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Clarke ritial values of subanalytiLipshitz ontinuous funtionsby Jérôme Bolte (Paris), Aris Daniilidis (Barelona),
Adrian Lewis (Ithaa, NY) and Masahiro Shiota (Nagoya)To the memory of Stanisªaw �ojasiewizAbstrat. The main result of this note asserts that for any subanalyti loally Lip-shitz funtion the set of its Clarke ritial values is loally �nite. The proof relies onPawªuki's extension of the Puiseux lemma. In the last setion we give an example ofa ontinuous subanalyti funtion whih is not onstant on a segment of �broadly riti-al� points, that is, points for whih we an �nd arbitrarily short onvex ombinations ofgradients at nearby points.1. Introdution. Several Sard-type results are known in the literatureusing various notions of a ritial point. For example, Yomdin's lassial pa-per [18℄ addresses this issue for near-ritial points and gives an evaluation ofthe Kolmogorov metri entropy for the set of near-ritial values. In a reentwork, Kurdyka�Orro�Simon [12℄ show that the set of asymptotially-ritialvalues of a Cp-semialgebrai mapping f : R

n → R
k has dimension less than kprovided that p ≥ max{1, n−k+1}. Conerning nondi�erentiable funtions,Ri�ord [15℄, extending a previous result of Itoh�Tanaka [10℄, establishes thatthe set of Clarke ritial values of the distane funtion to a losed subman-ifold of a omplete Riemannian manifold has Lebesgue measure zero.Our work relies on onepts of generalized ritial points in the sense ofnonsmooth analysis that we now proeed to desribe. We say that x∗ is alimiting subgradient for the ontinuous funtion f on R

n at x, and we write
x∗ ∈ ∂f(x) (the limiting subdi�erential of f), if there exist sequenes xn → xand x∗

n → x∗ suh that, for n �xed,
lim inf

y→xn, y 6=xn

f(y) − f(xn) − 〈x∗
n, y − xn〉

‖y − xn‖
≥ 0,2000 Mathematis Subjet Classi�ation: Primary 35B38; Seondary 49J52, 32B30.Key words and phrases: Clarke ritial point, onvex-stable subdi�erential, nonsmoothanalysis, Morse�Sard theorem, subanalyti funtion.[13℄



14 J. Bolte et al.that is, eah x∗
n is a Fréhet subgradient of f at xn (see also De�nition 1(i),(ii)). Clearly, for C1 funtions the notion of limiting subgradient oinideswith the usual gradient ∇f of f , while in general the operator x 7→ ∂f(x) ismultivalued. A limiting-ritial point of f is therefore a point for whih thereexists a zero subgradient, that is, ∂f(x) ∋ 0. Conerning nonsmooth analysisand related problems of subdi�erentiation, see the introdutory books ofClarke [6℄, Clarke�Ledyaev�Stern�Wolenski [7℄ or Rokafellar�Wets [16℄.In a reent work [4, Theorem 13℄, we show that any ontinuous subana-lyti funtion f on R

n is onstant on eah onneted omponent of the set ofits limiting-ritial points. The main motivation for proving this Sard-typeresult for subanalyti ontinuous funtions was to derive a generalized �o-jasiewiz inequality whih in turn was used in the asymptoti analysis ofsubgradient-like dynamial systems [3, Theorem 3.1℄. These dynamis ourfrequently in various domains suh as optimization, mehanis and PDE's.With this line of researh in mind we adopt here a di�erent viewpoint.The assumptions on f are strengthened�namely, f is assumed to be loallyLipshitz ontinuous�while the de�nition of a ritial point is weakened. Asabove, this alternative notion relies on a onept of subdi�erentiation: wesay that x∗ is a Clarke-subgradient of f at x if
x∗ ∈ ∂◦f(x) := o ∂f(x),where o ∂f(x) is the losed onvex hull of ∂f(x) (see also De�nition 1(iii)).Aordingly, a point x is said to be Clarke ritial if ∂◦f(x) ∋ 0. This turnsout to be equivalent to the following property:(CR) 0 ∈ o{ ⋃

z∈B(x,ε)

