequently ∇f (µ) = ∑k
i=1 ei . �

LEMMA 6.4. Fix an integer k, 1 � k � n. For any real vector x in R
n such that

x̂k > x̂k+1 the function Sk is differentiable at Diag x with gradient

∇Sk(Diag x) = UT
n

(
Diag

k∑

i=1

ei

)
Um,

where Un, Um are any orthogonal matrices such that Diag x = UT
n (Diag x̂)Um.

Note 6.5. Of course one can choose the matrices Un and Um in such a way
that Un is a signed permutation matrix, P(−), and Um is the block diagonal matrix
Diag(|P(−)|, Im−n,m−n). In particular if x ∈ R

n we can take Un = In and Um = Im.

Proof. The function f : R
n → R defined by f (y) = ∑k

i=1 ŷi is easily seen to be
absolutely symmetric and convex. From Lemma 6.3 it is also differentiable at the
point σ(Diag x) = x̂. So by Proposition 6.2 it follows that f ◦ σ is differentiable
at Diag x. But (f ◦ σ)(M) = Sk(M) for each M in Mn,m, so Sk is differen-
tiable at Diag x and the formula for its gradient follows from Proposition 6.2 and
Lemma 6.3. �
LEMMA 6.6. For any vector w in R

n, the function wTσ is convex, and any vector
x in R

n satisfies Diag w ∈ ∂(wTσ)(Diag x).
Proof. The absolutely symmetric continuous function f : R

n → R defined by
f (z) = wTẑ is convex because it is the maximum of a family of convex (linear in
this case) functions

f (z) = max{wTP(−)z : P(−) ∈ P(−)(n)},
by Lemma 4.5. Then by Proposition 6.1 we obtain that f ◦ σ is convex. To prove
the claim about the gradient it is enough to show that any matrix Z in Mn,m satisfies

tr(Diag w)(Z − Diag x) � wTσ(Z) − wTx,
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or in other words, tr(Diag w)Z � wTσ(Z). This inequality follows from von
Neumann’s Theorem 4.6. �

For any vector x in R
n, we denote by P(−)(n)x the stabilizer of x in the group

P(−)(n), that is

P(−)(n)x = {P(−) ∈ P(−)(n) : P(−)x = x}.
The following lemma is an extension and generalization for singular values of

Lemma 5.3 in [11].

LEMMA 6.7. If x is a vector in R
n, and w is a vector in R

n such that the stabilizer
P(−)(n)x is a subgroup of P(−)(n)w, then the function wTσ(·) is differentiable at
Diag x with

∇(wTσ)(Diag x) = Diag w.

Proof. Suppose that the structure of vector x is

x1 = · · · = xk1 > xk1+1 = · · · = xk2 > · · · > xkr+1

= · · · = xkr+1 = 0 (kr+1 = n).

(The proof of the lemma is the same even if xn > 0.) Since the stabilizer P(−)(n)x

is a subgroup of P(−)(n)w, there exist reals β1, β2, . . . , βr, βr+1 with

wi = βj whenever kj−1 < i � kj , j = 1, 2, . . . , r,

where βr+1 = 0 and we set k0 = 0. We obtain

wTσ(X) =
r+1∑

j=1

βj

kj∑

i=kj−1+1

σi(X) =
r+1∑

j=1

βj

(
Skj

(X) − Skj−1(X)
)
.

