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APPROXIMATING SUBDIFFERENTIALS BY RANDOM
SAMPLING OF GRADIENTS

J. V. BURKE, A. S. LEWIS, and M. L. OVERTON

Many interesting real functions on Euclidean space are differentiable almost everywhere. All
Lipschitz functions have this property, but so, for example, does the spectral abscissa of a matrix (a
non-Lipschitz function). In practice, the gradient is often easy to compute. We investigate to what
extent we can approximate the Clarke subdifferential of such a function at some point by calculating
the convex hull of some gradients sampled at random nearby points.

1. Introduction. Over the last quarter century there has been remarkable progress in
the theoretical analysis of nonsmooth functions f � Rn → R, primarily motivated by opti-
mization. Clarke’s introduction of his generalized gradient in 1973 (see Clarke (1990))
pioneered a rapid development, recently presented in detail in Clarke et al. (1998) and
Rockafellar and Wets (1998).
Computational methods for nonsmooth optimization have also developed rapidly, with

many interesting applications. For a recent look, see Outrata et al. (1998), which focuses on
mechanical applications, or Makela and Neittaanmaki (1992), which concentrates on optimal
control. Nonsmooth optimization algorithms such as the subgradient methods outlined in
Shor (1985), or the bundle methods described in Balinski and Wolfe (1975) and Lemaréchal
(1989), typically assume a locally Lipschitz function, and at each iterate xk compute only
one element of the generalized gradient (or subdifferential). Even for convex functions
it was recognized very early that an exact computation of the entire subdifferential was
generally impractical (Wolfe 1975). Good overviews are Kiwiel (1985) and Hiriart-Urruty
and Lemaréchal (1993).
In certain specially structured problems (such as nonlinear minimax), algorithms that can

exploit the structure of the entire subdifferential are possible. An interesting example is a
remarkable early paper on eigenvalue optimization (Cullum et al. 1975) that uses the special
structure of the function f to compute an approximation of the entire subdifferential, an
avenue pursued further by Overton et al. (see Lewis and Overton 1996 for a survey). In
general-purpose nonsmooth optimization algorithms, however, the subdifferential set really
only appears as a theoretical tool.
So, to what extent can we really “do” general nonsmooth analysis? Without assuming

any particular structure for our function f , what might a general purpose algorithm learn
about the subdifferential? Our aim in this paper is to approach these questions via random
sampling of gradients at nearby points. Stochastic gradient algorithms have been analyzed
in Ermoliev (1982) and Shor (1985), for example, but again the aim was to analyze algo-
rithms working with a single subgradient at each iteration rather than to approximate the
subdifferential.
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Our starting point is to assume our function f is differentiable almost everywhere. By
Rademacher’s theorem, this is true for all locally Lipschitz functions, but there are interest-
ing non-Lipschitz functions that have this property, including all “directionally Lipschitz”
functions (in the sense of Rockafellar and Wets 1998)—see Borwein et al. (2001) and also
the spectral radius and spectral abscissa of a complex square matrix (respectively the largest
modulus and real part of the eigenvalues), regarded as functions of the real and imaginary
parts of its entries. Indeed, it is hard to imagine a continuous function arising in a concrete
setting that is not differentiable almost everywhere.
Our philosophy is to suppose that, wherever the function f is differentiable, the gradi-

ent is cheap to compute. For example, the spectral abscissa is differentiable at any matrix
having a unique eigenvalue whose real part equals the spectral abscissa: the gradient is just
vu∗, where u and v are corresponding right and left eigenvectors with u∗v= 1 (and further-
more, many such gradients can be computed in parallel). On the other hand, computing the
subdifferential of the spectral abscissa at a general matrix is much harder, requiring some
knowledge of the Jordan form of the underlying matrix (Burke and Overton 2001). Even
for the much easier example of the maximum eigenvalue function on the space of Hermi-
tian matrices, this convex function is easy to differentiate whenever the maximum eigen-
value has multiplicity one, but calculating the subdifferential in general requires a complete
orthonormal set of corresponding eigenvectors.
What can we say in general? If the function f is locally Lipschitz around the point x̄ ∈Rn

then the Clarke subdifferential is given by

�Cf 
x̄�= conv
{
lim
r
f 
xr�� xr → x̄� xr ∈Q

}
�(1.1)

where conv denotes the convex hull operation and Q is any full-measure subset of a neigh-
bourhood of x̄ consisting of points where f is differentiable (see Clarke 1990: For the most
part we follow the notation in the book of Rockafellar and Wets (1998), where �C is written
�̄). It is easy to see, in this Lipschitz setting, the relationship

�Cf 
x̄�=
⋂
�>0

I��(1.2)

where
I� = cl conv
f 
Q∩ 
x̄+�B����

and B denotes the open unit ball in Rn. This suggests that if we sample random points
x1� x2� � � � � xk ∈ Rn near x̄ and consider the set