∂̂f(z)
} for every ε > 0

(see Proposition 9 or [5℄), whih re�ets the idea that a point is Clarke ritialif we an �nd short onvex ombinations of gradients at nearby points (1).For instane, x = 0 is a Clarke ritial point for the funtion x 7→ −‖x‖, butit is not limiting-ritial, sine ∂f(0) = Sn−1 (the unit sphere of R
n), while

∂◦f(x) = BRn(0, 1) (the unit ball of R
n).Our main result asserts that any loally Lipshitz ontinuous subanalytifuntion f de�ned on some open subset of R

n is onstant on eah onnetedomponent of the set of its Clarke ritial points. Sine the latter is suban-alyti, it follows diretly that the set of Clarke ritial values of f is loally�nite. The proof of this result is based on a �path-perturbation� lemma[4, Lemma 12℄, whih itself relies heavily on Pawªuki's extension of thePuiseux Lemma [14, Proposition 2℄.(1) This is no longer true for ontinuous funtions: a point satisfying (CR) need notbe Clarke ritial.



Clarke ritial values of subanalyti funtions 15An alternative notion of subdi�erential, namely the onvex-stable sub-di�erential, has been introdued by Burke, Lewis and Overton [5℄. The or-responding ritial points are preisely the points whih omply with (CR).As pointed out above, if f is a Lipshitz ontinuous funtion, one reoversexatly the notion of a Clarke ritial point; however for general ontinu-ous funtions the onvex-stable subdi�erential appears to be larger than theusual Clarke subdi�erential, giving rise to another onept of a ritial point:the �broadly ritial points�. In the last setion we show that a ontinuoussubanalyti funtion may fail to have the Sard property on the broadly rit-ial set. We indeed exhibit a funtion f : R
3 → R whih is not onstant onsome segment of points satisfying (CR).2. Preliminaries. In this setion we reall several de�nitions and resultsneessary for further developments. For basi and fundamental results ofsubanalyti geometry see Bierstone�Milman [2℄, �ojasiewiz [13℄, van derDries�Miller [9℄ or Shiota [17℄. Conerning nonsmooth analysis some generalreferenes are Clarke [6℄, Clarke�Ledyaev�Stern�Wolenski [7℄ or Rokafellar�Wets [16℄.In the �rst two setions, we are interested in loally Lipshitz funtions:aordingly, we state the de�nitions and theorems of nonsmooth analysisthat we use spei�ally for this ase. The ase of ontinuous funtions istreated in Setion 4.Consequently, throughout Setions 2 and 3 we make the following stand-ing assumption:

U is a nonempty open subset of R
n and

f : U → R is loally Lipshitz ontinuous.We shall essentially deal with the following three notions of subdi�eren-tiation.Definition 1. For any x ∈ U let us de�ne(i) the Fréhet subdi�erential ∂̂f(x) of f at x:
∂̂f(x) =

{
x∗ ∈ R

n : lim inf
y→x, y 6=x

f(y) − f(x) − 〈x∗, y − x〉

‖y − x‖
≥ 0

}
,(ii) the limiting subdi�erential ∂f(x) of f at x:

x∗∈ ∂f(x) ⇔ ∃xn ∈U, ∃x∗
n ∈ ∂̂f(xn) : xn → x, x∗

n → x∗ as n→∞,(iii) the Clarke subdi�erential ∂◦f(x) of f at x:(1) ∂◦f(x) = o ∂f(x),where o ∂f(x) is the losed onvex hull of ∂f(x).



16 J. Bolte et al.For every funtion f and every x ∈ dom f we obviously have:
∂̂f(x) ⊂ ∂f(x) ⊂ ∂◦f(x).Remark 1. (a) If T : U ⇉ R

n is a point-to-set mapping, its domainand its graph are respetively de�ned by dom T := {x ∈ U : T (x) 6= ∅} andGraph T := {(x, y) ∈ U × R
n : y ∈ T (x)}. Clearly dom ∂̂f ⊂ dom ∂f ⊂

dom ∂◦f . A well known result of variational analysis asserts that dom ∂̂f isa dense subset of U (see [6℄, for example).(b) Sine f is loally Lipshitz ontinuous, the point-to-set mapping
U ∋ x 7→ ∂◦f(x) is bounded on ompat subsets of U .() If f is di�erentiable at x, then ∂̂f(x) = {∇f(x)}.(d) If f is a subanalyti funtion all the subdi�erential mappings de�nedabove have a subanalyti graph (see [4, Proposition 2.13℄).The notion of a Clarke ritial point is then de�ned naturally.Definition 2. A point a ∈ U is alled Clarke ritial for a loallyLipshitz funtion f if

