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Abstract. Nonsmoothness pervades optimization, but the way it typically arises is highly
structured. Nonsmooth behavior of an objective function is usually associated, locally, with an
active manifold: on this manifold the function is smooth, whereas in normal directions it is “vee-
shaped.” Active set ideas in optimization depend heavily on this structure. Important examples
of such functions include the pointwise maximum of some smooth functions and the maximum
eigenvalue of a parametrized symmetric matrix. Among possible foundations for practical nonsmooth
optimization, this broad class of “partly smooth” functions seems a promising candidate, enjoying a
powerful calculus and sensitivity theory. In particular, we show under a natural regularity condition
that critical points of partly smooth functions are stable: small perturbations to the function cause
small movements of the critical point on the active manifold.
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1. Introduction. Optimality conditions throughout the field of optimization
are intimately bound up with nonsmoothness. As a simple example, consider the
problem of minimizing a sum of Euclidean norms (cf. [1]):

min
x∈Rn

h(x) :=

k∑
i=1

‖Aix− bi‖

for given matrices Ai and vectors bi. Except at the origin, the Euclidean norm is
a smooth function, by which we will always mean twice continuously differentiable.
Yet its nonsmoothness is crucial to any understanding of this problem. Associated
with an optimal solution x0 is an “active set” {i : Aix0 = bi}, often nonempty, so the
objective function h is nonsmooth at x0. Furthermore, under reasonable conditions
this active set is stable under small perturbations to the problem. (See [6, 20] for
active set algorithms.)

This particular problem could be rephrased as a conic quadratic program, amenable
to contemporary interior point techniques [1, 3]. Nonetheless, as in linear program-
ming, the active set is an important tool for understanding the problem.

This phenomenon of nonsmoothness inducing a certain “activity” central to opti-
mality conditions repeats many times throughout optimization. Consider the follow-
ing examples.

(a) Classical nonlinear programming and minimax. At an optimal solution of a
nonlinear constrained optimization problem, some subset of the inequality constraints
is active (that is, those constraints hold with equality): under reasonable conditions
(see, for example, [8]), this active set is stable under small perturbations to the
problem.
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Somewhat analogously, consider a nonlinear minimax problem

min
x∈Rn

h(x) := max
i=1,2,...,k

hi(x, u),

where each function hi is smooth and u denotes a vector of parameters. Under
reasonable conditions the active set at an optimal solution x0,

I(x0, u) := {i : hi(x0, u) = h(x0)},

is stable under small changes in u.
(b) Sums of norms. Rather more generally than our initial example, we could

consider the problem

min
x∈Rn

h(x) :=

k∑
i=1

‖Fi(x, u)‖,

where each function Fi is smooth and u denotes a vector of parameters. Under
reasonable conditions the active set at an optimal x0,

I(x0, u) := {i : Fi(x0, u) = 0},

is stable under small changes in u. Any smooth norm could be used in place of the
Euclidean norm (cf. [7]).

(c) Semidefinite programming and eigenvalue optimization. The primal variable
in a semidefinite program is a positive semidefinite matrix (see [16], for example). An
optimal solution has a zero eigenvalue with a certain multiplicity: under reasonable
conditions, this multiplicity is stable under small perturbations to the problem.

Relatedly, consider the eigenvalue optimization problem (see, for example, [14])

min
x∈Rn

h(x) := λ1(F (x, u)),

where the smooth function F takes real symmetric matrix values, u denotes a vector
of parameters, and the function λ1(·) is the largest eigenvalue. At an optimal solution
this largest eigenvalue has a certain multiplicity, which under reasonable conditions
is stable under small changes in u.

(d) Spectral abscissa minimization. More generally, consider the problem

min
x∈Rn

h(x) := α(F (x, u)),

where F now takes arbitrary square matrix values and the function α(·) is the spec-
tral abscissa (the largest real part of an eigenvalue). An optimal matrix generally has
several distinct “active” eigenvalues with real part equal to its spectral abscissa, and
each such eigenvalue has an associated algebraic multiplicity (the geometric multi-
plicity typically being one): under reasonable conditions this pattern of multiplicities
is stable under small changes in u (see [5]).

Each of these problems has optimal solutions with a corresponding “activity,”
which is stable under small perturbations to the problem. In nonlinear minimax or
sums of norms, the activity consists of subsets of indices; in eigenvalue optimization or
spectral abscissa minimization, it consists of a certain pattern of multiplicities. These
“activities” have powerful algorithmic significance: in each case, once the activity of
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an optimal solution is known, finding it (at least locally) is a smooth minimization
problem.

Let us summarize. The problem of minimizing a nonsmooth function is common
in practice. But the nonsmoothness of a typical such function is highly structured: it
induces a certain “activity” at an optimal solution, which under reasonable conditions
is stable under small perturbations to the problem. Once the activity is known, the
optimization problem is locally smooth.

The central idea of this current work is that the “activity” corresponds to a man-
ifold. Each of the functions h above is what we will call partly smooth. Specifically,
in a neighborhood of the point of interest x0 there is a manifold M (the active mani-
fold) containing x0, with certain properties. Loosely speaking, the function h behaves
smoothly as we move on the active manifold M and “sharply” if we move normal
to the manifold; furthermore, in any fixed direction its directional derivative behaves
continuously as we move on M and upper semicontinuously if we allow perturbations
off it. (For closed convex functions, for example, this latter semicontinuity property,
known as “regularity,” is automatic.) We give the precise description in Definition 2.7.

The idea of partial smoothness at first sight appears rather intricate, but we
shall find many interesting examples in practice. Each of our four examples is partly
smooth under reasonable conditions. Given the parameter vector u, the four active
manifolds are defined near x0 as follows:

(a) {x : hi(x, u) = hj(x, u) for all i, j ∈ I(x0, u)};
(b) {x : Fi(x, u) = 0 for all i ∈ I(x0, u)};
(c) {x : λ1(F (x, u)) has same multiplicity as λ1(F (x0, u))};
(d) {x : F (x, u) has same active eigenvalue multiplicities as F (x0, u)}.

Furthermore, we shall see that partly smooth functions have a robust calculus. Thus
they form a rich, practical class of nonsmooth functions.

The literature contains many classes of nonsmooth functions more open to anal-
ysis than general, potentially pathological nonsmooth functions. A useful example is
“amenability” [23, Def. 10.23], a powerful notion for combining smooth and convex
techniques, again with a robust calculus. As we shall see, the real function

√| · | is
partly smooth at the origin relative to the active manifold {0}, but it is not amenable
at the origin (see [23, Ex. 10.25(a)]), and it is not hard to construct similar Lipschitz
examples using the fact that amenable functions are locally regular [23, Ex. 10.25(b)].
On the other hand, the convex, piecewise linear-quadratic function x 	→ ‖x‖2

1 is not
partly smooth relative to any manifold containing the origin.

The distinctive feature of partial smoothness is the notion of the active manifold:
it is this idea that decouples the smooth behavior of the function from its “sharp”
behavior. The importance of this general structure was realized for convex functions in
[22], although not rigorously developed. The notion of active manifold is also implicit
in the approach to polyhedral minimization via “structure functionals” [17]. In the
nonconvex case the notion of the active manifold is familiar from active set methods
for classical nonlinear programming (see [9], for example). In eigenvalue optimization
the role of the active manifold is well known; see [21] and [24], for example. In spectral
abscissa minimization, the idea is used heavily in [5].