Let P 1
(−) = In and P 2 = Im the identity matrices of the indicated dimension. Then

applying Lemma 6.4 and the note after it gives

∇(wTσ)(Diag x) =
r+1∑

j=1

βjI
T
n

(
Diag

kj∑

i=1

ei − Diag
kj−1∑

i=1

ei

)
Im

=
(

r∑

j=1

βj Diag
kj∑

i=kj−1+1

ei

)

= Diag w,

as required. �
The following theorem is crucial for the proof of implication (11). Notice that

the adjoint of the linear map Diag: R
n → Mn,m is the map diag: Mn,m → R

n,
taking a matrix M to a vector with components Mi,i (1 � i � n).
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THEOREM 6.8 (Singular Value Derivatives). Any vector x in R
n and matrix M in

Mn,m satisfy

diag M ∈ conv
(
P(−)(n)xσ

′(Diag x;M)
)
. (12)

Proof. Assume first that xn = 0. Suppose again that the structure of the vector
x ∈ R

n is

x1 = · · · = xk1 > xk1+1 = · · · = xk2 > · · · > xkr+1

= · · · = xkr+1 = 0 (kr+1 = n).

The indexes define a partitioning of the integers {1, 2, . . . , n} into consecutive
blocks

I1 = {1, 2, . . . , k1}, I2 = {k1 + 1, k1 + 2, . . . , k2}, . . . ,
Ir+1 = {kr + 1, kr + 2, . . . , kr+1}.

Thus xi = xj if and only if the indices i and j belong to the same block and
xi ∈ Ir+1 if and only if xi = 0. We are also going to say that an entry of x belongs
to a particular block if its index is in that block. With respect to these blocks, write
any vector y in R

n in the form

y =
r+1⊕

i=1

yi, where yi ∈ R
|Ii | for each i.

The stabilizer P(−)(n)x consists of matrices permuting the entries of x in a block
Ii (for every fixed i, 1 � i � r), among themselves (without sign changes) and
permuting the entries of x belonging to the block Ir+1 among themselves (with
possible sign changes).

Assume that relation (12) fails. Then there exists a hyperplane separating diag M

from conv(P(−)(n)xσ
′(Diag x;M)). That is, some vector y in R

n satisfies

yT diag M > yTP(−)σ
′(Diag x;M), for all P(−) in P(−)(n)x. (13)

Let ỹ denote the vector
⊕r

i=1 yi ⊕ ŷr+1. There is a vector v in R
n with equal

components within every block Ii (1 � i � r) and vj = 0 whenever j ∈ Ir+1 (that
is, P(−)(n)x is a subgroup of P(−)(n)v) so that v + ỹ lies in R

n. Lemma 6.6 shows
that

Diag(v + ỹ) ∈ ∂
(
(v + ỹ)Tσ

)
(Diag x),

which in turn means that for any T in Mn,m and a real t , using the definition of a
convex subgradient for the matrix Diag x + tT

tr
(
(tT )T(Diag(v + ỹ))

)

�
(
(v + ỹ)Tσ

)
(Diag x + tT ) − (

(v + ỹ)Tσ
)
(Diag x).
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Dividing by t and letting it go to 0+ we arrive at

tr
(
T T(Diag(v + ỹ))

)
� (v + ỹ)Tσ ′(Diag x; T ), (14)

for any matrix T in Mn,m. On the other hand, Lemma 6.7 shows that

tr
(
T T(Diag v)

) = vTσ ′(Diag x; T ). (15)

Subtracting Equation (15) from inequality (14) gives

tr
(
T T(Diag ỹ)

)
� ỹTσ ′(Diag x; T ). (16)

If we set diag M =: w = ⊕
r wr , then there is a matrix Q in P(−)(n)x satisfying

diag

(
QTM

( |Q| 0
0 Im−n,m−n

))
=

r⊕

i=1

wi ⊕ ŵr+1.

Choosing the matrix T in inequality (16) to be T = QTM
( |Q| 0

0 Im−n,m−n

)
and using

Lemma 3.5 repeatedly and Lemma 4.5 shows

yTw �
(

r⊕

i=1

yi

)T(
r⊕

i=1

wi

)
+ ŷr+1

T
ŵr+1

= tr
(
T T(Diag ỹ)

)

� ỹTσ ′(Diag x; T )

= ỹTσ ′(Diag x;M).