∂◦f(a) ∋ 0,or equivalently, if relation (CR) holds (see Proposition 9).Remark 2. Let us reall that a loally Lipshitz funtion f is alledsubdi�erentially regular if
∂̂f = ∂f,or equivalently if
∂̂f = ∂◦f.For subdi�erentially regular funtions, the sets of Fréhet ritial and ofClarke ritial points oinide and one an obtain easily the onlusion ofour main result via an elementary argument (see Remark 3 for details).Let us reall the hain rule for subdi�erentials (see [16, Theorem 10.6,p. 427℄, for example).Proposition 3 (subdi�erential hain rule). Let V be an open subset of

R
m and G : V → U a C1 mapping. De�ne g : V → R by g(x) = f(G(x))for all x ∈ V . Then

∂̂g(x) ⊃ ∇G(x)T ∂̂f(G(x)),(2)
∂g(x) ⊂ ∇G(x)T ∂f(G(x)),(3)where ∇G(x)T denotes the transpose of the Jaobian matrix of G at x. If inaddition G is a di�eomorphism the above inlusions beome equalities, thus

(4) ∂g(x) =∇G(x)T∂f(G(x)), ∂◦g(x) =∇G(x)T ∂◦f(G(x)), ∀x∈ V.



Clarke ritial values of subanalyti funtions 17The following lemma, based on a result of Pawªuki [14℄, plays a key rolein the proof of both Theorem 5 and Theorem 7.Lemma 4 (path perturbation lemma, [4, Lemma 12℄). Let F be a non-empty subanalyti subset of R
n, γ : [0, 1] → cl F a one-to-one ontinuoussubanalyti path and η > 0. Then there exists a ontinuous subanalyti path

z : [0, 1] → clF suh that(i) ‖ż(t) − γ̇(t)‖ < η for almost all t ∈ (0, 1),(ii) the (subanalyti) set(5) ∆ := {t ∈ [0, 1] : z(t) ∈ clF \ F}has Lebesgue measure less than η,(iii) z(t) = γ(t) for all t ∈ ∆ ∪ {0, 1}.Let us reall the following Sard-type result onerning the limiting-ritialpoints of ontinuous subanalyti funtions.Theorem 5 (Sard theorem for limiting-ritial points, [4, Theorem 13℄).Let g : U → R be a subanalyti ontinuous funtion. Then f is onstant oneah onneted omponent of the set of its limiting-ritial points
(∂f)−1(0) := {x ∈ U : ∂f(x) ∋ 0}.Unless the funtion is subdi�erentially regular, the above theorem is ob-viously not appropriate for the study of loally Lipshitz funtions withthe Clarke subdi�erential. Typial examples are given by funtions whoseepigraphs have �inward orners�, suh as for instane f(x) = −‖x‖. Sharpsaddle points also provide some elementary illustrations. For example if onesets

f : R
m × R

n × R
p ∋ (x, y, z) 7→ ‖x‖ − ‖y‖,then points of the type (0, 0, z) are Clarke ritial but not limiting-ritial. In-deed, by straightforward omputations, ∂f(0, 0, z) = BRm(0, 1)×Sn−1×{0}pand ∂◦f(0, 0, z) = BRm(0, 1) × BRn(0, 1) × {0}p.3. A Sard theorem for subanalyti Lipshitz ontinuous fun-tions. For the proof of the entral result of this note we will need the fol-lowing lemma.Lemma 6. Set e := (1, 0, . . . , 0) ∈ R

n and assume that [0, 1]e ⊂ U , with
∂◦f(te) ∋ 0 for all t ∈ [0, 1]. Then f is onstant on [0, 1]e.Proof. Let us provisionally set SL := {x ∈ [0, 1]e : 0 ∈ ∂f(x)}, where ∂fdenotes the limiting subdi�erential of f (De�nition 1(ii)). By Remark 1(d),the set SL is subanalyti, thus, being a (losed) subset of [0, 1]e, it is a �niteunion of segments. By using Theorem 5 we onlude that f is onstant oneah one of them. Owing to the ontinuity of f , it is therefore su�ient to