For convex functions, partial smoothness is closely related to the “U-Lagrangian”
techniques of [12]: the active manifold is the “gully-shaped valley” of that work, and
the normal and tangent spaces to the manifold correspond to the “U − V decom-
position” originating with the earlier work in [13] and developed for the maximum
eigenvalue in [18, 19]. The idea of a “fast track” [15] is also closely related. We link
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the U-Lagrangian theory to partial smoothness towards the end of the current work.
Notice, however, that many interesting examples of partly smooth functions are not
convex: convexity is not the real driving force behind this theory.

Another closely related idea is the notion of an “identifiable surface” of a convex
set [26], which is a subset of the boundary having a suitable “sharpness” property.
In [26] it is shown that, if the solution of an optimization problem posed over such
a set lies in an identifiable surface, then various standard constrained optimization
algorithms “identify” the surface after a finite number of iterations. Hence the idea
of identifiability is a powerful tool for algorithmic analysis.

Remarkably, as we shall see, for convex sets, the ideas of identifiability and partial
smoothness coincide, reinforcing the power of this theory. By contrast with identifia-
bility, however, partial smoothness is defined in a more geometric manner, and once
again is not dependent on convexity.

To demonstrate the power of partly smooth techniques, our culminating result is
a sensitivity theorem. In classical nonlinear programming, if a local minimizer has lin-
early independent active constraints and satisfies strict complementarity and a strong
second-order condition, then the minimizer depends smoothly on the parameters of
the problem (see [8], for example). An analogous result for eigenvalue optimization
appears in [24] and for spectral abscissa minimization, in [5]. Our work here shows
how partial smoothness unifies this work. To sketch the idea, suppose the function h
is partly smooth at a point x0 relative to the active manifold M. If x0 is a strong
second-order minimizer of the smooth, restricted function h|M, and is a “sharp” min-
imizer of the restriction to the normal space h|x0+NM(x0), then the critical point x0

varies smoothly over M as the parameters of the problem vary. Back in the con-
text of nonlinear programming, our “sharp minimizer” condition corresponds to the
usual strict complementarity condition, and the usual linear independence assumption
becomes a transversality condition allowing us to apply a chain rule.

The proof of our sensitivity result amounts to local reduction to a smooth equality-
constrained problem. Such a reduction is a standard approach to sensitivity results in
nonlinear programming (see [4, Rem. 4.127], for example), and also works in semidef-
inite programming [4, p. 495]. By comparison, we are able here to consider rather
general optimization problems, and without recourse to general nonsmooth second-
order theory (such as [23, Chap. 13], for example), but the price of this generality
is that we must settle for critical points in our sensitivity analysis, rather than local
minimizers (see the example in section 7).

Partial smoothness seems a promising framework for practical nonsmooth opti-
mization. Partly smooth functions form a wide and robust class, with many of the
properties sought by previously cited researchers interested in algorithm development,
stemming from the decoupling of the smooth and sharp behaviors. We defer algorith-
mic discussion to a later work.

2. Partial smoothness. We begin with some elementary definitions. We follow
the notation and terminology of [23] throughout.

We consider a fixed Euclidean space X (a finite-dimensional real inner product
space). We denote the subspace parallel to a nonempty convex set C ⊂ X by parC.
Thus for any point x ∈ C we have

parC = (affC) − x = R(C − C) = R+(C − C),

where affC is the affine span of C. Easy exercises show par (AC) = AparC for any
linear map A, and par (C1 × C2) = parC1 × parC2 for arbitrary nonempty convex
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sets C1 and C2. We denote the extended reals by R = [−∞,+∞]. The lineality space
of a sublinear function f : X → R is the subspace

lin f = {w ∈ X : f(w) = −f(−w)}.
Let us consider a function h : X → R, finite at a point x ∈ X. We review some

definitions from [23]. The subderivative dh(x)(·) : X → R is defined by

dh(x)(w̄) = lim inf
τ↓0, w→w̄

h(x+ τw) − h(x)

τ
(w̄ ∈ X)

and the set of regular subgradients is (see [23, Ex. 8.4])

∂̂h(x) = {v ∈ X : 〈v, w〉 ≤ dh(x)(w) for all w ∈ X}.
The set of subgradients is

∂h(x) =
{

lim
r
vr : vr ∈ ∂h(xr), xr → x, h(xr) → h(x)

}
,

while the set of horizon subgradients is

∂∞h(x) =
{

lim
r
λrvr : vr ∈ ∂h(xr), xr → x, h(xr) → h(x), λr ↓ 0

}
.

Suppose in addition ∂h(x) �= ∅. Then h is (subdifferentially) regular at x if h is locally
lower semicontinuous around x, every subgradient is regular, and furthermore the
recession cone (in the sense of convex analysis) h(x)∞ coincides with ∂∞h(x) (see [23,
Cor. 8.11]). In this case, the support function of ∂h(x) is the subderivative dh(x) [23,
Thm. 8.30]. This is the case in particular for any closed convex function h, and in
this case ∂h is the usual subdifferential in the sense of convex analysis.

Proposition 2.1 (lineality space of subderivative). If the function h is regular
at the point x ∈ X, and has a subgradient there, then

lin dh(x) = (par ∂h(x))⊥.

Proof. We know w �∈ lin dh(x) if and only if dh(x)(w) +dh(x)(−w) > 0, which by
[23, Thm. 8.30] is equivalent to the existence of subgradients y and z of h
at x satisfying 〈y − z, w〉 > 0, or equivalently w �∈ (∂h(x) − ∂h(x))⊥. The result
follows.

Given a set M ⊂ X containing a point x, we call a function f : M → R smooth
around x if x has an open neighborhood V in X such that some smooth function
g : V → R agrees with f on M∩V . We call such a function g a smooth representative
of f around x. Note that in this case f is also smooth around any nearby point in
M. We call x a critical point of f if

f(z) − f(x) = o(‖z − x‖) for z close to x in M.

We call the function f smooth if it is smooth around every point in M.
A “manifold” in X, loosely speaking, is a set consisting locally of the solutions

of some smooth equations with linearly independent gradients. To be more precise,
we say that a set M ⊂ X is a manifold (of codimension m) around a point x ∈ X if
x ∈ M and there is an open set V ⊂ X containing x such that

M∩ V = {x ∈ V : F (x) = 0},
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where the smooth function F : V → Rm has surjective derivative throughout V . In
this case, the tangent space to M at x is given by

TM(x) = Ker(∇F (x))

(which is independent of the choice of F ), and the normal space to M at x is the
orthogonal complement of the tangent space, namely

NM(x) = R(∇F (x)∗)

(where R(·) denotes range). The set M is then Clarke regular at x, and its normal
cone there is exactly the normal space [23, Ex. 6.8].

We call a set M a manifold (of codimension m) if M is a manifold of codimension
m around every point in M. (More precisely, M is an “m-codimensional manifold
embedded in X”; see [25].) If M is a manifold around a point x, then M ∩ U is a
manifold for some open neighborhood U ⊂ X of x.

If the function f : M → R is smooth around x and M is a manifold around x,
then x is a critical point of f if and only if

∇g(x) ∈ NM(x),

where g is any smooth representative of f around x. In particular, this holds if x is
a local minimizer of f .

The indicator function δM takes the value 0 on M and +∞ otherwise.
Proposition 2.2 (subgradients and smoothness). Suppose the set M ⊂ X is a

manifold around the point x ∈ M. For a function h : X → R, if the restriction h|M
is smooth around x, then

∂̂h(x) ⊂ ∇g(x) +NM(x)(2.3)

for any smooth representative g of h|M around x, and hence

par ∂̂h(x) ⊂ NM(x).