In the last equality we used the Subgradient Invariance Proposition 2.8 and the fact
that Q is in P(−)(n)x . But now choosing the matrix P(−) ∈ P(−)(n)x in inequality
(13) so that P T

(−)y = ỹ gives a contradiction.
Assume now xn > 0. Then the reader can verify that the proof works again if

we consider that the block Ir+1 is empty. That is, we write any vector y in R
n in

the form

y =
r⊕

i=1

yi, whereyi ∈ R
|Ii | for each 1 � i � r.

The stabilizer P(−)(n)x consists of matrices of permutations fixing each block Ii

(1 � i � r). The vector ỹ denotes
⊕r

i=1 yi . There is a vector v in R
n with equal

components within every block Ii (1 � i � r) so that . . . and so on. We just omit
the ‘r + 1’-part of each vector until the end of the proof. �

Another result that we will need is that the singular value map σ can be direc-
tionally expanded in a first order series. This expansion is uniform in the perturba-
tion matrix. In other words we have the following lemma.



NONSMOOTH ANALYSIS OF SINGULAR VALUES. PART I 235

LEMMA 6.9. Given a matrix X in Mn,m, small matrices M in Mn,m satisfy

σ(X + M) = σ(X) + σ ′(X;M) + o(M).

Proof. The above uniform first-order directional expansion is true for any con-
vex function [6, Lemma VI.2.1.1]. In our case σi is the difference of the two convex
functions

∑i
j=1 σj and

∑i−1
j=1 σj (see Lemma 6.6). So it is true for σi as well. �

Finally we prove the implication (11). Notice though, that first we require x to
be in R

n. In the corollary that follows we remove this condition.

THEOREM 6.10. For any vectors x in R
n and y in R

n, and any singular value
function f ◦ σ ,

y ∈ ∂̂f (x) ⇒ Diag y ∈ ∂̂(f ◦ σ)(Diag x).

Proof. The orbit of y under the action of the stabilizer P(−)(n)x of x contains
only regular subgradients in ∂̂f (x) (this follows from the Subgradient Invariance
Proposition 2.8). In other words we have P(−)(n)xy ⊂ ∂̂f (x). Denote the convex
hull of this orbit by 
. Then the support function of λ is given by

δ∗

(z) = max{zTP(−)y : P(−) ∈ P(−)(n)x}, for all z in R

n.

The support function is clearly sublinear (convex and positively homogeneous). It
is also globally Lipschitz with constant ‖y‖.

Fix a real ε > 0. For any P(−) ∈ P(−)(n)x the definition of regular subgradients
implies, for small vectors z in R

n,

f (x + z) � f (x) + 〈P(−)y, z〉 − ε‖z‖. (17)

Thus using the finiteness of P(−)(n)x we can conclude that for vectors z ∈ R
n in a

smaller neighbourhood around the origin we have

f (x + z) � f (x) + δ∗

(z) − ε‖z‖. (18)

On the other hand, using the previous Lemma 6.9, small matrices Z in Mn,m must
satisfy

‖σ(Diag x + Z) − x − σ ′(Diag x;Z)‖ � ε‖Z‖,
and hence, by inequality (18),

f
(
σ(Diag x + Z)

)

= f
(
x + (σ (Diag x + Z) − x)

)

� f (x) − ε‖σ(Diag x + Z) − x‖ +
+ δ∗




(
σ ′(Diag x;Z) + [σ(Diag x + Z) − x − σ ′(Diag x;Z)])

� f (x) − ε‖Z‖ +
+ δ∗




(
σ ′(Diag x;Z) + [σ(Diag x + Z) − x − σ ′(Diag x;Z)])

� f (x) + δ∗



(
σ ′(Diag x;Z)

) − (1 + ‖y‖)ε‖Z‖.
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In the second inequality we used the Lipschitz property of σ together with the
assumption x ∈ R

n, that is, σ(Diag x) = x. In the last inequality we used the
Lipschitz property of the support function δ∗