Ck = conv�f 
xi�� i = 1�2� � � � � k��(1.3)

then we might hope that Ck approximates �Cf 
x̄�.
It is reasonably straightforward to see that this approximation does indeed work, in a

suitable stochastic sense, for locally Lipschitz functions. In the non-Lipschitz case too there
are some positive results. However, we present some simple non-Lipschitz examples that
reveal the difficulties of approximating the subdifferential in this manner.
In outline, we first show that the set Ck converges almost surely to the set I� defined

above. In the Lipschitz case this proves the desired approximation, by Equation (1.2). In
the non-Lipschitz case we show that, under reasonable conditions, the set I� is still an outer
approximation to the Clarke subdifferential, but examples show that it may be much too
large.
The theory relating the Clarke subdifferential with limits of convex combinations of

gradients at nearby points can also be considered in the light of “mollifiers” (see Rockafellar
and Wets 1998, Theorem 9.67, Equation 9(38), and p. 420 for details in the Lipschitz case
and further references). Our approach here does not use mollifier theory.
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2. The sampling framework. We consider a continuous function f � Rn → R that is
differentiable almost everywhere. The gradient map f � Rn →Rn is Lebesgue measurable.
To see this, fix any direction w ∈ Rn and consider the sequence of continuous functions

x ∈ Rn �→ r
f 
x+ r−1w�−f 
x��� for r = 1�2� � � � �

Then the lim sup of this sequence of functions is measurable and agrees with wTf
x�
almost everywhere. (In fact, to see this we just need to assume f is measurable.)
Given real � > 0 (the sampling radius) and a point x̄ ∈ Rn, we fix a sample space

� = x̄+�B with an associated probability measure, absolutely continuous with respect to
Lebesgue measure � on Rn. We assume the corresponding density �, is strictly positive
almost everywhere on �. (We refer to Chung 1974 or Kingman and Taylor 1966, for
example, for probabilistic terminology.) Thus � is an integrable function satisfying

∫
�
� d�=

1 and � > 0 a.e. For example, we could choose � ≡ �
��−1.
With this probability space, we now consider a sequence of independent trials with out-

comes xi ∈� for i = 1�2� � � � . Our assumptions on the density � guarantee that for each
trial the outcome xi lies outside any fixed set of Lebesgue measure zero almost surely, and
that xi lies in any fixed nonempty open subset of � with a strictly positive probability that
is independent of the trial number i.
From the outcomes xi we construct a sequence of gradients Gi = f
xi�. Since f is

measurable, G1�G2� � � � is a sequence of independent, identically distributed random vec-
tors. Each random vector Gi corresponds to an induced probability measure: The measure
of any Borel set A⊂ Rn is just

∫

f �−1
A�

� d��

Corresponding to this sequence of random vectors, we define an increasing sequence of
closed convex random sets

Ck = conv�G1�G2� � � � �Gk� 
k = 1�2� � � � ��

Our aim is to compare Ck with the Clarke subdifferential of f at x̄. We call k the sample
size.
We will not need any general discussion of random sets. The events we consider are

measurable subsets of the infinite product space ��, typically of the form

�
G1�G2� � � � � ∈ S�
for some closed set S: the probability of such an event is just its measure with respect to
the product measure associated with the density �.
Under reasonable conditions, the sets Ck converge to the closed convex hull of the image

of the neighbourhood x̄+�B under the gradient map f . This is the content of the following
result. Thus a central question of this paper is how well this convex hull captures the Clarke
subdifferential of f at x̄.

Theorem 2.1 (Limiting Approximation). Consider a continuous function f � Rn →R
that is continuously differentiable on an open set Q ⊂ x̄+�B of full measure. Then

cl
�⋃
k=1

Ck = cl convf
Q� almost surely�

and for any direction w ∈ Rn we have

maxwTCk ↑ supwTf
Q� as k→ �, almost surely�
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Proof. Suppose a vector g lies in f
Q�. Given any real # > 0, since f is continuous
on Q, the set

�x ∈Q� �f
x�−g�< #�
is open and nonempty. Hence for each index i we have

pr��Gi−g�< #� > 0�

so
g ∈⋃

k

Ck+ #B almost surely�

Since # was arbitrary, we deduce

g ∈ cl
⋃
k

Ck almost surely�

Now choose a countable dense subset �g1� g2� � � � � of f
Q�, and observe, by the above,

gr ∈ cl
⋃
k

Ck 
r = 1�2� � � � � almost surely�

Then taking closed convex hulls shows

cl convf
Q�⊂ cl
⋃
k

Ck almost surely�

On the other hand, since Q has full measure, each xi lies in Q almost surely, so Gi lies
in cl convf
Q� almost surely. Hence, each set Ck is contained in cl convf
Q� almost
surely, so we have

cl convf
Q�⊃⋃
k

Ck almost surely�

and the first equation follows by taking closures. The final claim then follows easily. �

(The continuity assumption on f is in fact superfluous, since the other assumptions imply
that f is measurable.)
Our assumption on the continuous differentiability of f is stronger than we need for

most of our paper. However, it seems reasonable in practice. For example, since the matri-
ces with distinct eigenvalues form an open set of full measure, this assumption holds for
the spectral abscissa. Corollary 5.11 provides a variant of the result where the continuous
differentiability of f is dropped in favour of local Lipschitzness.

3. Sampling gradients: The Lipschitz case. Let us suppose first that the function f is
locally Lipschitz around the point x̄. In this case the analysis is reasonably straightforward.

Theorem 3.1 (Inner Approximation). If f is locally Lipschitz around x̄ then for any
real # > 0 we have, for any sufficiently small sampling radius,

Ck ⊂ �Cf 
x̄�+ #B for k = 1�2� � � � �almost surely�

and so

cl
�⋃
k=1

Ck ⊂ �Cf 
x̄�+ # clB almost surely�

Proof. The Clarke subdifferential is upper semicontinuous at x̄, so there exists a radius
� > 0 such that

�Cf 
x̄+�B�⊂ �Cf 
x̄�+ #B�
However,Ck is almost surely contained in the left-hand side. The result therefore follows. �
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Example 7.1 (overestimating subderivatives) shows how this result can fail for non-
Lipschitz functions.
For the opposite inclusion we use the following lemma. We define the regular subderiva-

tive (or Clarke directional derivative) at x̄ as the finite sublinear function d̂f 
x̄�� Rn → R
given by

d̂f 
x̄�
w�=maxwT�Cf 
x̄��

Lemma 3.2. For all real # > 0, directions w ∈ Rn, and indices i = 1�2� � � � , we have

pr
{
GT
i w > d̂f 
x̄�
w�− #

}
> 0�

Proof. By our assumptions on the probability density �, it suffices to show that the
measurable set