Proof. For some open neighborhood V of x we have g + δM∩V = h + δM∩V , so
by [23, Cor. 10.9] we deduce

∇g(x) +NM(x) = ∂̂(g + δM)(x) = ∂̂(h+ δM)(x) ⊃ ∂̂h(x),

and the result follows.
Putting this together with the previous result, we arrive at the following propo-

sition.
Proposition 2.4 (smoothness and lineality). Suppose the set M ⊂ X is a

manifold around the point x. Suppose also that the function h : X → R has a
subgradient at x and is regular there, and furthermore that the restriction h|M is
smooth around x. Then the subderivative dh(x) is linear on the tangent space, or in
other words

lin dh(x) ⊃ TM(x),(2.5)

and the horizon subdifferential satisfies

∂∞h(x) ⊂ NM(x).(2.6)

Furthermore, the following properties are equivalent:
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(i) The lineality and tangent spaces coincide:

lin dh(x) = TM(x).

(ii) The subdifferential and normal space are parallel:

par ∂h(x) = NM(x).

(iii) h is “sharp” in normal directions at x, by which we mean

dh(x)(−w) > −dh(x)(w) whenever 0 �= w ∈ NM(x).

Finally, if any of the above three properties hold, then ∇g(x) ∈ aff ∂h(x) for any
smooth representative g of h|M and hence the following properties are equivalent:

(a) x is a critical point of h|M;
(b) 0 ∈ aff ∂h(x);
(c) aff ∂h(x) = NM(x).
Proof. The first inclusion follows from Propositions 2.1 and 2.2, and the second

(2.6) follows from the fact that ∂∞h(x) is the recession cone of ∂h(x). The equivalence
of statements (i) and (ii) is also a consequence of Proposition 2.1. On the other hand,
by Proposition 2.2, statement (ii) fails if and only if there exists a nonzero vector w
in NM(x) orthogonal to par ∂h(x), or in other words satisfying

〈w, u− v〉 = 0 for all u, v ∈ ∂h(x),

and since we have

dh(x)(w) + dh(x)(−w) = sup{〈w, u− v〉 : u, v ∈ ∂h(x)},
this is in turn equivalent to statement (iii) failing.

For the last statement, note that inclusion (2.3), regularity, and property (ii)
imply ∇g(x) ∈ aff ∂h(x), and hence aff ∂h(x) = ∇g(x) + NM(x). This shows that
properties (a) and (b) are equivalent, and the equivalence of properties (b) and (c)
follows from property (ii).

We are now ready for the key definition.
Definition 2.7. Suppose that the set M ⊂ X contains the point x. The function

h : X → R is partly smooth at x relative to M if M is a manifold around x and the
following four properties hold:

(i) (restricted smoothness) the restriction h|M is smooth around x;
(ii) (regularity) at every point close to x in M, the function h is regular and has

a subgradient;
(iii) (normal sharpness) dh(x)(−w) > −dh(x)(w) for all nonzero directions w in

NM(x);
(iv) (subgradient continuity) the subdifferential map ∂h is continuous at x relative

to M.
We say h is partly smooth relative to a set M if M is a manifold and h is partly
smooth at each point in M relative to M.

Definition 2.8 (partly smooth sets). A set S ⊂ X is partly smooth at a point
x relative to a set M if δS is partly smooth at x relative to M. We say S is partly
smooth relative to a set M if M is a manifold and S is partly smooth at each point
in M relative to M.

Note 2.9 (equivalent properties). Some comments may help with this rather
lengthy definition.
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(a) By Propositions 2.1, 2.2, and 2.4, we could replace property (iii) (normal
sharpness) by either of the following properties:

(iii*) (tangent linearity of subderivative)

lin dh(x) ⊂ TM(x)

(or indeed the corresponding equality);
(iii**) (normals parallel to subdifferential)

NM(x) ⊂ par ∂h(x)

(or again the corresponding equality).
(b) Property (i) ensures that h is continuous relative to M, so the subdifferential

mapping is always outer semicontinuous relative to M, by [23, Prop. 8.7].
Hence we could replace property (iv) by the following property:

(iv*) (subgradient inner semicontinuity) The subdifferential ∂h is inner semi-
continuous at x relative to M: in other words, for any sequence of points
xr in M approaching x and any subgradient y ∈ ∂h(x), there exist sub-
gradients yr ∈ ∂h(xr) approaching y.

Notice that if h is locally Lipschitz (or “strictly continuous” in the terminology
of [23]), then the subdifferential ∂h(x) is everywhere nonempty and compact
[23, Thm. 9.13], so by [23, Cor. 11.35] we could replace condition (iv) by the
following condition:
(iv) (subderivative continuity) for all directions w ∈ X, the function x ∈

M 	→ dh(x)(w) is continuous at x0.
Furthermore, in this case the subderivative reduces to

dh(x)(w) = lim inf
t↓0

h(x+ tw) − h(x)

t
,

and regularity at x amounts to upper semicontinuity of the function dh(·)(w)
at x for all directions w [23, Ex. 9.15 and Cor. 8.19]. This justifies the
description of partial smoothness we gave in the introduction.

(c) Although the definition of partial smoothness is for a function h defined every-
where on the space X, it extends unchanged to a function defined only close
to the point of interest, since partial smoothness depends only on properties
of h near that point.

For a partly smooth function, the “normal sharpness” condition (iii), or equiva-
lently, conditions (iii*) (tangent linearity of subderivative) and (iii**) (normals parallel
to subdifferential), are all “stable”: the fact that they hold at the point x0 implies
that they also hold at all nearby points in the active manifold. That is the content of
the following result.

Proposition 2.10 (local normal sharpness). If the function h : X → R is partly
smooth at the point x0 relative to the set M ⊂ X, then all points x ∈ M close to x0

satisfy the condition

dh(x)(−w) > −dh(x)(w) for all 0 �= w ∈ NM(x),

or equivalently, the condition

NM(x) = par ∂h(x).
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Proof. The two properties are equivalent by Note 2.9. By Proposition 2.2 (sub-
gradients and smoothness) we know NM(x) ⊃ par ∂h(x), so if the result fails, then
there is a sequence of points xr ∈ M approaching x0 and a sequence of unit vectors
yr ∈ NM(xr) orthogonal to par ∂h(xr). Taking a subsequence, we can suppose that
yr approaches a unit vector y0 ∈ NM(x0).

Now for arbitrary subgradients u0, v0 ∈ ∂h(x0), by the continuity of ∂h there
exist sequences ur ∈ ∂h(xr) approaching u0 and vr ∈ ∂h(xr) approaching v0, and
they must satisfy 〈yr, ur − vr〉 = 0. Taking the limit shows 〈y0, u0 − v0〉 = 0, so since
u0 and v0 were arbitrary we deduce y0 is orthogonal to par ∂h(x0) = NM(x0), which
contradicts the fact that y0 is a unit vector in NM(x0).

We end this section with a simple characterization of partly smooth sets.
Proposition 2.11 (partly smooth sets). Suppose that the set M ⊂ X contains

the point x0. A set S ⊂ X is partly smooth at x0 relative to M if and only if M is a
manifold around x0 and the following four properties hold:

(i) S ∩M is a neighborhood of x0 in M;
(ii) S is Clarke regular at each point in M close to x0;
(iii) NM(x0) ⊂ NS(x0) −NS(x0);
(iv) the normal cone map NS(·) is continuous at x0 relative to M.
Proof. This is an easy exercise using the facts that the set S is Clarke regular at

the point x ∈ S if and only if δS is regular there, and that ∂δS(x) = NS(x), and then
applying property (iii**) (normals parallel to subdifferential) in Note 2.9.

The definition of partial smoothness looks a little involved at first sight, but we
shall see that there are many important examples.

3. Basic examples. In this section we describe a few basic examples of partly
smooth functions. In the next section we describe some calculus rules for building
more complex examples.

