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1. The tangent cone. We can estimate the directional derivative and gradient of a
smooth function quickly and easily using finite difference formulas. While rather inaccurate,
such estimates have some appeal, needing neither calculus rules nor even a closed-form
expression for the function. In the variational geometry of sets, the role of derivatives and
gradients are played by the cones of “tangent” and “normal” vectors. We study here how
we might estimate these cones, without any prior knowledge of the structure of the set (like
convexity, for example), and without recourse either to the calculus rules of nonsmooth
analysis or even to an analytic description of the set. We rely instead only on the most
primitive description of the set, namely a membership oracle—an algorithm that decides
whether or not any given point belongs to the set.
Our interest is both philosophical and practical. Philosophically, are the tangent and nor-

mal cones in any sense computable from a primitive check on set membership? Practically,
could we design a subroutine for estimating these cones without requiring any structural
knowledge of the set from the user?
Like differentiation, the idea of the tangent cone involves a limit, but one involving

sets. We therefore present some notions of set convergence, before defining the tangent
cone. Comprehensive presentations of variational analysis and nonsmooth optimization can
be found in Clarke et al. [4] or Rockafellar and Wets [10]. We follow the notation and
terminology of the latter, unless otherwise stated.
Definition 1.1. Given a family of sets D� ⊂Rn indexed by � > 0, the outer and inner

limits are defined, respectively, by

lim sup
�↓0

D� = �x� ∃xk→ x	 ∃ �k ↓ 0 with xk ∈D�k

	

lim inf
�↓0

D� = �x� ∀�k ↓ 0	 ∃xk→ x with xk ∈D�k

�

If these two sets both equal a set D ⊂ Rn, then we say that D� converges to D, and we
write lim�↓0D� =D.
Notice the inner limit is always contained in the outer limit.
The definition of the tangent cone is rather analogous to the familiar definition of the

directional derivative of a real function f at a point x̄ in a direction d:

f ′�x̄� d�= lim
�↓0
1
�
�f �x̄+ �d�− f �x̄���
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Definition 1.2. The tangent cone to a set S ⊂Rn at a point x̄ ∈ S is the set
TS�x̄�= lim sup

�↓0

1
�
�S− x̄��

This cone is sometimes called the “Bouligand” or “contingent” cone.
Consider a set S ⊂ Rn with 0 ∈ S, and suppose we wish to estimate TS�0�. A natural

approach is to test some set A ⊂ Rn of points near 0 for membership in S, and then to
estimate

TS�0�≈R+�S ∩A�� (1)

In practice, the set A would be finite.
Precisely how we choose the set A is not an issue we pursue here. One possible approach

is to generate it by sampling independent, uniformly distributed points in some neighbor-
hood of 0. An analogous idea for estimating generalized gradients is described in Burke
et al. [1], and a nonsmooth optimization algorithm based on this idea performs quite well
in practice (see Burke et al. [2]).
We can formalize what we mean by A consisting of “points near 0” by considering a

sequence of sets
Ak ⊂ �kB	

where B ⊂Rn denotes the closed Euclidean unit ball and the scalars �k ∈R+ approach 0.
In §3 we study under what conditions the set R+�S ∩Ak� approaches TS�0�. The notions
of convergence for sequences of sets are completely analogous to Definition 1.1, so we do
not reproduce them (see Rockafellar and Wets [10, Definition 4.1]). It is easy to check

lim sup
k→�

R+�S ∩Ak�⊂ TS�0�� (2)

We cannot expect a stronger result without assuming more about the sets Ak. To capture
all possible tangent vectors, the least we could reasonably impose is that any direction in
Rn is a limit of directions generated by Ak. In other words, we make the assumption

lim
k
Ak = �0
 and lim

k
R+Ak =Rn� (3)

This condition is implementable: For example, we could fix any dense sequence
�x1	 x2	 x3	 � � � 
 in the ball B and then define

Ak =
1
k
�x1	 x2	 � � � 	 xk
�

Unfortunately, Assumption (3) does not alone suffice to guarantee any more than the
one-sided estimate (2) of the tangent cone. Consider for example, in R2, the set S consisting
of the first coordinate axis, and the sets

Ak = ��u1	 u2�� k�u�2 ≤ 1	 k�u2� ≥ �u1�
�
A little thought suggests that for this approach to succeed without asking too much of

the sets Ak, the set S must have reasonable “interiority” properties. In §3 we consider the
case where S is the epigraph of a Lipschitz function f � Rn−1→R:

S = epi f = ��y	 s� ∈Rn−1×R� f �y�≤ s


(where f �0�= 0). In this case, assumption (3) guarantees our desired estimate
lim
k
R+�S ∩Ak�= TS�0�	

providing S is also “Clarke regular” at 0. We discuss this crucial property in the next section.
While simple and natural, the approach we have sketched is not entirely satisfactory.

First, in our estimate, we simply discard those points in the set Ak that we discover lie
outside the set S. Can we not use the geometric information inherent in these points more
strongly? More serious, however, are the flaws in our tangent cone estimate if we try to
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use it to estimate its dual object, the “normal cone.” We discuss these difficulties, and other
estimates of the normal cone, in the next section.