. Recall that the Singular Value Deriv-
atives Theorem 6.8 implies

diag Z ∈ conv
(
P(−)(n)xσ

′(Diag x;Z)
)
. (19)

The support function δ∗

(z) is invariant under the stabilizer P(−)(n)x acting on the

argument z since the set 
 is invariant. Thus

δ∗



(
P(−)σ

′(Diag x;Z)
) = δ∗




(
σ ′(Diag x;Z)

)
,

for any matrix P(−) in P(−)(n)x . This combined with the convexity of δ∗

 and

relation (19), demonstrates

δ∗

(diag Z) � δ∗




(
σ ′(Diag x;Z)

)
.

Continuing the argument above we have

f (σ (Diag x + Z)) � f (x) + δ∗

(diag Z) − (1 + ‖y‖)ε‖Z‖

� f (x) + yTdiag Z − (1 + ‖y‖)ε‖Z‖
= f (x) + 〈Diag y, Z〉 − (1 + ‖y‖)ε‖Z‖,

where the number ε was arbitrary. The result follows. �
COROLLARY 6.11 (Diagonal Subgradients). For any vectors x and y in R

n and
any singular value function f ◦ σ ,

y ∈ ∂f (x) ⇔ Diag y ∈ ∂(f ◦ σ)(Diag x).

Corresponding results hold for regular and horizon subgradients.
Proof. Again we will first show the corollary in the case when y is a regular

subgradient. Let P(−) be a signed permutation matrix in P(−)(n) such that x̂ =
P(−)x. By the Subgradient Invariance Proposition 2.8 the assumption y ∈ ∂̂f (x)

implies P(−)y ∈ ∂̂f (P(−)x). We now apply Theorem 6.10 to get

P(−)(Diag y)

( |P T
(−)| 0
0 Im−n,m−n

)

= Diag(P(−)y) ∈ ∂̂(f ◦ σ)(Diag(P(−)x))

= ∂̂(f ◦ σ)

(
P(−)(Diag x)

( |P(−)| 0
0 Im−n,m−n

))
.

Apply again the Subgradient Invariance Proposition to get the result.
In the limiting subdifferential case, y ∈ ∂f (x), there is a sequence of vectors

xr in R
n approaching x, with f (xr) approaching f (x), and a sequence of regular

subgradients yr ∈ ∂̂f (xr) approaching y. Clearly Diag xr approaches Diag x with
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f (σ (Diag xr)) approaching f (σ (Diag x)), and by the above argument, each matrix
Diag yr is a regular subgradient of f ◦ σ at Diag xr . Since Diag yr approaches
Diag y, the result follows. The horizon subgradient case is almost identical. �

7. The Main Result

The hard part is over. We now present the main result of the paper giving an easy-
to-use and easy-to-remember formula for the subdifferential of a singular value
function in terms of the subdifferential of the corresponding absolutely symmetric
function. The theorem just builds on the reduced case given in Corollary 6.11.

THEOREM 7.1 (Subgradients). The limiting subdifferential of a singular value
function f ◦ σ at a matrix X in Mn,m is given by the formula

∂(f ◦ σ)(X) = O(n, m)X.Diag ∂f (σ (X)), (20)

where

O(n, m)X = {(Un, Um) ∈ O(n, m) : (Un, Um).Diag σ(X) = X}.
The sets of regular and horizon subgradients satisfy corresponding formulae.

Proof. The Diagonal Subgradients Corollary 6.11 shows that for any vector y in
∂f (σ (X)) we have

Diag y ∈ ∂(f ◦ σ)(Diag σ(X)).

Now, for any element (Un, Um) of O(n, m) such that UT
n (Diag σ(X))Um = X, the

Subgradient Invariance Proposition 2.8 implies

UT
n (Diag y)Um ∈ ∂(f ◦ σ)(UT

n (Diag σ(X))Um) = ∂(f ◦ σ)(X).