Example 3.1 (smooth functions). If the open set Ω ⊂ X contains the point x
and the function h : Ω → R is smooth, then h is partly smooth at x relative to Ω.

Example 3.2 (indicator functions). If M ⊂ X is a manifold around the point x,
then M is a partly smooth set at x relative to M. This is an easy consequence of
Proposition 2.11 (partly smooth sets).

Example 3.3 (distance functions). If M ⊂ X is a manifold around the point x0,
then the distance function dM : X → R defined by

dM(x) = inf{‖y − x‖ : y ∈ M}

is partly smooth at x0 relative to M. To see this, notice that δM|M is identically
zero, which is smooth. By [23, Ex. 8.53] we know that dM is regular at each point
x ∈ M and

∂h(x) = B ∩NM(x)

(where B denotes the closed unit ball in X). Thus the normal space is again parallel
to the subdifferential, and this subdifferential varies continuously as x varies in M.
In fact, the Euclidean norm could be replaced by any other norm in this example,
providing we replace B in the subdifferential formula above with the dual ball.

Notice in particular that the norm ‖ · ‖ is partly smooth at the origin relative to
the origin.

Example 3.4 (polyhedral functions). Given any function h : X → R that is
polyhedral (that is, its epigraph is a polyhedral set) and any point x0 at which h is
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finite, there is a natural manifold about x0 relative to which h is partly smooth. To
see this we express h in the form (see [23, Thm. 2.49])

h(x) =

{
max{〈ai, x〉 + bi : i ∈ I} if 〈cj , x〉 ≤ dj for all j ∈ J,
+∞ otherwise

for some finite index sets I �= ∅ and J and given vectors ai and cj in X and reals bi
and dj (for i ∈ I and j ∈ J). For any point x ∈ X, define “active” index sets

I(x) = {i ∈ I : 〈ai, x〉 + bi = h(x)},
J(x) = {j ∈ J : 〈cj , x〉 = dj}.

Define the set

Mx0 = {x ∈ X : I(x) = I0 and J(x) = J0},
where I0 = I(x0) and J0 = J(x0). It is easy to see that Mx0 is a manifold around
x0. We claim that h is partly smooth at x0 relative to Mx0 .

To see this observe first that for any index i ∈ I0 we have

h(x) = 〈ai, x〉 + bi for all x ∈ Mx0 ,

so h|Mx0
is smooth. Second, h is lower semicontinuous and convex, and hence regular

whenever it is finite [23, Ex. 7.27]. Now routine calculation (using [23, Thm. 6.46],
for example) shows that at any point x ∈ Mx0 we have

NMx0
(x) =



∑
i∈I0

λia
i +

∑
j∈J0

µjc
j :

∑
i∈I0

λi = 0


 ,

∂h(x) =



∑
i∈I0

λia
i +

∑
j∈J0

µjc
j :

∑
i∈I0

λi = 1, λi ≥ 0 (i ∈ I0),

µj ≥ 0 (j ∈ J0)


 .

Thus the normal space is parallel to the subdifferential, which is constant on Mx0
.

In particular, the basic max function mx : Rn → R defined by mxx = maxi xi is
partly smooth at any point x0 ∈ Rn relative to the set

Mx0 = {x ∈ Rn : I(x) = I(x0)},(3.5)

where

I(x) =
{
j : xj = max

i
xi

}
.

Example 3.6 (largest eigenvalue). The Euclidean space Sn consists of the n-by-n
real symmetric matrices with the inner product 〈x, y〉 = trace(xy), for x, y ∈ Sn. The
functions λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x) denote the eigenvalues of x (listed in decreasing
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order by multiplicity). Then the largest eigenvalue is partly smooth relative to the
manifold

Mm = {x ∈ Sn : λ1(x) has multiplicity m} (1 ≤ m ≤ n).

To see this, note first that the set Mm above is indeed a manifold (see [18], for
example). Furthermore we can write the maximum eigenvalue as

λ1(x) = m−1
m∑
j=1

λj(x) for all x ∈ Mm,

and the right-hand side is a smooth function of x on Mm (see [11], for example).
Second, λ1 is convex (see [10], for example) and so is regular everywhere. Now, by
[18], as x varies in Mm there is an n-by-m matrix Q(x), depending continuously on
x, whose columns are a basis for the eigenspace of x corresponding to λ1(x), and then
we have

NMm(x) = Q(x){w ∈ Sn : tracew = 0}Q(x)T ,

∂λ1(x) = Q(x){w ∈ Sn
+ : tracew = 1}Q(x)T ,

where Sn
+ denotes the positive semidefinite matrices [18, Thm. 4.7]. It is easy to

see from this that the normal space is parallel to the subdifferential, which varies
continuously on Mm.

Example 3.7 (spectral abscissa). The Euclidean space Mn consists of the n-by-n
complex matrices with the (real) inner product 〈x, y〉 = Re trace(x∗y) for x, y ∈ Mn.
The spectral abscissa α(x) is the largest of the real parts of the eigenvalues of x.

Given any list φ = (n1, n2, . . . , nr) of positive integers with sum no greater than
n, let Mφ denote the subset of Mn consisting of matrices x satisfying the following
properties:

(i) x has r distinct “active” eigenvalues λ1, λ2, . . . , λr with real part α(x), and
all its other eigenvalues have real part strictly less than α(x);

(ii) each active eigenvalue λj has algebraic multiplicity nj and geometric multi-
plicity one.

Classic results of Arnold [2] show that Mφ is a manifold.
In fact the spectral abscissa α is partly smooth relative to Mφ (see [5]).

4. Calculus. In this section we show that partly smooth functions form a robust
class by proving a variety of calculus rules. Our fundamental result considers the
composition of a partly smooth function with a smooth function, and requires a
transversality condition. Consider Euclidean spaces X and Z, an open set W ⊂ Z
containing a point z, a smooth map Φ : W → X, and a set M ⊂ X. We say Φ is
transversal to M at z if M is a manifold around Φ(z), and

R(∇Φ(z)) + TM(Φ(z)) = X

or equivalently

Ker(∇Φ(z)∗) ∩NM(Φ(z)) = {0}.(4.1)

Theorem 4.2 (chain rule). Given Euclidean spaces X and Z, an open setW ⊂ Z
containing a point z0, a smooth map Φ : W → X, and a set M ⊂ X, suppose Φ is
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transversal to M at z0. If the function h : X → R is partly smooth at Φ(z0) relative
to M, then the composition h ◦ Φ is partly smooth at z0 relative to Φ−1(M).

Proof. An immediate consequence of transversality is that the set Φ−1(M) is a
manifold around any point z ∈ Φ−1(M) close to z0, with normal space

NΦ−1(M)(z) = ∇Φ(z)∗NM(Φ(z)),

and transversality also holds at all such z.
Given a smooth representative g of h|M around Φ(z0), it is easy to see that g◦Φ is

a smooth representative of (h◦Φ)|Φ−1(M) around z0, so this latter function is smooth
around z0.