�x ∈ x̄+�B� f 
x�Tw > d̂f 
x̄�
w�− #�
has strictly positive Lebesgue measure. Suppose this fails, so f
x�Tw ≤ d̂f 
x̄�
w�− #
for all points x in Q, a subset of x̄+ �B of full measure. Using our definition of the
Clarke subdifferential (1.1), we can choose a sequence �xr� in Q approaching x̄ such that
f
xr�Tw→ d̂f 
x̄�
w�, and this is a contradiction. �

Theorem 3.3 (Outer Approximation). If f is locally Lipschitz around x̄, then for any
sufficiently small sampling radius and any real # > 0, we have

pr��Cf 
x̄�⊂ Ck+ #B�→ 1 as k→ ��
Proof. Denote the unit sphere in Rn by S and the Lipschitz constant of f on x̄+�B

by L, and choose points w1�w2� � � � �wm in S such that

S ⊂
m⋃
j=1

(
wj +

#

3L
B

)
�

By Lemma 3.2 we know, for each index i = 1�2� � � � and j = 1�2� � � � �m, the probability

pr
{
GT
i wj > d̂f 
x̄�
wj�− #/3

}
is strictly positive, and independent of i. Hence, for each j we have

pr
{
max
1≤i≤k

GT
i wj > d̂f 
x̄�
wj�− #/3

}
→ 1 as k→ ��

so
pr
{
max
1≤i≤k

GT
i wj > d̂f 
x̄�
wj�− #/3 for each j

}
→ 1 as k→ ��

or in other words

pr
{
maxwTj Ck > d̂f 
x̄�
wj�− #/3 for each j

}→ 1 as k→ ��
Now notice that the functions w ∈ Rn �→ maxwTCk and d̂f 
x̄�
·� both have Lipschitz
constant L, so by our choice of the wj’s, the inequalities

maxwTj Ck > d̂f 
x̄�
wj�− #/3 for j = 1�2� � � � �m

imply
maxwTCk > d̂f 
x̄�
w�− # for all w ∈ S�

which in turn implies
�Cf 
x̄�⊂ Ck+ #B�

The result now follows. �
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Such results clearly may fail for non-Lipschitz functions since the set Ck is always bounded
whereas the subdifferential may be unbounded.

Corollary 3.4. If f is locally Lipschitz around x̄ then for any sufficiently small sam-
pling radius we have

�Cf 
x̄�⊂ cl
�⋃
k=1

Ck almost surely�

Proof. By Theorem 3.3, �Cf 
x̄� ⊂ #B+⋃
k Ck, almost surely, for any real # > 0, and

the result follows. �

We extend this result in Theorem 5.13.
In summary, in the locally Lipschitz case, Theorem 3.1 (inner approximation) says that

providing we sample gradients close to x̄, the sets Ck will not overestimate the subdiffer-
ential �Cf 
x̄� too badly, while Theorem 3.3 (outer approximation) says that, as we increase
our sample size, the probability of underestimating the subdifferential shrinks to zero.

4. Non-Lipschitz analysis. The variational analysis of non-Lipschitz functions is more
subtle than the Lipschitz case. In this section we summarize the notions we use. At the
risk of slight notational extravagance, we introduce a new subdifferential-like object, which
we call the “convex-stable subdifferential.” We make no attempt to study its properties as a
subdifferential but rather observe how it arises naturally in our gradient-sampling framework
and how it compares with the Clarke subdifferential. We refer throughout to Rockafellar
and Wets (1998).
We suppose, as before, that the function f � Rn → R is continuous. The regular subdif-

ferential of f at a point x ∈ Rn is the set of vectors y ∈ Rn satisfying

f 
x+ z�≥ f 
x�+yT z+o
z� for small z ∈ Rn�

We denote this closed convex set �̂f 
x�, and we define the subdifferential of f at x by

�f 
x�= ⋂
�>0

cl
(
�̂f 
x+�B�)�

Thus y lies in �f 
x� if and only if there are sequences xr → x and yr → y with yr ∈ �̂f 
xr�
for all r . This object has become fundamental in modern variational analysis. When
f is locally Lipschitz we have �Cf 
x� = conv �f 
x� (see Rockafellar and Wets 1998,
Theorem 9.61).
Part of the subtlety of non-Lipschitz analysis arises from horizon behaviour. The horizon

cone of a nonempty set C ⊂ Rn is the closed cone

C� =
{
lim
r
tryr � tr ↓ 0� yr ∈ C

}
�

and we define �� = �0�. Thus a set is bounded exactly when its horizon cone is �0�. We
call a cone K ⊂Rn pointed when K∩−K = �0�. The horizon subdifferential of a continuous
function f � Rn → R at a point x ∈ Rn is the closed cone

��f 
x�=
{
lim
r
tryr � tr ↓ 0� yr ∈ �̂f 
xr�� xr → x

}
∪ �0��

It is easy to check ��f 
x� = �0� if f is locally Lipschitz. The polar cone of the horizon
subdifferential is the closed cone

��f 
x�∗ = �w� wTy ≤ 0 for all y ∈ ��f 
x���



APPROXIMATING SUBDIFFERENTIALS 573

and the regular subderivative of f at x is the sublinear function d̂f 
x�� Rn → .−��+�/
defined by

d̂f 
x�
w�=
{
supwT�f 
x� if w ∈ ��f 
x�∗�
+� otherwise�

(Rockafellar and Wets 1998, Ex. 8.23). We can then define the Clarke subdifferential of f
at x as the closed convex set