2. The normal cone. Fundamental to the variational geometry of a closed set S ⊂Rn

at a point x̄ ∈ S is the idea of the normal cone NS�x̄� defined below. For example, we can
characterize the boundary of S elegantly by

x̄ ∈ boundary of S⇔NS�x̄� �= �0
� (4)

The normal cone is crucial in the development of optimality conditions. For example, if x̄
is a local maximizer of a smooth function f over S, then �f �x̄� ∈NS�x̄�. In this section we
parallel our investigation of the tangent cone in the previous section, studying estimates of
the normal cone based on the membership in S of points lying in some given set near x̄.
The polar of a set K ⊂Rn is the closed convex cone

K∗ = �y ∈Rn� �x	 y� ≤ 0 ∀x ∈K
�
When the set S at the point x̄ ∈ S has the property of Clarke regularity mentioned at
the end of the previous section, the normal and tangent cones are mutually polar. In this
case, following the approach of the previous section and estimating the tangent cone by
formula (1) implies the estimate

NS�0�≈ �S ∩A�∗� (5)

However, simple examples show this estimate is hopeless. In R2, consider the set S =
��u	 v�� v ≥ −u2
, and the set A = �B for any scalar � > 0. The estimate above gives
NS�0�≈ �0
, whereas in fact NS�0�=R+�0	−1�.
Even when the set S is convex, the estimate (5) seems unsatisfactory, due to a certain

lack of “robustness.” Imagine estimating the normal cone to the right halfplane in R2, for
example, at a point x̄ in the interior of the halfplane but close to the boundary. If the set A
we use is of a scale larger than the distance to the boundary, the oracle will typically detect
points outside the halfplane, correctly indicating that x̄ is near the boundary. However, this
information is often lost in the estimate (5); instead, a little thought shows a typical estimate
is NS�x̄�≈ �0
.
These failures suggest trying to estimate the normal cone NS�x̄� using points near x̄ both

inside and outside the set S. To fix some notation, suppose 0 ∈ S and that we know two
subsets:

Aout ⊂ Sc ∩ �B and Ain ⊂ S ∩ �B	 (6)

where Sc denotes the complement of S, � is a small positive scalar, and 0 ∈Ain. For example,
Aout and Ain might be finite sets generated randomly and distinguished by the oracle. On
this basis, how might we estimate the normal cone NS�0�?
To approach this question, we first need the definition of the normal cone. Both from

an historical perspective (beginning with Mordukhovich [8], Kruger and Mordukhovich [7],
and Ioffe [6]), and for geometric transparency (see Clarke et al. [4], for example), it is
attractive to consider the normal cone as the cone of “limiting proximal normals,” defined
below. Although Rockafellar and Wets [10] emphasize a more analytic approach, for our
present purposes, proximal normals are an illuminating tool. Given any point x ∈ Rn, we
denote the set of closest points to x in S by PS�x�.
Definition 2.1. Given any set S ⊂Rn, the proximal normal cone to S at a point y ∈ S

is the cone

NP
S �y�= � �x− y��  ≥ 0	 y ∈ PS�x�
�

The proximal normal cone thus consists of vectors (called “proximal normals”) in the
direction of points that project back onto y.
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If the set S is closed, we can now define the normal cone by closing the graph of the
multifunction NP

S �·�, as follows (see Clarke et al. [4, Theorem 6.1]).
Definition 2.2. Given any set S ⊂ Rn, the normal cone to S at a point y ∈ S is the

cone

NS�y�=
{
w� ∃yk ∈ S	 ∃wk ∈NP

S �yy� with yk→ y	wk→w
}
�

This construction motivates the term “limiting proximal normal cone.” The coincidence of
this cone with various equivalent constructions is discussed in Rockafellar and Wets [10].
Given the central role of proximal normals, a first try at using the inclusions (6) might

be to estimate the normal cone NS�0� by the set

E� =R+
⋃

x∈Aout
�x−PAin�x�� (7)

As we apply the oracle to more and more points, we might consider an ideal, limiting
situation where

Aout = Sc ∩#�B and Ain = S ∩$�B	 (8)

for some constants #	$ > 0.
For such an approach to be promising, it seems reasonable to demand that the estimate (7)

converges to the normal cone NS�0� as � ↓ 0.
In §4, we prove convergence results for sets of the form (7). For example, we show that

the set
N� =R+

⋃
x∈2�B

�x−PS∩5�B�x�� (9)

converges to NS�0� as � ↓ 0.
Unfortunately, this result seems useless in practice. Any attempt to estimate normal cones

by randomly generating independent nearby points, using the oracle to construct subsets
Aout and Ain approximating those in equations (8), and then using the estimate (7), seems
hopelessly inaccurate in simple experiments. Loosely speaking, the difficulty is caused by
nearby points x ∈ Aout and y ∈ Ain generating short “displacements” x − y that do not
reasonably approximate any proximal normal.
We can avoid this unstable behavior by ignoring displacements that are too short. For

example, again in the ideal, limiting case, we could consider the estimate

N� = �0
∪R+
⋃

x∈2�B
��x−PS∩5�B�x��∩ �cl �Bc��� (10)