Consider any point z ∈ Φ−1(M) close to z0. By inclusion (2.6) we know

∂∞h(Φ(z)) ⊂ NM(Φ(z)).(4.3)

Transversality at z therefore implies

Ker(∇Φ(z)∗) ∩ ∂∞h(Φ(z)) = {0},

so by [23, Thm. 10.6], h ◦ Φ is regular at z, with subdifferential

∂(h ◦ Φ)(z) = ∇Φ(z)∗∂h(Φ(z)) �= ∅.(4.4)

Now, the normal space is parallel to the subdifferential, since

par (∂(h ◦ Φ)(z0)) = par (∇Φ(z0)∗∂h(Φ(z0)))

= ∇Φ(z0)∗par (∂h(Φ(z0))) ⊃ ∇Φ(z0)∗NM(Φ(z0)) = NΦ−1(M)(z0),

so it remains only to check the inner semicontinuity property of the subdifferential.
Consider therefore a convergent sequence of points zr → z0 in Φ−1(M), and a

subgradient w ∈ ∂(h ◦ Φ)(z0). By (4.4) there is a subgradient y ∈ ∂h(Φ(z0)) such
that ∇Φ(z0)∗y = w. Since Φ(zr) → Φ(z0) in M and ∂h is continuous on M at Φ(z0),
there must be subgradients yr ∈ ∂h(Φ(zr)) approaching y. But Φ is smooth, so the
vectors ∇Φ(zr)∗yr ∈ ∂(h ◦ Φ)(zr) approach w, as required.

For example, suppose Φ(z0) = 0 and ∇Φ(z0) is surjective. Then the function
z 	→ ‖Φ(z)‖ is partly smooth at z0 relative to Φ−1(0).

By applying this result with h = δS , we obtain conditions guaranteeing that the
set Φ−1(S) is partly smooth if the set S is smooth.

Proposition 4.5 (separability). For each i = 1, 2, . . . , k, suppose that Xi is a
Euclidean space, that the set Mi ⊂ Xi contains the point x

0
i , and that the function

hi : Xi → R is partly smooth at x0
i relative to Mi. Then the function h : X1 ×X2 ×

· · · ×Xk → R defined by

h(x1, x2, . . . , xk) =

k∑
i=1

hi(xi) for xi ∈ Xi, i = 1, 2, . . . , k,

is partly smooth at (x0
1, x

0
2, . . . , x

0
k) relative to M1 ×M2 × · · · ×Mk.

Proof. This follows easily from the facts that M1 ×M2 × · · · ×Mk is a manifold
around (x0

1, x
0
2, . . . , x

0
k), with normal space

NM1×M2×···×Mk
(x1, x2, . . . , xk) = NM1(x1) ×NM2(x2) × · · · ×NMk

(xk),
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and

∂h(x1, x2, . . . , xk) = ∂h1(x1) × ∂h2(x2) × · · · × ∂hk(xk),

with regularity providing each hi is regular at xi [23, Prop. 10.5].
For example, the function

(x1, x2, . . . , xk) 	→ ‖x1‖ + ‖x2‖ + · · · + ‖xk‖
is partly smooth at the origin relative to the origin.

Applying this result to indicator functions shows that direct products of partly
smooth sets are partly smooth.

Corollary 4.6 (sum rule). Consider sets M1,M2, . . . ,Mk in a Euclidean
space Z. Suppose the function hi : Z → R is partly smooth at the point z0 relative to
Mi for each i. Assume furthermore the condition

k∑
i=1

yi = 0 and yi ∈ NMi
(z0) for each i ⇒ yi = 0 for each i.

Then the function
∑

i hi is partly smooth at z0 relative to ∩iMi.
Proof. We apply the chain rule (Theorem 4.2) and Proposition 4.5 (separability)

with

X = Z × Z × · · · × Z (k copies),

W = Z,

Φ(z) = (z, z, . . . , z) for z ∈ Z,
M = M1 ×M2 × · · · ×Mk,

h(z1, z2, . . . , zk) =
∑
i

hi(zi) for zi ∈ Z, i = 1, 2, . . . , k.

Applying this result to indicator functions gives conditions guaranteeing that
intersections of partly smooth sets are partly smooth.

Corollary 4.7 (smooth perturbation). If the function h : X → R is partly
smooth at the point x0 relative to the set M ⊂ X and the function f : X → R is
smooth on an open set containing x0, then the function h+ f is partly smooth at x0

relative to M.
Corollary 4.8 (smooth max function). Suppose W is an open subset of the

Euclidean space Z, and the function Φ : W → Rn is smooth. For any point z ∈ W ,
define the “active set”

J(z) =

{
i : Φi(z) = max

j
Φj(z)

}
.

If the point z0 ∈W satisfies

{∇Φi(z0) : i ∈ J(z0)} linearly independent,(4.9)

then the function h : W → R defined by h(z) = maxj Φj(z) is partly smooth at z0
relative to the set

M = {z ∈W : J(z) = J(z0)}.
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Proof. We apply the chain rule (Theorem 4.2) with X = Rn, M = MΦ(z0) as
in (3.5), and h = mx, the basic max function of Example 3.4. The transversality
condition follows easily from condition (4.9).

To apply the idea of partial smoothness to optimization problems with constraints,
we need conditions to recognize partly smooth level sets. That is the aim of the last
result of this section.

Theorem 4.10 (level sets). Consider a point x0 in a set M ⊂ X. Suppose that
the function h : X → R is partly smooth at x0 relative to M, and that x0 is not a
critical point of h|M. Then the level set

L = {x ∈ M : h(x) ≤ 0}

is partly smooth at x0 relative to the set

M0 = {x ∈ M : h(x) = 0}.

Proof. We can choose an open neighborhood V of x0, and smooth functions
g : V → R and F : V → Rm, such that g agrees with h on the set

M∩ V = {x ∈ V : F (x) = 0}

and F has surjective derivative throughout V . If we choose a sufficiently small neigh-
borhood V , then the set

{x ∈ M∩ V : h(x) = 0} = {x ∈ V : F (x) = 0 and g(x) = 0}(4.11)

is a manifold around x0 since

∇g(x0) �∈ NM(x0) = R(∇F (x0)∗).

Thus M0 is indeed a manifold around x0.
We now need to check the four conditions of Proposition 2.11 (partly smooth

sets). Clearly property (i) holds, since M0 ⊂ M.
The assumption that x0 is not a critical point of h|M is equivalent to 0 �∈ aff ∂(x0),

by Proposition 2.4, so in particular we know 0 �∈ ∂h(x0). Since the subdifferential
mapping ∂h is continuous relative to M, it follows that 0 �∈ ∂h(x) for all points x ∈ M
close to x0. (In fact this follows just from outer semicontinuity.)

Now consider a point x ∈ M0 close to x0. Notice that h is regular at x0 and thus
locally lower semicontinuous. We can apply [23, Prop. 10.3] to deduce that the level
set L is Clarke regular at x (which proves property (ii)), and

NL(x) = (R+∂h(x)) ∪ ∂∞h(x).

Notice that the right-hand side is closed (since the normal cone is always closed), and
it contains R+∂h(x) and hence also clR+∂h(x). On the other hand, by regularity we
have

∂∞h(x) = ∂h(x)∞ ⊂ clR+∂h(x).

Putting these observations together, we deduce the representation

NL(x) = clR+∂h(x).(4.12)
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By (4.11) we have

NM0
(x0) = NM(x0) + R∇g(x0),

and since h is partly smooth at x0 relative to M we also know

NM(x0) = R+(∂h(x0) − ∂h(x0)).

Furthermore, Proposition 2.4 implies

∇g(x0) ∈ aff ∂h(x0) = ∂h(x0) + R+(∂h(x0) − ∂h(x0)).

Hence certainly we have

NM0(x0) ⊂ R+∂h(x0) −R+∂h(x0) ⊂ NL(x0) −NL(x0),

which proves property (iii).
It remains to prove that the normal cone mapping NL(·) is inner semicontinuous

at x0 relative to M0, or in other words

NL(x0) ⊂ lim inf
x→x0, x∈M0

NL(x).

Using (4.12) we can rewrite this as

clR+∂h(x0) ⊂ lim inf
x→x0, x∈M0

clR+∂h(x).