�Cf 
x�=
{
y� wTy ≤ d̂f 
x�
w� for all w ∈ Rn�

(Rockafellar and Wets 1998, Theorem 8.49). These definitions agree with our previous
notions in the Lipschitz case. We call the point x Clarke-critical if 0 ∈ �Cf 
x�.
Since we interpret sup�=−�, we see from our definitions that �f 
x�=� if and only if

�Cf 
x�=� (cf. Rockafellar and Wets 1998, Theorem 8.49). Assuming �f 
x� is nonempty,
we call f regular at x if

�f 
x�= �̂f 
x� �= � and �̂f 
x�� = ��f 
x�

(Rockafellar and Wets 1998, Corollary 8.11). In the next result we collect some useful
representations of the Clarke subdifferential.

Proposition 4.1 (Clarke subdifferential). For any continuous function f � Rn →R,
the Clarke subdifferential at x has the following representations:

(i) �Cf 
x�= cl
conv �f 
x�+ conv ��f 
x��;
(ii) �Cf 
x�= conv �f 
x�+ conv ��f 
x� providing ��f 
x� is pointed;
(iii) �Cf 
x�= �f 
x� providing f is regular at x.

Proof. (i) This result appears for example in Mordukhovich (1988, p. 58, Proposi-
tion 2.6): for convenience, we outline a short proof. If �f 
x� = �, then both sides of the
equation are empty. Hence, we can assume �f 
x� �= �, so both sides are nonempty closed
convex sets. It suffices to show the corresponding support functions coincide. On the left-
hand side we obtain d̂f 
x�
w� and on the right,

supwT�f 
x�+ supwT��f 
x��

These two functions of the vector w clearly coincide by our definition of the regular
subderivative. Indeed, for all w ∈ ��f 
x�∗ the second term in the above sum is zero, while
for all other w it is +�.

(ii) See Rockafellar and Wets (1998, Theorem 8.49).
(iii) This part follows easily from part (i) (cf. Rockafellar and Wets 1998, p. 337). �

We remark that continuity of f in the above results could in fact be relaxed to lower
semicontinuity.
An instructive example is the function

f 
x�=
{
0 if x < 0�
−√

x if x ≥ 0�
(4.2)

An easy calculation shows

�̂f 
0�= �� �f 
0�= �0�� ��f 
0�= R− = �Cf 
0��

Note f is not regular at 0, and �Cf 
0� �= cl conv �f 
0�.
The following notion of a convex-stable subdifferential will be helpful later: We define

�̃f 
x�= ⋂
�>0

cl conv
�̂f 
x+�B���
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For example, for the function f above we have �̃f 
0�=R−. The next result shows that this
subdifferential is at least as large as the Clarke subdifferential.

Proposition 4.3 (Clarke Versus Convex-Stable Subdifferential). If the function
f � Rn → R is continuous, then at any point x ∈ Rn we have

�̃f 
x�⊃ �Cf 
x��

Proof. For any real � > 0 we need to show

cl conv
�̂f 
x+�B��⊃ �Cf 
x��

Observe

�f 
x�⊂ cl conv
�̂f 
x+�B�� and ��f 
x�⊂ 
cl conv
�̂f 
x+�B�����

We deduce

conv �f 
x�+ conv ��f 
x� ⊂ cl conv
�̂f 
x+�B��+ 
cl conv
�̂f 
x+�B����
= cl conv
�̂f 
x+�B���

by Rockafellar and Wets (1998, Theorem 3.6). The desired inclusion now follows by taking
closures and applying Proposition 4.1(i). �

Example 7.2 shows that the inclusion can be strict.
The next result shows that limits of convex combinations of “convex-stable subgradients”

at nearby points must themselves be convex-stable subgradients.

Proposition 4.4 (Stabilizing Subdifferentials). If the function f � Rn → R is con-
tinuous, then at any point x ∈ Rn we have

�̃f 
x� = ⋂
�>0

cl conv
�̂f 
x+�B��

= ⋂
�>0

cl conv
�f 
x+�B��

= ⋂
�>0

cl conv
�Cf 
x+�B��

= ⋂
�>0

cl conv
�̃f 
x+�B���

Proof. Since each expression contains the previous one (using the previous result), it
suffices to show that the last expression is contained in �̃f 
x�. For this, we simply observe
the inclusion

cl conv
�̃f 
x+�′B��⊂ cl conv
�̂f 
x+�B��
whenever 0< �′ < �. �

Finally we show, under a horizon condition, that limits of convex combinations of Clarke
subgradients (and so, in particular, of gradients) at nearby points are themselves Clarke
subgradients.

Theorem 4.5 (Stability of Clarke Subdifferential). For any continuous function
f � Rn → R and any point x ∈ Rn, if ��f 
x� is pointed then

�̃f 
x�= �Cf 
x��
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Proof. By Proposition 4.3, we need to show that if

v ∈ ⋂
�>0

cl conv
�̂f 
x+�B���

then v ∈ �Cf 
x�. Assume the above condition holds. Then by the theorem of Carathéodory,
for each integer j = 0�1� � � � � n there exist sequences �uij� and �v

i
j� in R

n and ��ij� in R+
(indexed by i ∈ N) satisfying

n∑
j=0

�ij = 1 for all i�

lim
i→�

uij = x for all j�

vij ∈ �̂f 
uij� for all i� j� and

lim
i→�

n∑
j=0

�ijv
i
j = v�

We claim that for each index j the sequence ��ijv
i
j� is bounded. If not, there is an index

j ′ and a subsequence I ⊂ N such that

�ij ′
∥∥vij ′∥∥=max

j
�ij
∥∥vij∥∥→ +� as i→ � in I �

Call the left-hand side 0i. Since for each j the sequence �
�ij/0
i�vij� is bounded, we can

assume (taking a further subsequence) that it converges to some vector vj ∈ ��f 
x� as
i→ � in I . Now notice