In general, this approach fails. Consider, for example, the closed subset of R

S = �0
∪
{
±1
n
� n ∈N

}
�

For all small � > 0, it is easy to check that formula (10) gives N� = �0
, and yet NS�0�=R.
We can remedy this by adding a “regularity” condition. We describe this condition in the

form presented in Poliquin et al. [9, Theorem 1.3].
Definition 2.3. A set S ⊂Rn is prox-regular at a point x̄ ∈ S if S is locally closed at

x̄ and the projection PS�x� is a singleton for all points x ∈Rn near x̄.
Prox-regularity is a rather strong assumption, but one that holds, for example, for all convex
sets, and for all sets defined by a finite number of smooth constraints satisfying a reasonable
constraint qualification (see Rockafellar and Wets [10, p. 612]). We show in §4 that the sets
N� defined by (10) do indeed converge to the normal cone NS�0� as � ↓ 0, providing S is
prox-regular at 0.
A weaker condition than prox-regularity (see Poliquin et al. [9]), and one central to

variational analysis, is the idea mentioned above of Clarke regularity. We follow Clarke’s
original definition (see Clarke [3] and also Rockafellar and Wets [10, Corollary 6.29]).
Definition 2.4. A set S ⊂Rn is Clarke regular at a point x̄ ∈ S if S is locally closed

at x̄ and the tangent and normal cones TS�x̄� and NS�x̄� are mutually polar.
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When the set S is Clarke regular at x̄, the limit defining the tangent cone (Definition 1.2)
is well behaved:

TS�x̄�= lim
�↓0
1
�
�S− x̄� (11)

(see Rockafellar and Wets [10, Corollary 6.30]). This suggests a refinement in our approach.
If S is Clarke regular at 0, then for small � > 0 we know

S ∩ �B≈ TS�0�∩ �B	
in a sense made precise by equation (11). Since the right hand side is convex, a more useful
estimate of S ∩ �B than the approximation Ain from (6) may be its convex hull convAin.
We pursue this approach in §5.
The assumption that the set S is Clarke regular at 0 is very significant for estimates of the

normal cone NS�0�. Since this cone is closed and convex, we may find it natural to restrict
attention to estimates �N� that are themselves closed convex cones. Particularly when we are
using normal cone approximations to estimate the tangent cone via polarity, this restriction
involves no essential loss of generality. To see this, recall that the bipolar K∗∗ of a set K ⊂Rn

is simply the closed convex cone generated byK, and furthermore, convergence of a sequence
of closed convex cones is equivalent to convergence of the polars, by Rockafellar and Wets
[10, Corollary 11.35]. Hence, we deduce Ñ ∗

� → TS�0� if and only if Ñ
∗∗
� →NS�0�.

Suppose we have approximations

Aout ≈ Sc ∩ �B and Ain ≈ S ∩ �B�
Following our discussion above, we might estimate the normal cone NS�0� by the set

Ñ� = conv
(
�0
∪R+

(
�#� cl �Bc��∩ ⋃

x∈Aout

(
x−PconvAin�x�

)))
� (12)

Keeping in mind the instability caused by small displacements that we noted before, we fix
the constant # ∈ �0	1�. We give an example in §5 to show the importance of this restriction.
Unfortunately, even in the ideal case where

Aout = Sc ∩ �B and Ain = S ∩ �B	 (13)

and the set S is Clarke regular at 0, the sets �N� may not converge to the normal cone NS�0�.
Consider, for example, the set S = �x ∈ R2� x2 = x21
. It is easy to check Ñ� = R2 for all
� > 0, and yet NS�0�= �x� x1 = 0
.
We introduce one further condition (see Rockafellar and Wets [10, p. 385, Example 9.42,

Theorem 6.28]), to ensure that the set Ñ� is a reasonable estimate of the normal cone
NS�0�.
Definition 2.5. A set S ⊂ Rn is epi-Lipschitz at a boundary point x̄ if S is locally

closed at x̄ and �NS�x̄��
∗ has nonempty interior.

Loosely speaking, a set is epi-Lipschitz when, in a suitable coordinate system, we can
view it locally as the epigraph of a Lipschitz function. This condition holds, for example,
for convex sets with nonempty interior, and for sets defined by smooth inequalities.
When the set S is Clarke regular and epi-Lipschitz at 0, in the ideal case (13), we prove

in §5 that
lim
�↓0

Ñ� =NS�0��

This theoretical property motivates our interest in the estimate Ñ�. For comparison, our
earlier estimate N� in (10) involved an additional scaling constant in its definition, and needs
the assumption of prox-regularity to guarantee convergence.
In practice, on the other hand, we can typically only consider finite sets Aout and Ain.

In this case, identifying the estimate N� is straightforward, but the set Ñ� is also relatively
easy to compute, by solving a second-order cone problem for each point in Aout. Simple
computational experiments suggest that the convex hull operations in the definition of Ñ�

enhance it over N� as an estimate of the normal cone.
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3. Tangent estimates. We begin our more detailed development with a result justifying
our first estimate (1) of the tangent cone.