Since the lim inf is always closed, it suffices to prove

R+∂h(x0) ⊂ lim inf
x→x0, x∈M0

R+∂h(x).

To this end, suppose that the sequence of points xr ∈ M0 converges to x0, and
consider a vector y = µz for some real µ ≥ 0 and subgradient z ∈ ∂h(x0). Since the
subdifferential map ∂h is continuous at x0 relative to M, there exist subgradients zr ∈
∂h(xr) approaching z, and then we have vectors µzr ∈ R+∂h(xr) approaching y as
required.

Corollary 4.13 (smooth constraints). Suppose W is an open subset of the
Euclidean space Z, and the function Φ : W → Rn is smooth. For any point z in the
set

L = {z ∈W : Φ(z) ≤ 0},

define the “active set”

K(z) = {k : Φk(z) = 0}.

If the point z0 ∈ L satisfies the condition

{∇Φk(z0) : k ∈ K(z0)} linearly independent,

then the set L is partly smooth at z0 relative to the set

{z ∈W : K(z) = K(z0)}.
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Proof. We apply Theorem 4.10 (level sets) to the smooth max function h defined
in Corollary 4.8. Notice

∂h(z0) = conv {∇Φk(z0) : k ∈ K(z0)},

so 0 �∈ aff ∂h(z0) by the linear independence assumption, and hence z0 is not a critical
point of h|M for the set M defined in Corollary 4.8.

Example 4.14 (semidefinite cone). The convex cone Sn
− of negative semidefinite

matrices is partly smooth relative to the manifold

{x ∈ Sn
− : rankx = k}

for any integer k = 0, 1, . . . , n. To see this, we simply apply Theorem 4.10 to the
largest eigenvalue.

Example 4.15 (semistable matrices). A matrix x ∈ Mn is semistable if all its
eigenvalues lie in the closed left half-plane, or in other words, with the notation of
Example 3.7 (spectral abscissa), if α(x) ≤ 0. The (nonconvex) cone of semistable
matrices is partly smooth relative to the manifold

{x ∈ Mφ : α(x) = 0}

for any list of multiplicities φ. To see this, we apply Theorem 4.10 to the spectral
abscissa, using the fact that any subgradient of the spectral abscissa at any point has
trace one.

5. Sensitivity. This section considers the stability of critical points of paramet-
ric partly smooth functions. Throughout this section we make the following assump-
tion.

Assumption 5.1 (transversal embedding). For Euclidean spaces Y and Z, the set
Q ⊂ Y × Z is a manifold containing the point (y0, z0) and satisfies the condition

(w, 0) ∈ NQ(y0, z0) ⇒ w = 0.

Notice that this assumption is “stable”: if it holds at the point (y0, z0), then it
also holds at all nearby points in Q.

For each vector y ∈ Y we define the set

Qy = {z ∈ Z : (y, z) ∈ Q}.

Since the condition in Assumption 5.1 is exactly the transversality condition (4.1) for
the map Φ : Z → Y × Z defined by Φ(z) = (y0, z), the set Qy0 is a manifold around
z0. In fact the following result, whose proof is immediate, shows that rather more is
true: providing y is close to y0, the set Qy has the structure of a manifold close to z0.

Proposition 5.2. If Assumption 5.1 holds, then there is an open neighborhood
U of z0 such that for all vectors y ∈ Y close to y0 the set Qy ∩ U is a manifold.

Throughout this section we consider a function p : Y × Z → R, and we define a
function py : Z → R by

py(z) = p(y, z) for y ∈ Y and z ∈ Z.

Clearly if the restriction p|Q is smooth, then so is the restriction py|Qy . The next
result shows an analogous property for partial smoothness.
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Proposition 5.3 (partial smoothness with parameters). Suppose Assumption 5.1
holds and the function p is partly smooth relative to the manifold Q. Then there is an
open neighborhood U of the point z0 such that the function py is partly smooth relative
to Qy ∩ U for all vectors y ∈ Y close to y0.

Proof. There are open neighborhoods U of z0 and V of y0 such that Qy ∩ U is a
manifold for all y ∈ V and

y ∈ V, z ∈ U, (y, z) ∈ Q, (w, 0) ∈ NQ(y, z) ⇒ w = 0.

Hence for any points ŷ ∈ V and ẑ ∈ Qŷ∩U we can apply the chain rule (Theorem 4.2)
at ẑ with the map Φ : Z → Y ×Z defined by Φ(z) = (ŷ, z) to deduce that the function
pŷ = p ◦ Φ is partly smooth at ẑ relative to the manifold Qŷ ∩ U .

Our main aim in this work is to study sensitivity of critical points for partly
smooth functions. Just as in classical sensitivity analysis for nonlinear programming,
we need second-order conditions to make progress.

Definition 5.4. Given any subset M of a Euclidean space X, a point x0 is a
strong local minimizer of a function f : M → R if there exists a real δ > 0 such that
f(x) ≥ f(x0) + δ‖x− x0‖2 for all x ∈ M near x0.

We recall some classical sensitivity analysis (see, for example, [8]). Suppose M ⊂
X is a manifold around the point x0 ∈ M, and the restriction h|M is smooth around
x0, for some function h : X → R. Let g be any smooth representative of h|M. By
definition, x0 has an open neighborhood V ⊂ X such that

M∩ V = {x ∈ V : F (x) = 0}

for some smooth function F : V → Rm with ∇F (x0) surjective. The point x0 is
a critical point of h|M if and only if ∇g(x0) ∈ NM(x0), which is equivalent to the
existence of a multiplier vector µ ∈ Rm (necessarily unique) such that x0 is a critical
point of the corresponding Lagrangian function L = g + µTF . Furthermore, x0 is a
strong local minimizer of h|M if and only if it is a critical point of h|M and satisfies
the second-order condition

yT∇2L(x0)y > 0 whenever 0 �= y ∈ Ker(∇F (x0)).

The following result is also classical.
Theorem 5.5 (parametric strong minimizers). Suppose that the function p|Q is

smooth around the point (y0, z0), that the point z0 is a strong local minimizer of the
function py0 |Qy0

, and that Assumption 5.1 holds. Then there are open neighborhoods
U ⊂ Z of z0 and V ⊂ Y of y0 and a continuously differentiable function Ψ : V → U
such that Ψ(y0) = z0 and for all vectors y ∈ V the function py|Qy∩U has a unique
critical point Ψ(y), which is furthermore a strong local minimizer.

To approach a more complete sensitivity theory, we combine the smooth analysis
of a partly smooth function on its active manifold with a study of its behavior in
normal directions. That is the idea of the following definition.

Definition 5.6 (strong critical point). For a Euclidean space X, suppose the
function h : X → R is partly smooth at the point x0 relative to the set M ⊂ X. We
call x0 a strong critical point of h relative to M if

(i) x0 is a strong local minimizer of h|M, and
(ii) 0 ∈ ri ∂h(x0).

In the next section we see that the condition 0 ∈ ri ∂h(x0) could be written equiva-
lently as x0 being a “sharp” local minimizer of the function h|x0+NM(x0).
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We are now ready for the main result. Comparing it with the classical result
Theorem 5.5 above, we see that the extra assumption of strong criticality implies that
the parametrized minimizer is also a strong critical point.