�vj ′ � = 1 and
n∑
j=0

vj = 0�

However, since ��f 
x� is pointed, so is its convex hull (Rockafellar and Wets 1998,
Theorem 8.49), and this is a contradiction.
Hence, as we claimed, for each index j the sequence ��ijv

i
j� is bounded, so we can

assume (taking a subsequence) that it converges to some vector wj ∈ Rn and furthermore
that the bounded scalar sequence ��ij� converges to some scalar �j ∈ R+. We then have

n∑
j=0

wj = v and
n∑
j=0

�j = 1�

Define a (nonempty) index set J = �j� �j > 0�. For j ∈ J we have

�−1
j wj = lim

i→�
vij ∈ �f 
x��

whereas for j �∈ J we have
wj = lim

i→�
�ijv

i
j ∈ ��f 
x��

Hence

v = ∑
j∈J
�j
(
�−1
j wj

)+∑
j �∈J
wj

∈ conv �f 
x�+ conv ��f 
x�

= �Cf 
x��

by Proposition 4.1(ii). �

Functions with a pointed horizon subdifferential at a point are called directionally Lip-
schitz there (Rockafellar and Wets 1998).
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5. Sampling gradients: The non-Lipschitz case. We now return to our gradient-
sampling framework in the case where the continuous function f � Rn → R may not be
Lipschitz but is nonetheless differentiable almost everywhere. We shall see that this case is
more problematic, but we begin with some positive results.
Given the convex nature of our proposed approximation (1.3), we hope to approximate

the Clarke subdifferential �Cf 
x̄�. Our approximation is motivated by the relationship (1.2).
To what extent does this relationship still hold if f is not Lipschitz? The result below,
which is essentially a slight reworking of Clarke’s (1990, p. 63) original argument, states a
one-sided inclusion. It assumes f is absolutely continuous on lines near x̄: that is, for any
points u and v near x̄, the function

t ∈ .0�1/ �→ f 
tu+ 
1− t�v�(5.1)

is absolutely continuous. This is automatic for locally Lipschitz functions. It also holds
for the spectral radius and abscissa: The space of matrices stratifies into submanifolds
(according to Jordan structure) on each of which these functions are analytic (Arnold 1971),
which shows that the function (5.1) is piecewise differentiable with piecewise monotonic
derivative, and hence absolutely continuous (Stromberg 1981, 4.50).

Theorem 5.2 (Covering Gradients). Suppose, near the point x̄ ∈ Rn, the function
f � Rn → R is continuous, absolutely continuous on lines, and differentiable almost every-
where, and Q is a full-measure subset of a neighbourhood of x̄ consisting of points where
f is differentiable. Then the Clarke and convex-stable subdifferentials satisfy

�Cf 
x̄�⊂ �̃f 
x̄�= ⋂
�>0

cl conv
f 
Q∩ 
x̄+�B����

Proof. We first show, for any real � > 0,

�̂f 
x̄�⊂ cl conv
f 
Q∩ 
x̄+�B����(5.3)

To see this, suppose a vector y ∈ Rn does not lie in the right-hand side, so by separation
there is a vector z ∈ Rn and real k such that yT z > k but

f
x�T z≤ k for all x ∈Q∩ 
x̄+�B��(5.4)

If y ∈ �̂f 
x̄� then for small real t we have

f 
x̄+ tz�≥ f 
x̄�+yT tz+o
t��
so there exists t ∈ 
0� �/
2�z��� such that

f 
x̄+ tz� > f
x̄�+kt�
By continuity, for all points w ∈ Rn close to x̄ we have

f 
w+ tz� > f
w�+kt�(5.5)

By Fubini’s theorem (Stromberg 1981, 6.124), almost all w close to x̄ satisfy

w+ sz ∈Q for almost all s ∈ .0� t/�(5.6)

Therefore, we can choose w in x̄+ 
�/2�B satisfying both (5.5) and (5.6).
Now consider the function g� .0�1/→R defined by g
s�= f 
w+ sz�. By assumption, g

is absolutely continuous and for almost all s ∈ .0� t/ we have

g′
s�= f
w+ sz�T z≤ k�
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by (5.6) and (5.4). By the Fundamental Theorem of Calculus (Stromberg 1981, 6.85) we
deduce g
t� ≤ g
0�+kt, which contradicts inequality (5.5). Hence y �∈ �̂f 
x̄�, so we have
proved the inclusion (5.3).
We now apply this inclusion at points in a neighbourhood of x̄ and for suitable � to obtain

cl conv
�̂f 
x̄+�′′B��⊂ cl conv
f 
Q∩ 
x̄+�′B���⊂ cl conv
�̂f 
x̄+�′B��

whenever 0 < �′′ < �′, and the equality in the main result follows. The inclusion for the
Clarke subdifferential is a consequence of Proposition 4.3 (Clarke versus convex-stable
subdifferential). �

In passing, we note the analogy between the right-hand side of the inclusion we have
just proved and Fillipov’s notion of a generalized solution for differential equations with
discontinuous right-hand sides (Filippov 1988).
Returning to the sampling scheme described in §2, we can now generalize Lemma 3.2.