Theorem 3.1 (Tangent Estimation). Consider a set S ⊂ Rn, a point x̄ in S, and a
sequence of sets Ak ⊂Rn ( for k= 1	2	3	 � � � ), satisfying

lim
k→�

Ak = �0
�

Then,

lim sup
k→�

R+��S− x̄�∩Ak�⊂ TS�x̄�� (14)

Suppose furthermore that

lim
k→�

R+Ak =Rn	 (15)

and that either x̄ lies in the interior of S, or that it lies in the boundary and S is epi-Lipschitz
there. Then,

lim inf
k→�

R+��S− x̄�∩Ak�⊃ �NS�x̄��
∗� (16)

Hence, if S is also Clarke regular at x̄, then

lim
k→�

R+��S− x̄�∩Ak�= TS�x̄� (17)

Proof. We lose no generality in supposing x̄= 0.
To prove the inclusion (14), consider any subsequence M of the natural numbers, and

consider points xm ∈ S ∩Am and scalars  m ∈R+ (for m ∈M), such that  mxm approaches
some limit d ∈ Rn as m→� in M . We want to show d ∈ TS�0�. This holds if d = 0, so
suppose d �= 0. As m→� in M , we have xm→ 0 and  mxm→ d, so  m→+�. Since
xm ∈ S for all m, the result follows.
Moving to inclusion (16), the assumptions on S amount to the condition that S is locally

closed at 0 and the cone �NS�0��
∗ has nonempty interior. This cone is in fact the “regular

tangent cone” �TS�0� (see Rockafellar and Wets [10, Definition 6.35 and Theorem 6.28]).
Consider any vector d ∈ int �TS�0�. Using Rockafellar and Wets [10, Theorem 6.36], there
exist scalars �	' > 0 such that

(0	 �)�d+ 'B�⊂ S� (18)

By assumption (15), there exist sequences of scalars  k ≥ 0 and vectors xk ∈ Ak such that
 kxk→ d. Hence, we deduce

 kxk ∈ d+ 'B for all large k� (19)

We next claim xk ∈ S for all large k. To see this, consider first the case d = 0. In this
case, inclusion (18) shows 0 ∈ intS, so since xk→ 0, the claim follows. On the other hand,
if d �= 0, then  k→+�, so the relation (19) implies

xk ∈ (0	 �)�d+ 'B� for all large k�

Our claim now follows, again from inclusion (18).
Summarizing, we now have scalars  k ∈R+ and vectors xk ∈ S∩Ak satisfying  kxk→ d.

We have thus proved

int �TS�0�⊂ lim inf
k→�

R+�S ∩Ak��

Since the right-hand side is closed (by Rockafellar and Wets [10, Proposition 4.4]), we
deduce

cl
(
int �TS�0�

)
⊂ lim inf

k→�
R+�S ∩Ak�� (20)
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As we observed above, our epi-Lipschitz assumption ensures that the regular tangent cone
�TS�0� has nonempty interior. This cone is closed and convex, and so equals the left-hand
side of inclusion (20). This completes the proof of inclusion (16). Equation (17) now follows
from our definition of Clarke regularity (Definition 2.4). �

We end this section with some examples illustrating the above result. First, notice
that the inclusion (16) can be strict even for epi-Lipschitz sets. In R2, consider the set
S = ��u	 v�� v ≥ −�u�
. A quick calculation shows NS�0	0� = ��u	 v�� v = −�u�
, so
�NS�0	0��

∗ = ��u	 v�� v≥ �u�
. However, if we choose Ak = k−1B, for example, then R+�S∩
Ak�= S for all k= 1	2	3	 � � � , so the inclusion (16) is strict. Notice S is epi-Lipschitz at
the origin. Equation (17) fails because S is not Clarke regular at the origin.
Inclusion (16) can fail if the set S is not epi-Lipschitz. In R2, consider the set S =

��u	 v�� u = 0
, for which we have �NS�0	0��
∗ = F . If we choose Ak = ��u	 v�� k�v� ≤

k2�u� ≤ 1
, then S ∩Ak = �0
 for all k= 1	2	3	 � � � , so the inclusion (16) fails. Notice S is
Clarke regular at the origin.
Our last example shows that the inclusion (14) can be strict even when the set S is

epi-Lipschitz. Consider the Lipschitz function f � R→R defined by

f �u�=


3��u� − 2−m� if 2≤ 21+m�u� ≤ 3	 m ∈N

−3��u� − 21−m� if 3≤ 21+m�u� ≤ 4	 m ∈N

0 if u= 0�
Notice f �±2−m� = 0 and f �±3�2−m� = 3�2−m for each integer m ∈ N. Let S be the epi-
graph of f , so S is certainly epi-Lipschitz at the origin. A quick check shows TS�0	0�=
��u	 v�� v≥ 0
. Now let Ak denote the square with corners �±3�2−k	±3�2−k�. This sequence
of sets clearly satisfies limk Ak = �0
, and furthermore R+Ak =R2 for all k ∈N. However,
since for each k ∈N,

S ∩Ak = ��u	3�2−k�� �u� ≤ 3�2−k
	
we deduce R+�S∩Ak�= ��u	 v�� v≥ �u�
. Hence, the inclusion (14) is strict. Equation (17)
again fails because S is not Clarke regular at the origin.