Theorem 5.7 (strong critical points and parameters). Suppose Assumption 5.1
holds and the function p is partly smooth relative to the manifold Q. If the point z0
is a strong critical point of the function py0

relative to the set Qy0
, then there are

open neighborhoods U ⊂ Z of z0 and V ⊂ Y of y0 and a continuously differentiable
function Ψ : V → U satisfying Ψ(y0) = z0 and with the following properties for all
vectors y ∈ V :

(i) the function py|Qy∩U has a unique critical point Ψ(y);
(ii) Ψ(y) is a strong critical point of the function py relative to the manifold

Qy ∩ U .
Proof. Theorem 5.5 shows the existence of a function Ψ having the required

properties, with the exception of property (ii). Proposition 5.3 shows that py is partly
smooth relative to the manifold Qy ∩ U . Hence to prove property (ii), it suffices to
show

0 ∈ ri ∂py(Ψ(y)) for y ∈ V close to y0.

To this end, as in the proof of Proposition 5.3, we define a map Φy : Z → Y × Z
by Φy(z) = (y, z) for z ∈ Z, observe that py = p ◦ Φy, and note that Assumption 5.1
allows us to apply the chain rule (Theorem 4.2). By (4.4) we deduce

∂py(Ψ(y)) = projZ ∂p(y,Ψ(y)),

where projZ : Y × Z → Z is the natural projection, whereas a standard calculation
shows

NQy (Ψ(y)) = projZ NQ(y,Ψ(y)).

We therefore know

0 ∈ ri (projZ ∂p(y0,Ψ(y0))),(5.8)

and we want to deduce

0 ∈ ri (projZ ∂p(y,Ψ(y))) for all y close to y0.

Notice that, by definition, we know Ψ(y) is a critical point of the restriction py|Qy

for y close to y0, so by partial smoothness, Proposition 2.10 (local normal sharpness)
and Proposition 2.4 (smoothness and lineality) we have

aff (projZ ∂p(y,Ψ(y))) = aff ∂py(Ψ(y)) = NQy (Ψ(y)) = projZ NQ(y,Ψ(y)).

If the result fails, then there is a sequence of vectors yr in Y approaching y0 such that

0 �∈ ri (projZ ∂p(yr,Ψ(yr))) for all r.

For all large r we can separate in the subspace projZ NQ(yr,Ψ(yr)) to deduce the
existence of a unit vector zr in this subspace, satisfying

inf 〈zr,projZ ∂p(yr,Ψ(yr))〉 ≥ 0.



720 A. S. LEWIS

After taking a subsequence, we can assume zr approaches a nonzero vector z ∈ Z.
Now, since the point (yr,Ψ(yr)) converges to the point (y0, z0) in the manifold

Q, it follows that the subspace NQ(yr,Ψ(yr)) converges to the subspace NQ(y0, z0),
so Assumption 5.1 implies that the subspace projZ NQ(yr,Ψ(yr)) converges to the
subspace projZ NQ(y0, z0), by [23, Ex. 4.28]. Hence we deduce

z ∈ projZ NQ(y0, z0).

We now claim

inf 〈z,projZ ∂p(y0, z0)〉 ≥ 0.(5.9)

To see this, consider any vector u ∈ projZ ∂p(y0, z0). Partial smoothness implies
that ∂p(yr,Ψ(yr)) converges to ∂p(y0, z0), so again by [23, Ex. 4.28] we deduce that
projZ ∂p(yr,Ψ(yr)) converges to projZ ∂p(y0, z0). Thus there is a sequence of vectors
ur ∈ projZ ∂p(yr,Ψ(yr)) converging to u. Since 〈zr, ur〉 ≥ 0 for all r, we deduce
〈z, u〉 ≥ 0, as we claimed.

Thus inequality (5.9) holds, so the origin is separated from the convex set
projZ ∂p(y0, z0) in its affine span (the subspace projZ NQ(y0, z0)). But this contra-
dicts relation (5.8), so the proof is complete.

6. U − V decomposition and identifiable surfaces. As we remarked in the
introduction, our development is closely related to the U-Lagrangian theory for convex
functions of Lemaréchal, Oustry, and Sagastizábal (see, for example, [12]). The key
idea of that theory is, for a given convex function h : X → R, to decompose X as
a sum of two orthogonal subspaces, U and V: h behaves “sharply” at the point of
interest if we perturb in directions in the V space, whereas it behaves smoothly if we
perturb in directions in the U space.

Our purpose in this section is to draw the connection between this idea and partial
smoothness. The development is a nice illustration of various features of the theory
of partial smoothness.

We call a local minimizer x of an arbitrary function h : X → R sharp if

lim inf
z→0

h(x+ z) − h(x)

‖z‖ > 0,

or equivalently, if 0 ∈ int ∂̂h(x).
Theorem 6.1 (U −V decomposition). Suppose the function h : X → R is partly

smooth at the point x relative to the set M ⊂ X. Define subspaces U = TM(x)
and V = NM(x). Then there exists a function v : U → V with the following three
properties:

(i) the function v is smooth near the origin;
(ii) for small vectors u ∈ U and w ∈ V, x+ u+ w ∈ M ⇔ w = v(u);
(iii) v(u) = O(‖u‖2) for small u ∈ U .

Fix any vector y ∈ ri ∂h(x). Then for any small vector u ∈ U , the function

w ∈ V 	→ h(x+ u+ w) − 〈y, x+ u+ w〉(6.2)

has a sharp minimizer at the point v(u).
Furthermore, the point x is a strong critical point of h relative to M if and only

if it is a strong local minimizer of h|M and a sharp local minimizer of h|x+V .
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Proof. By first intersecting with an open set, we can assume M is a manifold.
A standard argument using the implicit function theorem shows the existence of the
function v with the properties (i), (ii), and (iii).

Define a map Φ : U × V → X by

Φ(u,w) = x+ u+ w for u ∈ U and w ∈ V.

Clearly Φ is everywhere transversal to M. Hence by the chain rule (Theorem 4.2),
the function h ◦ Φ is partly smooth relative to the manifold Φ−1(M). Consequently,
by smooth perturbation (Corollary 4.7) the function p : U × V → R defined by

p(u,w) = h(x+ u+ w) − 〈y, x+ u+ w〉 for u ∈ U and w ∈ V

is partly smooth relative to the manifold

Q = Φ−1(M) = {(u,w) ∈ U × V : x+ u+ w ∈ M}.

Notice that for a small vector u ∈ U , the function (6.2) is exactly pu, and property
(ii) shows

Qu = {v(u)}.

It is easy to check

NQ(0, 0) = {0} × V,

so Assumption 5.1 holds for our function p. Hence we can apply Theorem 5.7 (strong
critical points and parameters) to deduce that v(u) is a strong critical point of pu
relative to {v(u)}. Hence

0 ∈ ri ∂pu(v(u)) = int ∂pu(v(u)),

since aff ∂pu(v(u)) = NQu
(v(u)) = V.

To see the “only if” direction of the last statement, we simply consider the function
(6.2) with y = 0 and u = 0. In the converse direction, since x is a local minimizer of
h|M, we know aff ∂h(x) = V, by Proposition 2.4 (smoothness and lineality), and since
the origin is a sharp local minimizer of the function p0, we deduce 0 ∈ int ∂p0(0) =
int projV ∂h(x), just like the proof of Theorem 5.7. It follows that 0 ∈ ri ∂h(x).

The spaces U and V in the above result coincide with those in [12] in the convex
case.

The idea of partial smoothness is also closely related to the notion of an identifiable
surface [26] of a convex set. Given a closed convex set S ⊂ X, we call a connected
manifold M ⊂ S a (class-C2) identifiable surface if either M is open or for every point
x0 ∈ M and every vector w0 ∈ riNS(x0) there exists an open set V ⊂ X containing
x0 and a smooth function F : V → Rm (where m is the codimension of M) such that
∇F is everywhere surjective, M ∩ V = F−1(0), ∇F (x)∗Rm

+ ⊂ NS(x) for all points
x ∈ M∩ V , and w0 ∈ ∇F (x0)∗Rm

++ (where Rm
++ = intRm

+ ).
Theorem 6.3 (identifiable surfaces). Consider a closed convex set S ⊂ X and a

connected manifold M ⊂ S. Then S is partly smooth relative to M if and only if M
is an identifiable surface.