Lemma 5.7. If the function f satisfies the assumptions of Theorem 5.2, then for all real
# > 0, directions w ∈ Rn, and indices i = 1�2� � � � , we have

pr�wTGi > d̂f 
x̄�
w�− #� > 0�

Proof. It suffices to show that the measurable set

�x ∈ x̄+�B� wTf 
x� > d̂f 
x̄�
w�− #�
has strictly positive Lebesgue measure. Suppose this fails, and define Q to be the set of
points x ∈ x̄+�B where f is differentiable and

wTf
x�≤ d̂f 
x̄�
w�− #�
Theorem 5.2 shows �Cf 
x̄�⊂ cl convf
Q�. Hence

d̂f 
x̄�
w�≤ supwTf
Q�≤ d̂f 
x̄�
w�− #�
which is a contradiction. �

We deduce the following non-Lipschitz version of Theorem 3.3 (outer approximation),
stating, loosely speaking, that our approximation to the subdifferential gives a good upper
approximation to the regular subderivative.

Theorem 5.8 (Upper Approximation). Suppose, near the point x̄ ∈ Rn, the function
f � Rn → R is continuous, absolutely continuous on lines, and differentiable almost every-
where. Then for any direction w ∈ Rn we have

lim
k→�

maxwTCk ≥ d̂f 
x̄�
w� almost surely�

Proof. This follows from Lemma 5.7. �

Example 7.1 shows that the inequality in the above result may be strict.
With more care we can gain a little more insight into this result. The following theorem

parallels Theorem 2.1 (limiting approximation).

Theorem 5.9 (Directional Approximation). Suppose, near a point x̄ ∈Rn, the func-
tion f � Rn → R is continuous, absolutely continuous on lines, and differentiable on a full
measure subset Q ⊂ Rn. Then, for any direction w ∈ Rn and sufficiently small sampling
radius � > 0,

maxwTCk ↑ supwTf
Q∩ 
x̄+�B�� as k→ �� almost surely�
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Proof. With probability one, each xi ∈ Q, so Gi ∈ cl convf
Q∩ 
x̄+ �B��. Hence
each set Ck is almost surely contained in cl convf
Q∩ 
x̄+�B��, so the right-hand side
is almost surely an upper bound.
We now claim, for all real # > 0 and indices i = 1�2� � � � ,

pr�wTGi > supwTf
Q∩ 
x̄+�B��− #� > 0�(5.10)

To see this, choose a point x̃ ∈Q∩ 
x̄+�B� satisfying

wTf
x̃� > supwTf
Q∩ 
x̄+�B��− #

2
�

Let �̃= �−�x̃− x̄�> 0. Then, as in the proof of Lemma 5.7, the measurable set
{
x ∈ x̃+ �̃B� wTf 
x� > wTf
x̃�− #

2

}

has strictly positive Lebesgue measure, and our claim (5.10) follows. This proves the
result. �

In the Lipschitz case this gives a variant of Theorem 2.1 (limiting approximation).

Corollary 5.11 (Lipschitz Approximation). Suppose the function f is locally Lip-
schitz around x̄ and differentiable on a full-measure subset Q of a neighbourhood of x̄.
Then for any sufficiently small sampling radius � > 0,

cl
�⋃
k=1

Ck = cl convf
Q∩ 
x̄+�B�� almost surely�

Proof. Denote the left- and right-hand side sets by C and D respectively. Clearly these
closed convex sets satisfy C ⊂D, almost surely. By Theorem 5.9 (directional approximation)
we know the support functions agree at any given vector in Rn, almost surely. Hence, in
fact they agree on any given countable dense subset of Rn, almost surely. However, D is
bounded, whence so is C, so both support functions are continuous. Hence, the support
functions are identical, almost surely, and the result follows. �

A natural test for optimality, in our gradient sampling scheme, is to ask the question

0 ∈ Ck?(5.12)

The next result relates this test to finding a Clarke-critical point.

Theorem 5.13 (Detecting Critical Points). Suppose, on a neighbourhood of x̄,
(i) f is locally Lipschitz, or
(ii) f is absolutely continuous on lines and continuously differentiable on a full-measure

open subset.
Then

�Cf 
x̄�⊂ cl
�⋃
k=1

Ck almost surely�

Consequently, dist
0�Ck�→ 0 almost surely whenever x̄ is a Clarke-critical point of f , and
furthermore

0 ∈ int �Cf 
x̄�⇒ 0 ∈ intCk eventually, almost surely�

Proof. Under either assumption we know

cl
�⋃
k=1

Ck = cl convf
Q� almost surely�
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where Q is a full-measure subset of a neighbourhood of x̄, using Theorem 2.1 (limiting
approximation) or Corollary 5.11 (Lipschitz approximation). By Theorem 5.2 (covering
gradients) we deduce the first inclusion. The result about Clarke-critical points now follows,
and the last implication is a consequence of the fact that

int cl
�⋃
k=1

Ck = int
�⋃
k=1

Ck =
�⋃
k=1

intCk�

by convexity and nestedness. �

We have stated this result for the Clarke subdifferential, although obviously there is
a completely parallel result replacing the Clarke subdifferential with the convex-stable
subdifferential throughout.
What about the opposite inclusion in Theorem 5.2 (covering gradients)? To understand

the issues here we need to consider horizon behaviour more carefully.

6. The Clarke subdifferential and the horizon condition. Consider once again a con-
tinuous function f � Rn → R. If the horizon subdifferential ��f 
x̄� is pointed (so f is
directionally Lipschitz around x̄) we know that f is differentiable almost everywhere near
x̄ (Borwein et al. 2001). We also know that the Clarke subdifferential coincides with the
convex-stable subdifferential, by Theorem 4.5 (stability of Clarke subdifferential). Putting
this fact together with Theorem 5.2 (covering gradients) leads to the following result, pro-
viding conditions under which convex combinations of gradients at nearby points give a
good approximation of the Clarke subdifferential.