4. Normal estimates without convexification. In this section we turn to estimates of
the normal cone. We consider estimates based on sets of neighboring points inside and
outside the set, and prove the convergence of normal cone estimates like (9) and (10), that
involve no convex hulls.
Recall that a closed set S ⊂Rn is prox-regular at a point x̄ ∈ S if each point close to x̄ has

a unique nearest point in S. Equivalently, using the terminology of Clarke et al. [5], there
exists a scalar � > 0 such that for all points x ∈ S close to x̄, every unit vector n ∈ NP

S �x�
can be realized by a �-ball, meaning

S ∩ int �x+��n+B��= 
(see Poliquin et al. [9, Theorem 1.3]). This property implies Clarke regularity of S at x̄
(see Poliquin et al. [9]).
Our aim is to prove the following characterization of the normal cone NS�x̄�.

Theorem 4.1 (Normals Without Convexification). Consider a closed set S ⊂Rn

and a point x̄ ∈ S. For fixed scalars $ > 4 and + ∈ (0	1), and for each scalar � > 0, define
the set N� to be{

 w�  ≥ 0	 w ∈ x−PS∩ �x̄+$�B��x�	 �x− x̄� ≤ 2�	 �w� ≥ +�
}∪ �0
�

If either += 0 or S is prox-regular at x̄, then

lim
�↓0

N� =NS�x̄��
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Proof. Without loss of generality we can suppose the point x̄ is 0. We first prove the
inclusion

N� ⊂
⋃

y∈S∩4�B
N P
S �y�� (21)

To this end, consider a point x ∈ 2�B, a point y ∈ PS∩$�B�x�, and a scalar  ≥ 0. If we now
define w = x − y, then  w is a typical element of the set N�. (Clearly, 0 belongs to the
right-hand side of inclusion (21).)
Since 0 ∈ S∩$�B, we must have �x−y� ≤ �x�, so �y� ≤ 2�x� ≤ 4�: that is, y ∈ S∩4�B.

For any scalar , ∈ �0	1�, we know
PS∩$�B�y+ ,w�= �y
� (22)

We now claim that, providing , is small, we have

PS�y+ ,w�= �y
	

and, hence, w ∈ NP
S �y�, proving the desired inclusion. In light of equation (22), it suffices

to show that any point z �∈ $�B satisfies
��y+ ,w�− z�> ��y+ ,w�− y��

To see this, note that

��y+ ,w�− z�−�,w� ≥ �y− z�− 2,�w�> �$− 4��− 2,�w�	
and the right-hand side is positive for small , > 0, as desired.
We next prove that, if either += 0 or S is prox-regular at 0, then

N� ⊃
⋃

y∈S∩ �B
N P
S �y�	 (23)

providing � is sufficiently small. Suppose first that S is prox-regular at 0, so that there exist
scalars �̄	 � > 0 such that for all points y ∈ S ∩ �̄B and all unit vectors n ∈NP

S �y�, we have

S ∩ int �y+��n+B��= � (24)

We will show that (23) holds for any scalar � ∈ �0	 �̄� satisfying �++ 1�� < 2�.
For such an �, define a scalar , = ��++1�/2, so that 0< , < �. Now consider any point

y ∈ S ∩ �B and any normal vector n ∈ NP
S �y�. We want to show n ∈ N�. If n = 0, there

is nothing to prove, so we can assume �n� = 1, since both sets NP
S �y� and N� are cones.

Hence, equation (24) holds, which guarantees that the point x= y+,n satisfies PS�x�= �y

and, hence, PS∩$�B�x�= �y
. Clearly, x ∈ 2�B, and the vector w= x− y has norm , ≥ +�,
as required.
This completes the proof of inclusion (23) in the prox-regular case. In the case += 0, the

argument simplifies, since we can choose the scalar , > 0 in the above paragraph arbitrarily
small. To summarize, we now have the inclusions⋃

y∈S∩ �B
N P
S �y�⊂N� ⊂

⋃
y∈S∩4�B

N P
S �y� (25)

for all small � > 0.
To prove our desired result, consider an arbitrary sequence of scalars �k ↓ 0. First, con-

sider any normal vector d ∈ NS�0�. By definition, there exist sequences of vectors ym ∈ S
and dm ∈ NP

S �ym� (for m = 1	2	 � � � ) such that ym → 0 and dm → d as m→�. Choose
an increasing sequence of natural numbers m1 < m2 < · · · such that ymk

∈ �kB for each
k = 1	2	 � � � . Now, using the left-hand inclusion of (25), we know dmk

∈ N�k
for each k

and dmk
→ d as k→�. Thus, we have shown lim inf�↓0N� ⊃NS�0�.

On the other hand, suppose the vectors dk ∈ N�k
(for k = 1	2	 � � � ) satisfy dk → d as

k→�. Using the right hand inclusion of (25), for each k there exists a point yk ∈ S∩4�kB
such that dk ∈NP

S �yk�. Since yk→ 0 as k→�, we deduce d ∈NS�0�. We have thus shown
lim supk Nk ⊂NS�0�, which completes the proof. �
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5. Normal estimates with convexification. To justify estimates of normal cones
involving convexification, like formula (12), we need some simple tools for dealing with
Clarke regular sets. The following result is crucial to our approach.