18 J. Bolte et al.prove that f is also onstant on eah nontrivial segment of [0, 1]e \ SL. Thisshows that there is no loss of generality to assume that SL is empty, that is:
0 /∈ ∂f(te), t ∈ [0, 1].Now �x some δ > 0 and de�ne(6) Γδ = {x ∈ [0, 1]e : ∀x∗ ∈ ∂f(x), |〈x∗, e〉| > δ}.We observe that (6) de�nes a subanalyti subset of R

n. Let us prove byontradition that this set is �nite.Indeed, if this were not the ase, then by using the subanalytiity of Γδ,there would exist a < b in [0, 1] suh that (a, b)e ⊂ Γδ. Let V be an openbounded subset of U suh that [0, 1]e ⊂ V ⊂ cl V ⊂ U and de�ne
Γ̂+

δ = {x ∈ cl V : ∃x∗ ∈ ∂̂f(x), 〈x∗, e〉 > δ},

Γ̂−
δ = {x ∈ cl V : ∃x∗ ∈ ∂̂f(x), 〈x∗, e〉 < −δ},where ∂̂f denotes the Fréhet subdi�erential of f (De�nition 1(i)). Sine

0 ∈ ∂◦f(x) = o ∂f(x) for every x ∈ Γδ, we have
max{〈x∗, e〉 : x∗ ∈ ∂f(x)} > δ and min{〈x∗, e〉 : x∗ ∈ ∂f(x)} < −δ.So using the de�nition of the limiting subdi�erential we onlude that

(a, b)e ⊂ cl Γ̂+
δ and (a, b)e ⊂ cl Γ̂−

δ .Set l = b−a and M := sup{‖x∗‖ : x∗ ∈ ∂◦f(x), x ∈ cl V }. The �nitenessof M omes from the Lipshitz ontinuity property of f (see Remark 1(b) forinstane) and the ompatness of cl V . The funtion t 7→ f(te) is subanalytiand ontinuous, hene absolutely ontinuous ([4, Lemma 5℄). Thus by usingrelation (3) of Proposition 3 (subdi�erential hain rule), we infer for all
0 ≤ u ≤ v ≤ 1 that

v\
u

∣∣∣∣
d

dt
f(te)

∣∣∣∣ dt ≤ (v − u) sup{|〈e, x∗〉| : t ∈ [u, v], x∗ ∈ ∂f(te)} ≤ (v − u)M.Take η > 0 and apply Lemma 4 (path perturbation lemma) for F = Γ̂+
δ ,and γ(t) = te, t ∈ (a, b). Sine γ̇(t) = e for all t ∈ [0, 1], it follows that thereexists a subanalyti ontinuous urve z : [a, b] → cl Γ̂+

δ suh that
• ‖ż(t) − e‖ < η for almost all t ∈ (a, b),
• the (subanalyti) set ∆ := {t ∈ [a, b] : z(t) ∈ cl Γ̂+

δ \ Γ̂+
δ } has Lebesguemeasure less than η,

• z(t) = γ(t) for all t ∈ ∆ ∪ {a, b}.The ontinuous funtion g(t) = f(z(t)) is also subanalyti, so for all but�nitely many t's in (a, b) \∆ we onlude from relation (2) of Proposition 3and Remark 1() that
{g′(t)} = ∂̂g(t) ⊃ 〈ż(t), ∂̂f(z(t)〉 ⊃ {〈ż(t), z∗+(t)〉},



Clarke ritial values of subanalyti funtions 19where z∗+(t) ∈ ∂̂f(z(t)) an be hosen in order to satisfy 〈e, z∗+(t)〉 > δ (sine
z(t) ∈ Γ̂+