Corollary 6.1 (Gradient-Based Approximation). Suppose that, close to the point
x̄ ∈ Rn, the function f � Rn → R is continuous, and absolutely continuous on lines, with
��f 
x̄� pointed. If Q is a full-measure subset of a neighbourhood of x̄ consisting of points
where f is differentiable, then

�Cf 
x̄�=
⋂
�>0

cl convf
Q∩ 
x̄+�B���

In passing, we remark that a directionally Lipschitz function even of one variable may not
be absolutely continuous. For example, the “Lebesgue singular function” (Stromberg 1981,
Ex. 3.138) is continuous and nondecreasing on the interval .0�1/ and, hence, directionally
Lipschitz, but it is not absolutely continuous.
Our next result shows that, in searching for Clarke-critical points, providing our sam-

pling radius is sufficiently small, the test 0 ∈ Ck will not generate a false positive, even
approximately.

Corollary 6.2 (False Positives). Suppose, close to the point x̄ ∈ Rn, the function
f � Rn →R is continuous, with ��f 
x̄� pointed. If x̄ is not a Clarke-critical point of f , then
for any sufficiently small sampling radius we have

lim
k→�

dist
0�Ck� > 0 almost surely�

Proof. As above, we know f is differentiable almost everywhere near x̄. Since 0 �∈
�Cf 
x̄�, we know, for all small � > 0,

0 �∈ cl conv
�̂f 
x̄+�B��⊃ cl
�⋃
k=1

Ck almost surely�

by Theorem 4.5 (stability of Clarke subdifferential). �

This suggests a conceptual algorithm for generating descent directions, outlined in the
next result.
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Corollary 6.3 (Descent Directions). Suppose, near the point x̄ ∈ Rn, the function
f � Rn → R is continuous, and absolutely continuous on lines, with ��f 
x̄� pointed. The
sequence of random vectors

Yk = closest point to 0 in Ck, for k = 1�2� � � � �

converges almost surely to a limit Y ∈ Rn, and if x̄ is not a Clarke-critical point of f and
the sampling radius is small, then

d̂f 
x̄�
−Y � < 0 almost surely�

Proof. As before, f is differentiable almost everywhere near x̄. It is routine to check
that the sequence Yk converges to the closest point to 0 in the set C = cl

⋃
k Ck. (For

example, the nonincreasing sequence of functions �·�+�Ck epi-converges to �·�+�C , by
Rockafellar and Wets 1998, Proposition 7.4, and is level-bounded, so the minimizers con-
verge as required, by Rockafellar and Wets 1998, Theorem 7.33.)
Since 0 �∈ cl

⋃
k Ck, by Corollary 6.2 (false positives) we deduce

0< inf Y T
�⋃
k=1

Ck = lim
k→�

minY TCk ≤ −d̂f 
x̄�
−Y ��

by Theorem 5.8 (upper approximation). �

Notice, as with Theorem 5.13 (detecting critical points), we have stated the above two
corollaries for the Clarke subdifferential, although there are analogous results for the convex-
stable subdifferential needing no pointedness assumption.
At least when the function f is Lipschitz near x̄, the above result is reassuring. When

0 �∈ �Cf 
x̄� and we pick a small sampling radius, any approximation �Y close to Y will satisfy

lim sup
x→x̄� t↓0

f 
x− t�Y �−f 
x�
t

= d̂f 
x̄�
−�Y � < 0�

by Rockafellar and Wets (1998, Ex. 9.15) and the continuity of d̂f 
x̄�. Thus, −�Y is a
descent direction that is stable with respect to small perturbations, both to itself and to the
base point x̄.

On the other hand, when f is not Lipschitz around x̄, the subdifferential �Cf 
x̄� is
unbounded (Rockafellar and Wets 1998, Theorem 9.13), so the choice of descent direction
may be highly sensitive under perturbation.

7. Examples. We end with some simple examples illustrating the delicate features of
non-Lipschitz optimization in this framework. The functions we consider here even satisfy
the strong assumption of regularity for all points x near the point of interest x̄ (so in
particular the Clarke subdifferential coincides locally with the subdifferential).

Example 7.1 (Overestimating Subderivatives). We show here how, for certain
directions w ∈Rn, the estimate maxwTCk may be much larger than the regular subderivative
d̂f 
x̄�
w�, even when f is regular near x̄ and satisfies all the assumptions of Corollary 6.3
(descent directions).
We define a function f � R2 → R by

f 
x�=√

�x�−1�+�

where, for real u, we define u+ =max�u�0�. A direct calculation shows

�̂f 
x�= �f 
x�= �Cf 
x�=



�0� 
�x�< 1��

�
2�x�√
�x�−1�+�−1x� 
�x�> 1��

R+x 
�x� = 1��
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and

�̂f 
x�� = ��f 
x�=
{
�0� 
�x� �= 1��
R+x 
�x� = 1��

Thus f is everywhere regular and satisfies all the assumptions of Corollary 6.3 at any point:
Furthermore, it is continuously differentiable on the full-measure open set �x� �x� �= 1�.
Consider the point x̄= 
1�0�. Our calculations are slightly easier if, rather than a circular

neighbourhood, we consider, in polar coordinates, the neighbourhood

N = �x = 
r� ��� ���< �� �r−1�< ���
Let Q = �x ∈ N� �x� �= 1�, an open, full-measure subset of N . Then, essentially by
Theorem 2.1 (limiting approximation), if we sample our points xi from N we obtain, almost
surely,