Proposition 5.1 (Regularity). If the set S ⊂Rn is Clarke regular at 0, then the tan-
gent and normal cones TS�0� and NS�0� are convex and mutually polar, and furthermore

lim
�↓0
conv

(
B ∩ 1

�
S

)
= B ∩ TS�0��

Proof. By Rockafellar and Wets [10, Corollary 6.30], we see the convexity and mutual
polarity, and furthermore that S is geometrically derivable at 0. We can therefore deduce

lim
�↓0

B ∩ 1
�
S = B ∩ TS�0�

(see Rockafellar and Wets [10, p. 198]). Being regular, S is locally closed at 0, so using
compactness and Rockafellar and Wets [10, Proposition 4.30], we deduce

lim
�↓0
conv

(
B ∩ 1

�
S

)
= conv �B ∩ TS�0���

The right hand side is just B ∩ TS�0�, since TS�0� is convex. �

The next result guarantees that the projection operation in which we are interested does
provide good approximations to every normal vector.

Proposition 5.2 (Outer Approximation). Consider a set S ⊂ Rn that is Clarke reg-
ular at 0, and a normal vector d ∈NS�0�. Then

lim
�↓0
1
�

(
�d−Pconv �S∩ �B���d�

)= d�

Proof. Proposition 5.1 (regularity) shows

lim
�↓0
conv

(
B ∩ 1

�
S

)
= B ∩ TS�0��

Since TS�0� and NS�0� are mutually polar, and d ∈NS�0�, we have

PB∩TS�0��d�= 0�
Applying Rockafellar and Wets [10, Proposition 4.9] now shows

lim
�↓0

Pconv �B∩ �−1S��d�= PB∩TS�0��d�= 0�
Hence, the limit we seek is

d− lim
�↓0

Pconv �B∩ �−1S��d�= d	

as required. �

We need the following routine result.

Proposition 5.3 (Convergence of Projections). Consider a sequence of nonempty
closed convex sets Ck→C in Rn, and a sequence of vectors yk→ y in Rn. Then, PCk�yk�→
PC�y�.

Proof. It is easy to check that �Ck − yk�→ �C − y�. Hence, by Rockafellar and Wets
[10, Proposition 4.9], we deduce

PCk�yk�− yk = PCk−yk �0�→ PC−y�0�= PC�y�− y�

The result now follows. �
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Our last tool looks a little more technical.

Proposition 5.4 (Inner Approximation). Consider a set S ⊂Rn that is Clarke regu-
lar at 0, a sequence of strictly positive scalars �k ↓ 0, and a sequence of vectors xk ∈ �kB
( for k= 1	2	 � � � ). Suppose the sequence of vectors wk = xk−Pconv �S∩ �kB��xk� satisfies

lim inf
k

�wk�
�k

> 0� (26)

Then, any cluster point of the sequence ��wk�−1wk
 lies in NS�0�.

Proof. Without loss of generality, we can suppose there exists a unit vector w such that
�wk�−1wk→w. By taking a subsequence, we can suppose there exists a vector x ∈ B such
that �−1k xk→ x. For each k= 1	2	 � � � , define a vector

sk = Pconv �S∩�kB��xk�= �kPconv �B∩�−1k S���
−1
k xk��

Taking a further subsequence, we can suppose there exists a vector s ∈ B such that
�−1k sk→ s. Notice

1
�k
wk =

1
�k
xk−

1
�k
sk→ x− s	 (27)

so our assumption (26) implies s �= x.
Proposition 5.1 (regularity) shows

conv �B ∩ �−1k S�→ B ∩ TS�0��
Using Proposition 5.3 (convergence of projections), we deduce

s = PB∩TS�0��x�� (28)

We first show �s� �= 1. Suppose, on the contrary, �s� = 1. Since we know s �= x ∈ B, the
Cauchy-Schwartz inequality implies �s	 x�< 1. However, since 0 ∈ B ∩ TS�0�, we deduce
the contradiction

0≤ �s	 x− s� = �s	 x�− �s�2 < 1− 1= 0�
Thus, �s�< 1.
Equation (28) shows

x− s ∈NB∩TS�0��s�=NTS�0�
�s�⊂NS�0�	

using the mutual polarity of the cones TS�0� and NS�0� and the fact that s ∈ intB. Lastly,
equation (27) implies

w= lim 1
�wk�

wk = lim
1

��−1k wk�
�−1k wk =

1
�x− s� �x− s� ∈NS�0�	

as desired. �

We are now ready for the main result of this section. Unlike Theorem 4.1 (normals with-
out convexification), while excluding small displacements from consideration, it requires no
assumption of prox-regularity.