All this shows the inclusion ∂(f ◦ σ)(X) ⊇ O(n, m)X.Diag ∂f (σ (X)).
For the opposite inclusion, take a subgradient Y in ∂(f ◦ σ)(X). By the Sym-

metricity Theorem 5.3 it satisfies the relationships: Y TX = XTY and YXT = XY T.
Hence by Lemma 4.3 there exists an element (Un, Um) in O(n, m) and a signed
permutation matrix P(−) in P(−)(n) such that

X = UT
n (Diag σ(X))Um and Y = UT

n (Diag P(−)σ (Y ))Um.

Then the Subgradient Invariance Proposition 2.8 shows

Diag P(−)σ (Y ) ∈ ∂(f ◦ σ)(Diag σ(X)),

whence P(−)σ (Y ) ∈ ∂f (σ (X)), by the Diagonal Subgradient Corollary. The argu-
ments for regular and horizon subgradients are similar. �

Note 7.2. Analogous result also holds for the Clarke subgradients – see [15].
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COROLLARY 7.3 (Unique Regular Subgradients). A singular value function f ◦
σ has a unique regular subgradient at a matrix X in Mn,m if and only if f has a
unique regular subgradient at σ(X).

Proof. If f ◦ σ has a unique regular subgradient at a matrix X then clearly f

has a unique regular subgradient at the vector σ(X).
To show the opposite, suppose f has unique regular subgradient y at σ(X).

Then by the subdifferential formula (20) we get that every matrix in the convex set
∂̂(f ◦ σ)(X) �= ∅ has the same norm, namely ‖y‖, and therefore this set has just
one element. �
COROLLARY 7.4 (Fréchet Differentiability). A singular value function f ◦ σ is
Fréchet differentiable at a matrix X in Mn,m if and only if f is Fréchet differentiable
at σ(X).

Proof. A function h is Fréchet differentiable at a point if and only if both h

and −h have unique regular subgradients there. Thus this corollary follows from
Corollary 7.3. �
COROLLARY 7.5 (Regularity). Suppose the absolute symmetric function f is fi-
nite at σ(X) (for a matrix X in Mn,m). Then the singular value function f ◦ σ is
regular at X if and only if f is regular at σ(X).

Proof. Recall that f ◦ σ is lower semicontinuous around X if and only if f is
lower semicontinuous around σ(X).

The definition of regularity [16, Corollary 8.11] states that f is regular at σ(X)

if and only if it is lower semicontinuous around σ(X) and the following conditions
hold

∂f (σ (X)) = ∂̂f (σ (X)) �= ∅ (21)

and

(∂̂f (σ (X)))∞ = ∂∞f (σ (X)). (22)

On the other hand f ◦ σ is regular at X if and only if it is lower semicontinuous
around X and the following conditions hold

∂(f ◦ σ)(X) = ∂̂(f ◦ σ)(X) �= ∅ (23)

and

(∂̂(f ◦ σ)(X))∞ = ∂∞(f ◦ σ)(X). (24)

By formula (20) and its regular analogue, condition (21) implies condition (23).
Conversely, by the Subgradient Invariance Proposition 2.8, condition (23) is equiv-
alent to

∂(f ◦ σ)(Diag σ(X)) = ∂̂(f ◦ σ)(Diag σ(X)),

and condition (21) follows by the Diagonal Subgradient Corollary 6.11.
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Notice that the set of regular subgradients is always closed and convex. Thus,
the regular subgradients version of formula (20) states that the sets on both sides
of the equality are convex. This allows us to apply the Recession Lemma 2.9 to
obtain the second equality below, and assuming that (22) holds, we get

(∂̂(f ◦ σ)(X))∞ = [O(n, m)X.Diag ∂̂f (σ (X))]∞
= O(n, m)X.[Diag ∂̂f (σ (X))]∞
= O(n, m)X.Diag[∂̂f (σ (X))]∞
= O(n, m)X.Diag ∂∞f (σ (X))

= ∂∞(f ◦ σ)(X).