cl
�⋃
k=1

Ck = cl convf
Q�

= cl conv
�0�∪ �
r� ��� ���< �� 2r
√
� > 1��

= �
r� ��� ��� ≤ ���

Since
�Cf 
x̄�= �
r� ��� � = 0��

the conclusion of Theorem 3.1 (inner approximation) fails.
We see from this that our approximations may give overestimates for regular sub-

derivatives: Returning to Cartesian coordinates, if w = 
0�1�, then d̂f 
x̄�
w�= 0, whereas
limk→�wTCk = � almost surely.
Notice finally that, if we denote the spectral abscissa of a matrix by 6, then we can write

our function in the following form:

f 
x1� x2�= 6




0 0 1 0
0 0 0 1

x1−1 x2 0 0
x2 −x1−1 0 0


 �

Example 7.2 (The Horizon Condition). This example shows the importance of the
horizon condition in §6. We define f � R2 → R by

f 
x�=√��x�−1��
A direct calculation shows f is continuously differentiable on the full-measure open set
�x� �x� �= 0�1�,

�̂f 
x�= �f 
x�= �Cf 
x�=


{

sgn
�x�−1�

2�x�
√

��x�−1�x
}


�x� �= 0�1��

Rx 
�x� = 1�

(where, for nonzero real u we define sgnu= u/�u�), and

�̂f 
x�� = ��f 
x�=
{
�0� 
�x� �= 0�1��
Rx 
�x� = 1��

Thus f is regular everywhere except at the origin (where we could easily smooth it, if so
desired), and it satisfies all the assumptions of Corollary 6.3 at any nonzero point x, except
that �f 
x̄� has nonpointed horizon cone when �x̄� = 1.
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We claim, for any sampling radius � > 0, at any point x̄ with �x̄� = 1 we have

�̃f 
x̄�= cl conv
�f 
x̄+�B��= cl convf
Q∩ 
x̄+�B��= R2(7.3)

(where Q is any full measure subset of a neighbourhood of x̄ consisting of points where f is
differentiable). That is, the conclusions of Theorem 4.5 (stability of Clarke subdifferential)
and Corollary 6.1 (gradient-based approximation) both fail badly.
To see this, without loss of generality, choose x̄ = 
0�1�. As before, our calculations are

slightly easier if we use the neighbourhood N (along with the subset Q) and the sampling
scheme of the previous example. We then obtain, essentially by Theorem 2.1 (limiting
approximation) again, almost surely,

cl
�⋃
k=1

Ck = cl convf
Q�

= cl conv�
r� ��� � ∈ 
−����∪ 
7−��7+��� 2r
√
� > 1�

= R2�

We deduce equation (7.3) easily, and our observation follows.
Returning to Cartesian coordinates, consider the new function f̃ 
x�= f 
x�−x2. Clearly

0 �∈ �Cf̃ 
1�0�; that is, 
1�0� is not a Clarke-critical point of f̃ . Indeed, tracing around the
unit circle from the point 
1�0� causes the value of f̃ to decrease locally at a linear rate.
However, for any sampling radius � > 0, for this new function,

0 ∈ intCk eventually, almost surely

(using the same convexity argument as in the proof of Theorem 5.13 (detecting critical
points)), so our optimality test will always give a false positive for large enough sample
size: Corollaries 6.2 (false positives) and 6.3 (descent directions) both fail.

Example 7.4 (Large Samples). Our last example shows that even though Theorem
5.13 guarantees that we can, in some sense, detect Clarke-critical points, we may require a
large sample size.
Consider the function f � R2 → R defined by

f 
x1� x2�= 2max��x1��
√�x2��+x1�

A calculation shows f is everywhere regular, with

�f 
0�0�= .−1�3/×R�
so 0 ∈ int �̂f 
0�0�: the origin is a “sharp” local minimizer, since, for example f 
x� ≥
�x�/2 ≥ 0= f 
0� for all small x.
We know that f is continuously differentiable on the full-measure open set �x� x2 �= ±x21�

and absolutely continuous on lines, so Theorem 5.13 guarantees

0 ∈ intCk eventually, almost surely�(7.5)

To make our calculations slightly easier, let us take our points xi uniformly distributed
on .−���/2. Note Ck ⊂ .1�3/×R unless �
xi�2� < 
xi�

2
1 and xi < 0 for some index i ∈

�1�2� � � � � k�. The probability of this event is �/6 for each i, so Ck ⊂ .1�3/×R with
probability 
1−�/6�k.
Suppose we choose our sample size as  1/�! (the largest integer less than 1/�). Our

argument shows, despite (7.5), we have

pr�dist
0�C 1/�!�≥ 1�→ e−1/6 as � ↓ 0�
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A similar calculation shows that to ensure the distance of Ck from the origin is less than
one with any given strictly positive probability, we need a sample size growing like 1/�. In
summary, we need a very large sample size to secure 0 ∈ Ck.
Denoting the spectral abscissa by 6, we can write our function in the form

f 
x1� x2�= 6




3x1 0 0 0 0 0
0 −x1 0 0 0 0
0 0 x1 2 0 0
0 0 2x2 x1 0 0
0 0 0 0 x1 2
0 0 0 0 −2x2 x1


 �

Notice that at the minimum the corresponding matrix is derogatory: The multiple zero
eigenvalue appears in several Jordan blocks. Such solutions are, in a well-defined sense,
atypical in spectral abscissa minimization. The minimizing matrix for the problem at the
end of Example 7.1 is, by contrast, nonderogatory. It is unclear whether the phenomena
exhibited in Examples 7.2 and 7.4 can occur in typical spectral abscissa minimization
problems. For a discussion of what we mean by “typical,” see Burke et al. (2001).
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