Theorem 5.1 (Normals with Convexification). Consider a set S ⊂ Rn that is
Clarke regular at the point x̄ ∈ S. Fix a scalar + in the interval �0	1�, and for each scalar
� > 0 define the set G� to be

� w�  ≥ 0	w= x−Pconv �S∩ �x̄+�B���x�	�x− x̄� ≤ �	�w� ≥ +�
∪ �0
�
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Then,
lim
�↓0

G� =NS�x̄��

If, furthermore, S is epi-Lipschitz at x̄, then

lim
�↓0
convG� =NS�x̄��

Proof. We can assume x̄= 0. We first prove
NS�x̄�⊂ lim inf

�↓0
G��

Clearly, the point 0 belongs to the left-hand side. Since both sides of the inclusion are
cones, it therefore suffices to show that for any unit vector d ∈ NS�0� there exist vectors
n� ∈G� (for all small � > 0) satisfying lim�↓0 n� = d. To see this, define vectors x� = �d
and

d� = x�−Pconv �S∩ �B��x���

Clearly, �x�� ≤ �. Proposition 5.2 (outer approximation) shows lim�↓0 �−1d� = d, so for all
small � > 0 we know �d�� > +�, and hence the vector n� = �d��−1d� lies in the set G�.
However, now clearly lim�↓0 n� = d, as required.
We next turn to the opposite inclusion:

lim sup
�↓0

G� ⊂NS�x̄��

Consider any sequences of scalars 0 < �k ↓ 0 and  k ≥ 0, and any sequence of vectors
xk ∈ �kB (for k= 1	2	 � � � ) such that the sequence of vectors

wk = xk−Pconv �S∩ �kB��xk�

satisfy �wk� ≥ +�k for all k and  kwk → w. We want to show w ∈ NS�0�. If w = 0,
there is nothing to prove, so suppose w �= 0, and hence �wk�−1wk → �w�−1w. Then,
lim infk �

−1
k �wk� ≥ + > 0, so Proposition 5.4 (inner approximation) shows �w�−1w lies in

NS�0�, and hence so does w.
We have now proved the first statement of the theorem. The final statement now follows

(see Rockafellar and Wets [10, Proposition 4.30]), since the normal cone NS�x̄� is pointed
as a consequence of the epi-Lipschitz assumption. �

We end with an example to illustrate the necessity of assuming + > 0. Consider the
closed set

S = ��$	 2� ∈R2� 2 =±$2
�
The proximal normal cone at each point in S is easily checked to be

NP
S �$	$

2� = R�−2$	1�

N P
S �$	−$2� = R�2$	1�	

for all $ ∈R, and hence S is everywhere Clarke regular with, in particular,

NS�0	0�=R�0	1��

For any scalar � > 0, the set S� = conv �S ∩ �B� is the rectangle with vertices �±+	±+2�,
where + is the positive root of the equation +4++2 = �2. It is easy to check that the set

� �x−PS� �x���  ≥ 0	�x� ≤ �


is just the union of the two coordinate axes ��$	 2�� $2 = 0
, independent of �. This set is
strictly larger than NS�0	0�, so Theorem 5.1 (normals via projections) can fail if we allow
+= 0.
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6. Numerical tests. In this section we examine some simple numerical tests on normal
cone estimation. In §§4 and 5 we saw two methods of estimating the normal cone to a set
without using calculus. To put these two methods into the same framework, we consider the
following algorithm. We emphasize that this procedure is not meant as a direct optimization
tool, but rather as an experiment to study how much random local data can reveal about the
normal cone.

Algorithm: Random normal generation (RNG). Given a set S described by an oracle,
a feasible point x̄, a search radius � > 0, a minimum-projection parameter + ∈ (0	1�, a
maximum-length parameter $ > 0, and a sample size N , perform the following:
I. Selection. Pick a set of N random points

A= �x̃i� i= 1	2	 � � � 	 n
	
all within distance � of x̄.
II. Organization. Using the oracle, organize these points into two sets:

Pin = �A∩ S�∪ �x̄


Pout = �x ∈A∩ Sc� $�x− x̄� ≤ 2�
�
III. Estimation. Use Pin to calculate an estimate "S of S.
IV. Projection. Project each point in Pout onto "S to approximate the normal cone:

�N = R+ conv
{
x−P "S�x�� x ∈ Pout	�x−P "S�x��>+�

}
�

In this framework the two approaches differ only in how they perform Step III (Estima-
tion). The first approach (§4) estimates the set S by simply using the collection of points
found to be in the set, Pin. This makes the calculation in Step IV (Projection) extremely
simple. The second approach (§5) uses the more complicated approximation "S = convPin.
In this case the calculation of the projection mapping becomes a quadratic program.
Henceforth we shall call these two methods the convex hull-free (CHF ) and the convex hull
(CH ) method.
Examining Sections 4 and 5 it is clear that the CHmethod has several theoretical advan-

tages. The CHFmethod (theoretically) requires the maximum-length parameter, $, to be
greater than 4 (see Theorem 4.1). It further (theoretically) requires either the set to be prox-
regular, or the minimum-projection parameter, +, to be 0. Setting the minimum-projection
parameter to 0 is undesirable as it reduces the robustness of the algorithm.
In the CHmethod the maximum length parameter can be set to 1, effectively removing

it from the calculations (see Theorem 5.1). Also, prox-regularity is no longer required.
However, these improvements come at the price of complicating the calculation in Step IV
(Projection) of the algorithm.
In this section we examine two simple numerical tests comparing the CHF and