So condition (22) implies condition (24), by the horizon version of formula (20)
used in the last equality.

On the other hand, by the Subgradient Invariance Proposition 2.8, condition
(24) is equivalent to

(∂̂(f ◦ σ)(Diag σ(X)))∞ = ∂∞(f ◦ σ)(Diag σ(X)).

Using the Diagonal Subgradients Corollary again and the above equality we obtain

Diag(∂̂f (σ (X)))∞ = (Diag ∂̂f (σ (X)))∞

= (∂̂(f ◦ σ)(Diag σ(X)) ∩ Diag R
n)∞

= (∂̂(f ◦ σ)(Diag σ(X)))∞ ∩ Diag R
n

= ∂∞(f ◦ σ)(Diag σ(X)) ∩ Diag R
n

= Diag ∂∞f (σ (X)).

Condition (22) follows. �
COROLLARY 7.6 (Strict Differentiability). A singular value function f ◦ σ is
strictly differentiable at a matrix X in Mn,m if and only if the function f is strictly
differentiable at σ(X).

Proof. Theorem 9.18 in [16] states that a function f is strictly differentiable at
σ(X) if and only if it is continuous there and both f and −f are regular at σ(X).
Thus the corollary follows by the Regularity Corollary 7.5 just proved. �

The Subgradients Theorem 7.1 can be written in graphical form. The graph of
the subdifferential is the set

Graph ∂f = {(x, y) ∈ R
n × R

n : y ∈ ∂f (x)}.
Define a binary operation ∗: O(n, m) × (Rn × R

n) → Mn,m × Mn,m by

(Un, Um) ∗ (x, y) = ((Un, Um). Diag x, (Un, Um). Diag y).
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COROLLARY 7.7 (Subdifferential Graphs). The graph of the subdifferential of a
singular value function f ◦ σ is given by the formula

Graph ∂(f ◦ σ) = O(n, m) ∗ Graph ∂f.

Analogous formulae hold for the subdifferentials ∂̂ , ∂∞.
Proof. We first show that the left-hand side is contained in the set on the right.

Suppose the pair (X, Y ) is in Graph ∂(f ◦ σ). This happens exactly when Y ∈
∂(f ◦ σ)(X). Using the Subgradients Theorem 7.1, this implies that there is a
vector y in ∂(f (σ (X)) and an element (Un, Um) in O(n, m)X satisfying Y =
(Un, Um).Diag y. Hence, (X, Y ) = (Un, Um).(σ (X), y).

For the converse inclusion take a pair of vectors (x, y) in Graph ∂f and an
element (Un, Um) in O(n, m). Since y lies in ∂f (x) we have Diag y ∈ ∂(f ◦
σ)(Diag x), by the Diagonal Subgradients Corollary 6.11. The Subgradient In-
variance Proposition implies (Un, Um).Diag y ∈ ∂(f ◦ σ)((Un, Um).Diag x), or
in other words (Un, Um) ∗ (x, y) ∈ Graph ∂(f ◦ σ). The arguments for the other
subdifferentials are analogous. �

The regular subgradients of a convex function are exactly the usual convex sub-
gradients. It is also known that in the case of an absolutely symmetric function f ,
f is convex if and only if f ◦ σ is. (See [12, Theorem 4.3 and Example 7.5].) With
this notes in mind the following corollary is easily deduced from the Subgradients
Theorem 7.1. An independent proof can be found in [9, Corollary 2.5].

COROLLARY 7.8 (Convex Subgradients). Let the function f be absolutely sym-
metric and convex. Consider the corresponding convex singular value function
f ◦ σ . The matrix Y is a (convex) subgradient of f ◦ σ at X if and only if σ(Y )

is a (convex) subgradient of f at σ(X) and the two matrices X and Y admit
simultaneous ordered singular value decomposition.
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