δ ). Thus for almost all t in [a, b] \ ∆ we have
g′(t) = 〈e, z∗+(t)〉 + 〈ż(t) − e, z∗+(t)〉 ≥ δ − ‖ż(t) − e‖M ≥ δ − ηM,so that
f(be) − f(ae) =

b\
a

d

dt
f(z(t)) dt ≥

\
[a,b]\∆

g′(t) dt −
\
∆

∣∣∣∣
d

dt
f(z(t))

∣∣∣∣ dt

≥ (l − η)(δ − ηM) − ηM.By hoosing η small enough, the above quantity an be made positive sothat f(be) > f(ae). It su�es to repeat the argument with Γ̂−
δ to obtain

f(be) < f(ae), whih yields a ontradition.Thus the set Γδ is �nite. We further set
Γ0 = {x ∈ [0, 1]e : ∃x∗ ∈ ∂f(te), 〈x∗, e〉 = 0}.It follows easily from De�nition 1(ii) that the limiting subdi�erential ∂fhas losed values. Thus, the set ∂f(te) is losed for every t ∈ [0, 1], whihyields

[0, 1]e = Γ0 ∪
⋃

i≥1

Γ1/i.Note that ⋃
i≥1 Γ1/i is ountable and equal to the subanalyti set [0, 1]e\Γ0.It follows that ⋃

i≥1 Γ1/i is �nite and so {t ∈ [0, 1] : te ∈ Γ0} is a �nite unionof intervals with a �nite omplement in [0, 1]. Using the ontinuity of f , itsu�es to prove that f is onstant on eah segment of Γ0.Let (a, b)e ⊂ Γ0 with 0 ≤ a < b ≤ 1. For any ε > 0 we de�ne
Γ̂ ε

0 := {x ∈ clV : ∃x∗ ∈ ∂̂f(x), |〈x∗, e〉| < ε}.By de�nition of the limiting subdi�erential, (a, b)e ⊂ cl Γ̂ ε
0 . Applying Lem-ma 4 for the set Γ̂ ε

0 , for η < ε and for the path γ(t) = te, we obtain aurve z : [a, b] → Γ̂ ε
0 and a set ∆ ⊂ [a, b] satisfying (i)�(iii) of Lemma 4.Set h(t) = f(z(t)). As before, for all but �nitely many t's in [a, b] \ ∆ wehave {h′(t)} = {〈ż(t), z∗ε(t)〉}, where z∗ε(t) ∈ ∂̂f(z(t)) an be taken suh that

|〈z∗ε(t), e〉| < ε. Therefore for almost all t in [a, b] \ ∆ we have
|h′(t)| = |〈e, z∗+(t)〉 + 〈ż(t) − e, z∗+(t)〉| ≤ ε + ηM,so that

|f(be) − f(ae)| ≤
b\
a

∣∣∣∣
d

dt
f(z(t))

∣∣∣∣ dt ≤
\

[a,b]\∆

|h′(t)| dt +
\
∆

∣∣∣∣
d

dt
f(z(t)) dt

∣∣∣∣

≤ (l − η)(ε + ηM) + ηM.



20 J. Bolte et al.Taking ε (and thus η) su�iently small, we see that the funtion f is onstanton [0, 1]e and the proof is omplete.Theorem 7 (main result). Let U be a nonempty open subset of R
n and

f : U → R a loally Lipshitz subanalyti mapping. Let S denote the set ofClarke ritial points of f , that is,
S := {x ∈ U : ∂◦f(x) ∋ 0}.Then f is onstant on eah onneted omponent of S.Proof. Let x, y belong to the same onneted omponent of S. We haveto prove that f(x) = f(y). Sine S = (U × {0}n) ∩Graph ∂◦f , we onludeby Remark 1(d) that it is a subanalyti set, so every onneted omponent of

S is also path-onneted (see [1℄, [2℄ or [8℄, for example). Thus, there existsa ontinuous subanalyti path γ : [0, 1] → S joining x to y. To prove that
f(x) = f(y) it su�es to prove that f is onstant on γ(0, 1). By using thesubanalytiity of γ together with the ontinuity of f , we an assume that:

• γ(0, 1) is a subanalyti submanifold of U .[Indeed, sine γ(0, 1) is a �nite union of subanalyti manifolds, we andeal with eah one separately, establishing (as will be desribed below)that f is onstant on eah suh manifold. Then the same onlusionwill follow for γ(0, 1) by a ontinuity argument.℄
• There exists a subanalyti di�eomorphism G from a neighbourhood

V of γ(0, 1) into an open subset of R
n suh that G(γ(0, 1)) = (0, 1)e;see [2℄ for instane.In view of relation (4) of Proposition 3 we have

γ(0, 1) ⊂ (∂◦f)−1(0) if and only if (0, 1)e ⊂ [∂◦(f ◦ G−1)]−1(0).This is indeed a onsequene of the equivalene
∂◦f(x) ∋ 0 ⇔ ∂◦[f ◦ G−1](G(x)) ∋ 0, for all x ∈ V.As a onsequene f is onstant on γ(0, 1) if and only if f ◦ G−1 is onstanton (0, 1)e. The onlusion then follows from Lemma 6.Corollary 8 (Sard theorem for Clarke ritial points). Under the as-sumptions of Theorem 7 the set f(S) of the Clarke ritial values of f isountable (and hene has measure zero).Proof. This follows from Theorem 7 and the fat that the set S, be-ing subanalyti, has at most a ountable number of onneted omponents(a �nite number on eah ompat subset of U).Let us �nally onlude with the following remark.Remark 3 (ase of subdi�erential regularity). If f is assumed to besubdi�erentially regular (see Remark 1(b)) then Theorem 7 follows via a



Clarke ritial values of subanalyti funtions 21straightforward appliation of [16, Theorem 10.6℄. Let us reall this sim-ple argument (see also [3, Remark 3.2℄). Assume that x, y are in the sameonneted omponent of S. Let z : [0, 1] → S be a ontinuous subana-lyti path with z(0) = x and z(1) = y and de�ne the subanalyti fun-tion h(t) = (f ◦ z)(t). From the �monotoniity lemma� (see [9, Fat 4.1℄, or[11, Lemma 2℄, for example) we get h′(t) = 0 for all t ∈ [0, 1] \ F where F isa �nite set. Sine 0 ∈ ∂̂f(z(t)) for all t ∈ [0, 1], using the hain rule for theFréhet subdi�erential we obtain
{h′(t)} = ∂̂h(t) ⊇ z′(t)∂̂f(z(t)) ⊇ {0}for all t ∈ [0, 1]\F . It follows that h is onstant on [0, 1], whene f(x) = f(y).4. An example of a ontinuous subanalyti funtion whih isnot onstant on the set of its broadly ritial points. In this setionwe assume that f : R

n → R is ontinuous. In that ase the de�nition of theClarke subdi�erential (1) of f at x ∈ R
n is as follows:(7) ∂◦f(x) = o{∂f(x) + ∂∞f(x)}where ∂∞f(x) is the asymptoti limiting subdi�erential of f at x, that is,the set of all y∗ ∈ R

n suh that there exists {tn}n ⊂ R+ with {tn} ց 0+,
{yn}n ⊂ R

n, y∗n ∈ ∂̂f(yn) suh that yn → x and tny∗n → y∗. When f isloally Lipshitz ontinuous, the loal boundedness of the limiting subgradi-ents (Remark 1(b)) implies ∂∞f(x) = 0, and so the above de�nition is�ofourse�ompatible with De�nition 1(iii).Following the terminology of [5℄, let us now introdue the onvex-stablesubdi�erential. For every x ∈ R
n set(8) Tf (x) =

⋂

ε>0

o{ ⋃

x∈B(x0,ε)

∂̂f(x)
}
.

A point x0 ∈ R
n is alled a broadly ritial point for f if(9) 0 ∈ Tf (x0).The proof of the following proposition an be found in [5℄.Proposition 9. Let U be nonempty open subset of R

n.(i) For any ontinuous funtion f : U → R we have
∂◦f(x) ⊂ Tf (x) for all x ∈ U.(ii) If f : U → R is a loally Lipshitz funtion, then
∂◦f(x) = Tf (x) for all x ∈ U.Consequently , for loally Lipshitz funtions, Clarke ritial and broadly rit-ial points oinide.