Proof. The case when M is open is immediate, so assume M has codimension
m > 0.
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Suppose first that M is an identifiable surface. We need to check the conditions
of Proposition 2.11 (partly smooth sets). Condition (i) is immediate, and condition
(ii) holds since closed convex sets are everywhere regular. At any point x0 ∈ M we
can choose a vector w0, a neighborhood V , and a function F as in the definition of
an identifiable surface, and then we have

NM(x0) = R(∇F (x0)∗) = ∇F (x0)∗(Rm
+ −Rm

+ ) ⊂ NS(x0) −NS(x0),

so condition (iii) holds.
It remains to show that the normal cone mapping NS is inner semicontinuous at

x0 relative to M. Since NS(x0) is the closure of its relative interior, it suffices to show,
for our arbitrary choice w0 ∈ riNS(x0), that for any sequence {xr} ⊂ M converging to
x0, there exist vectors wr ∈ NS(xr) converging to w0. But since w0 ∈ ∇F (x0)∗Rm

++,
there exists a vector µ ∈ Rm

++ such that w0 = ∇F (x0)∗µ, and then the vector

wr = ∇F (xr)∗µ ∈ ∇F (xr)∗Rm
+

lies in NS(xr) for all large r and converges to w0, as required.
Conversely, suppose that the set S is partly smooth relative to the manifold M,

and consider a point x0 ∈ M and a vector w0 ∈ riNS(x0). By Proposition 2.10 (local
normal sharpness) we know NM(x) = NS(x) − NS(x) for all points x ∈ M close to
x0, and hence the closed convex cone NS(x) has the same dimension as the subspace
NM(x), namely m. Thus there exist linearly independent vectors w1, w2, . . . , wm ∈
riNS(x0) such that

w0 ∈ ri (conv {w1, w2, . . . , wm}).

Since M is a manifold of codimension m around x0, there exists an open set
V ⊂ X containing x0 and a smooth function G : V → Rm such that ∇G is everywhere
surjective and M∩ V = F−1(0). Hence for all points x ∈ M∩ V we have NM(x) =
R(∇G(x)∗). Since ∇G(x)∗ is injective for all points x ∈ V , there exists a basis
{a1, a2, . . . , am} of Rm satisfying

∇G(x0)∗aj = wj for j = 1, 2, . . . ,m.

Now the function F : V → Rm defined by

(F (x))j = 〈aj , G(x)〉 for x ∈ V, j = 1, 2, . . . ,m,

satisfies F−1(0) = G−1(0) = M∩ V and

∇F (x)∗ej = ∇G(x)∗aj for x ∈ V, j = 1, 2, . . . ,m

(where ej ∈ Rm denotes the jth unit vector). Thus ∇F (x)∗ is injective, and so ∇F (x)
is surjective for all points x ∈ V . Also,

∇F (x0)∗ej = ∇G(x0)∗aj = wj for j = 1, 2, . . . ,m,

so w0 ∈ ∇F (x0)∗Rm
++, as required, and furthermore,

NM(x) = R(∇F (x)∗) for x ∈ M∩ V.
It remains to prove ∇F (x)∗Rm

+ ⊂ NS(x) for all points x ∈ M close to x0. If this
fails, then for some index j there is a sequence {xr} ⊂ M approaching x0 such that

∇F (xr)∗ej �∈ NS(xr) for all r.



ACTIVE SETS, NONSMOOTHNESS, AND SENSITIVITY 723

Both the left- and right-hand sides above are contained in the subspace NM(xr), so
by separating in this subspace, there exists a unit vector yr ∈ NM(xr) satisfying

〈yr,∇F (xr)∗ej〉 < 〈yr, v〉 for all v ∈ NS(xr), r = 1, 2, . . . .

We can assume, after taking a subsequence, that the sequence {yr} converges to some
unit vector y0 ∈ NM(x0), and since wj ∈ riNS(x0), there exists a real δ > 0 such that
wj − δy0 ∈ NS(x0). Now, since the mapping NS is continuous, there exist vectors
vr ∈ NS(xr) approaching wj − δy0. But we know

〈yr,∇F (xr)∗ej〉 < 〈yr, vr〉 for r = 1, 2, . . . ,

so taking the limit as r → ∞ gives the contradiction

〈y0, wj〉 ≤ 〈y0, wj − δy0〉.

7. Example. The idea of a strong critical point decouples behavior in the active
manifold from behavior in directions normal to it. Restricting to the active manifold,
a strong critical point is a strong local minimizer, whereas, as we saw in the previous
section, any point in the active manifold is a sharp local minimizer with respect to
perturbations in normal directions.

One might hope that these properties suffice to ensure that strong critical points
of reasonable functions are local minimizers. Unfortunately, this is not the case. We
present in this section a locally Lipschitz, everywhere regular function f : R2 → R,
partly smooth relative to two distinct manifolds containing the origin. Relative to
one manifold, the origin is a strong critical point. However, f restricted to the other
manifold has a strong local maximum at the origin.

We partition R2 into four disjoint sets

S1 = {(x, y) : y ≤ 0},
S2 = {(x, y) : 0 < y < 2x2},
S3 = {(x, y) : 0 < 2x2 ≤ y ≤ 4x2},
S4 = {(x, y) : 4x2 < y},

and we define f by

f(x, y) =




x2 − y on S1,√
x4 + 2x2y − y2 on S2,

3x2 − y on S3,

y − 5x2 on S4.

It is easy to check that f is everywhere continuous and in fact is continuously differ-
entiable except on the manifolds

M1 = {(x, y) : y = 0},
M2 = {(x, y) : y = 4x2}.
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A calculation shows that ∂̂f(x, y) is given by


{(2x,−1)} on intS1,[
(2x,−1), (2x, 1)

]
on M1,{(

1 + 2
(

y
x2

)
−
(

y
x2

)2)−1/2(
2x

(
1 +

(
y
x2

))
, 1 − y

x2

)}
on S2,

{(6x,−1)} on S3 \M2,[
(6x,−1), (−10x, 1)

]
on M2,

{(−10x, 1)} on S4,

where [u, v] denotes the line segment between the points u, v ∈ R2. The calculation at
every point except the origin is routine, since f is either continuously differentiable at
such points or can be written locally as the maximum of two continuously differentiable
functions. At the origin we use the inequality

|3x2 − y| − 2x2 ≤ f(x, y) ≤ |3x2 − y| for all x, y.

The map

β ∈ [0, 2] 	→ (1 + 2β − β2)−1/2(1 − β)

has range the interval [−1, 1], so for x ≥ 0,

∇f(x, y) ∈ [2x, 6x] × [−1, 1] on S2,(7.1)

and a similar relation holds if x ≤ 0. Hence f is everywhere locally Lipschitz, even
around the origin.

We next claim ∂f = ∂̂f everywhere, so f is everywhere regular. As above, this is
routine everywhere except at the origin, where it follows using (7.1).

Now it is straightforward to check that the function f is partly smooth relative to
both the manifolds M1 and M2, and that the origin is a strong critical point relative
to M1. But

f(x, y) = −x2 on M2,

so the origin is not a local minimizer. In summary, although strong criticality is
significant for sensitivity analysis, it is not a sufficient condition for optimality.

Acknowledgment. Thanks to Henry Wolkowicz for suggesting the connection
between partly smooth sets and identifiable surfaces.
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