CHmethod of normal cone approximation. Since Theorems 4.1 and 5.1 suggest that the
accuracy of the approximated normal cone is effected by the search radius, �, and the num-
ber of points selected, N , we also take this opportunity to briefly examine the effect of
adjusting these parameters on the resulting approximation.
Our first test considers the effect of increasing the number of points selected, N , on the

accuracy of the approximate normal cone. To do this we consider the positive orthant, Rn
+,

at the origin. We attempt to reconstruct the normal cone by randomly selecting 10, 100,
and 1,000 points, then applying the CH and CHFmethod. We calculate the error in the
approximate normal cone via the following formula:

max

{
max�arcsin��w−PNS�x̄��w���� w ∈ Ñ 	 �w� = 1

max�arcsin��w−P �N �w���� w ∈NS�x̄�	 �w� = 1


}
	 (29)
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Table 1. Mean and standard deviations for RNG on positive orthant.

Dimension No. Mean Standard
Problem and approach of points error deviation

Positive orthant 2, CH 10 0�8133 0�3671
100 0�4208 0�2635
1000 0�2059 0�1177

x̄= 0 2, CHF 10 0�9529 0�3644
100 0�8350 0�2296
1000 0�4787 0�0880

5, CH 10 1�2852 0�1960
100 1�1166 0�1613
1000 0�9886 0�1056

5, CHF 10 1�3081 0�1797
100 1�3916 0�1231
1000 1�3713 0�0879

(where NS�x̄� is the correct normal cone, and Ñ is the approximate normal cone). Formula
(29) measures the maximum angle between correct and approximate normal cones. In this
case, the correct normal cone is the negative orthant (NS�x̄�=−Rn

+).
In order to counter the randomness of the algorithm, we run each test 100 times. Table 1

displays the mean and standard deviation of the resulting errors, while Figure 1 provides a
histogram of the error frequencies.
The results for this series of tests shows several interesting trends. First, and least sur-

prising, as the dimension of the problem increases, the accuracy of the approximate normal
cone decreases. Second, when convexification is applied, increasing the number of points
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Figure 1. Effects of sample size and dimension.
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Table 2. Mean and standard deviations for RNG on complement of ball.

Dimension Search Mean Standard
Problem and approach radius error deviation

Complement of ball 2, CH 1�25 0�0850 0�0724
0�50 0�2189 0�2138
0�05 0�3827 0�2774

x̄= �1	0	0	 � � � 	0� 2, CHF 1�25 1�3334 0�2155
0�50 0�9393 0�2506
0�05 0�8367 0�2387

5, CH 1�25 0�7629 0�1732
0�50 0�9988 0�1274
0�05 1�1602 0�1215

5, CHF 1�25 1�5044 0�1100
0�50 1�4444 0�0993
0�05 1�4301 0�0772

increases the accuracy of the normal cone produced. When no convexification is applied,
increasing the number of points selected seems to have somewhat less effect on the accuracy
of the approximate normal cone.
Our second test considers the effect of reducing the search radius, �, on the accuracy of

the approximate normal cone. In this case we consider the complement of the open ball
S = �x� �x� ≥ 1
 at the point x̄ = �1	0	0	 � � � 	0�. As before we consider the test in two
and five dimensions. In this case, however, instead of altering the number of points selected,
we always use 100 randomly selected points and repeat the test for various search radii. As
before, we run each test 100 times: Table 2 and Figure 2 display the results.
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Hare and Lewis: Estimating Tangent and Normal Cones Without Calculus
Mathematics of Operations Research 30(4), pp. 785–799, © 2005 INFORMS 799

Examining Table 2 reveals several results. We once again see that taking the convex hull
creates a better estimate for the normal cone than the CHFmethod. This suggests that the
CHmethod is making better use of the data given by the oracle. In cases where checking
feasibility is difficult, this may be important.
The data also show that when the search radius is large, the normal cone produced by the

CHFmethod is less accurate. This is expected, as the algorithm picks up normal vectors for
points within the radius. For a large radius, the algorithm creates normal vectors to points
further from the central point, causing a larger approximate normal cone. As the radius
decreases, one expects the approximate normal cone to become more accurate.
Surprisingly, this trend does not continue for the CHmethod. In fact, the errors from

testing with the convexification step are actually smaller when the search radius is large.
A moment’s thought may explain this phenomenon. The convexification step causes the
approximation of the set to become polyhedral, including a large face enclosing many points
outside the set. The normal vectors created will only include those produced from points
outside this face. These will be projected onto this face, causing (by good fortune) a high
accuracy in the approximate normal cone. When the convexification step is skipped, the
approximate normal cone does not have this advantage and is considerably less accurate.
As before, the second series of tests suggests that as problem dimensions increase the

difficulty in approximating the normal cone increases. The inaccuracy of the results in just
five dimensions already suggests that the CH and CHFmethods are somewhat impractical.
It is worth remembering however that the accuracy is measured solely by the worst-case
scenario. Therefore, a single outlying vector can cause a large error even if the rest of
the approximate normal cone is accurate. Clearly, more refinement is needed before these
approximation ideas become a practical optimization tool.
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