22 J. Bolte et al.We now provide an example showing that the onlusion of Theorem 7(main result) is no more valid for the set of broadly ritial points of aontinuous subanalyti funtion. More preisely (see Fats 1�3 below):There exists a ontinuous subanalyti funtion f : R
3 → R whih isnot onstant on a segment of broadly ritial points.Constrution of the example. Consider the funtion θ0 : [0, π) → [0, π/2]de�ned by

θ0(z) :=

{
z if 0 ≤ z ≤ π/2,
π − z if π/2 < z < π.We extend the domain of θ0 from [0, π) to R in the following way:

z 7→ θ̃0(z) := θ0(z (mod π)).Then for every (θ, z) ∈ [0, π/2] × R we de�ne
σ(θ, z) :=

{
1 if θ ≥ θ̃0(z),
−1 if θ < θ̃0(z).Finally, for every (̺, θ, z) ∈ R

∗
+ × [0, π/2] × R we set(10) Φ1(̺, θ, z) =

{
(2/π)θ̃0(z) + σ(θ, z)̺ if ̺ ≤ (2/π)|θ − θ̃0(z)|,
(2/π)θ if ̺ > (2/π)|θ − θ̃0(z)|.Now for (̺, θ, z) ∈ R

∗
+ × [0, π) × R we set

Φ2(̺, θ, z) =

{
Φ1(̺, θ, z) if 0 ≤ θ ≤ π/2,
Φ1(̺, π − θ, z) if π/2 < θ ≤ π.Finally, we de�ne Φ : R

∗
+ × [0, 2π) × R → [0, 1] by(11) Φ(̺, θ, z) =

{
Φ2(̺, θ, z) if 0 ≤ θ ≤ π,
Φ2(̺, θ − π, z) if π < θ < 2π.De�ne f : R

3 → [0, 1] as the funtion whose graph in artesian oordi-nates is the one of Φ in ylindrial oordinates. For instane, for any x, y > 0we have
f(x, y, z) = Φ(

√
x2 + y2, arctan(y/x), z).

Fact 1. The funtion f is ontinuous and subanalyti.[For the subanalytiity of f it is ruial that the funtion t 7→ arctan(1/t),
t > 0, extends to an analyti funtion in a neighbourhood of t = 0. To seethis, note that arctan(1/t) = π/2 − arctan t for all t > 0.℄
Fact 2. The restrition of f to the set Z = {(0, 0, z) : z ∈ R} is notonstant.
Fact 3. Every point of Z is broadly ritial, that is, Z ⊂ {u ∈ R

3 :
Tf (u) ∋ 0}.
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Fig. 1. Level sets of the funtion f(·, ·, z) for z = 0, π/4, π/2Proof of Fat 3. It is su�ient to prove that if 0 < z0 < π/2, then
0 ∈ ∂◦f((0, 0, z0)).To this end, set u0 = (0, 0, z0), θ0 = θ̃0(z0) (so that 0 < θ0 < π/2) andlet(12) θn = θ0 +

π

2n+2(so that θn ց θ0). Then set an = tan θn and(13) xn =
1

2n
√

1 + a2
n(so that xn ց 0), yn := anxn and thus(14) ̺n =

√
x2

n + y2
n = (

√
1 + a2

n)xn =
1

2n
.For every n ≥ 1 we de�ne

un := (xn, yn, z0) and un = (−xn,−yn, z0).In view of (10), (13) and (14), the sequenes {un}n≥1, {un}n≥1 ⊂ R
3 onvergeto u0 and satisfy

f(un) = f(un) = Φ(̺n, θn, z0) = (2/π)θn.By (11) and (10) it is easily seen that f is di�erentiable at un (respetively,at un). Preisely, we have
∂Φ

∂̺
(un) =

∂Φ

∂z
(un) = 0and

∂Φ

∂θ
(un) =

2

π
,so we onlude that

∇f(un) =
2

π

(
−yn

x2
n + y2

n

,
xn

x2
n + y2

n

, 0

)
.



24 J. Bolte et al.Repeating the above for the sequene {un}n≥1 we obtain
∇f(un) = −∇f(un),or in other words,

0 ∈
⋂

ε>0
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