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Abstract. A square system of linear equations is ‘ill-conditioned’ when the norm of the correspond-
ing inverse matrix is large. This norm bounds the size of the solution, and measures how close the
system is to being inconsistent: it is thus of fundamental computational significance. We generalize
this idea from linear equations to inclusions governed by closed convex processes, and hence to
‘conic linear systems’.
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1. Introduction

Given an invertible n × n real matrix F and a vector b in Rn, consider the linear
system

Fx = b, x ∈ Rn.

It is a simple consequence of the Eckart–Young theorem (see [7], for example) that
the smallest operator norm of a matrix G making the perturbed matrix F + G sin-
gular is just ‖F−1‖−1. This quantity is a fundamental measure of the ‘conditioning’
of the system: for example, the solution of the original system clearly has norm no
larger than ‖F−1‖‖b‖.

In 1995 Renegar extended this notion of conditioning to ‘conic linear systems’
(systems of equations and inequalities defined by convex cones). He was able to
relate this idea to the complexity of solving such systems by interior point methods,
thus establishing its importance for linear and semidefinite programming [4]. Our
aim here is to give a simple and concise extension of Renegar’s work, using the
elegant language of ‘convex processes’. This language, originating with [6], is
perfectly suited to a unified study of convex cones and inequality systems.

Given real vector spaces X and Y , we call a set-valued map 
: X → Y a
convex process if its graph G(
) = {(x, y) : y ∈ 
(X)} is a convex cone [6]. We
are interested in the conditioning of the inclusion

b ∈ 
(x), x ∈ X, (1.1)
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for a given vector b in Y . Such inclusions, as we shall see, include conic linear
systems as a special case (and hence both linear and semidefinite programming),
but are both concise in notation and broader in scope.

We define the inverse process 
−1: Y → X by

x ∈ 
−1(y) ⇔ y ∈ 
(x), for x ∈ X, y ∈ Y .

In general, system (1.1) may be inconsistent (that is, 
−1(b) = ∅) unless 
 is
surjective (by which we mean the range 
(X) equals Y ). Our aim in this paper is
to relate the ideas of conditioning, surjectivity, and solution size.

Since the map 
 is positively homogeneous, solving the inclusion (1.1) is struc-
turally no different than solving x ∈ 
−1(tb) for some real t > 0. This motivates
considering a ‘homogenization’ construction, which we discuss next.

2. Homogenization

We can homogenize the inclusion b ∈ 
(x) by considering a new convex process

b: X × R → Y defined by


b(x, t) =
{


(x) − tb if t � 0,

∅ if t < 0.
(2.1)

Our fundamental tool, a purely algebraic result following an idea from [1], relates
the ‘strong’ consistency of system b ∈ 
(x) with the surjectivity of 
b. The core
of a subset S of Y , written core S, is the set of those vectors b in S such that for any
vector d in Y we have b + rd ∈ S for all small real r � 0.

PROPOSITION 2.2 (Surjectivity and stability). The homogenized process 
b is
surjective if and only if b lies in the core of the range of 
.

Proof. Suppose 
b is surjective. Since there is a vector x and a real t � 0 such
that b ∈ 
(x)− tb, certainly we have b ∈ 
(X). On the other hand, for any vector
d in Y there is a vector z ∈ X and a real s � 0 such that d ∈ 
(z) − sb, so
d + sb ∈ 
(X). Now for any real r � 0 satisfying rs � 1 we have b + rd =
(1 − rs)b + r(d + sb) ∈ 
(X), so we deduce b ∈ core(
(X)).

Conversely, if 
b is not surjective, there is a vector d in Y satisfying 
−1
b (d) =

∅, so d + tb ∈ 
(X) for all real t � 0. Hence b + t−1d ∈ 
(X) for all real t > 0,
so b ∈ core(
(X)). ✷

The core is an algebraic notion of interior: to obtain more quantifiable results
we need to introduce some norms.

3. Small Solutions

When does the inclusion b ∈ 
(x) have a small solution x ∈ X? To quantify this
question, we suppose now that X and Y are normed spaces (with closed unit balls
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BX and BY respectively) and that the convex process 
 is closed (which is to say

 has closed graph). Following [5], we generalize the operator norm to processes
by defining

‖
‖ = inf{0 < r ∈ R : BX ⊂ r
−1(BY )}.
Notice ‖
‖ may take any value in the interval [0,+∞], and 
 is surjective ex-
actly when ‖
−1‖ is finite. The following simple result amounts to an equivalent
definition for the norm.

PROPOSITION 3.1 (Process norm).

‖
−1‖ = sup
‖b‖�1

inf
x∈
−1(b)

‖x‖.

Proof. A real number s is no less than the right-hand side if and only if, for all
vectors b ∈ BY and all real r > s, there is a vector x in 
−1(b)∩rBX. Equivalently,
BY ⊂ 
(rBX) for all r > s, so by definition, ‖
−1‖ � s. The result follows. ✷

We denote the quantity inf{‖x‖ : x ∈ 
−1(b)} by inf ‖
−1(b)‖. Throughout,
we use the convention +∞ · 0 = 0. For a given process 
, the above result shows,
for any vector b in Y , the inequality

inf ‖
−1(b)‖ � ‖
−1‖‖b‖, (3.2)

and this bound is in some sense tight. However, for any particular vector b the
bound may not be helpful: for example, it gives information only when 
 is sur-
jective. Our goal is therefore to refine it.

We can accomplish this with the simple trick of considering the homogenized
process 
b instead of 
. We consider the product space X × R with the norm

‖(x, t)‖ = ‖x‖ + |t|. (3.3)

LEMMA 3.4 ‖
−1
b ‖ � ‖
−1‖.

Proof. This follows from the fact 
(BX) ⊂ 
b(BX×R). ✷
PROPOSITION 3.5 (Small solutions).

inf ‖
−1(b)‖ � ‖
−1
b ‖‖b‖ � ‖
−1‖‖b‖.

Proof. Given any point (x, t) in 
−1
b (b), the point (1+ t)−1x lies in 
−1(b) and

has smaller norm. We deduce the inequality inf ‖
−1(b)‖ � inf ‖
−1
b (b)‖, and the

result now follows from inequality (3.2) and the previous lemma. ✷
For varying b, the above result is again tight, by Proposition 3.1. Furthermore,

it really is a refinement of inequality (3.2). If, for example, the process 
: R → R
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is defined by 
(x) = {x} when x � 0 and is empty otherwise, then ‖
−1‖ = +∞,
whereas if b = 1 we obtain ‖
−1

b ‖ = 1.
It is interesting to express the important quantity ‖
−1

b ‖ more explicitly. Con-
sider, for a given vector y in Y , the system (in the unknowns t and x)

tb + y ∈ 
(x), ‖x‖ + t � 1, 0 � t ∈ R, x ∈ X. P (y)

We adopt the conventions 1/0 = +∞ and 1/+∞ = 0. The following result is a
direct calculation from the definition of the process norm.

PROPOSITION 3.6. ‖
−1
b ‖−1 = inf{‖y‖ : system P(y) inconsistent}.

In the next section we investigate this quantity further.

4. Distance to Inconsistency

Assume henceforth X and Y are Banach spaces. In this case the quantity ‖
−1
b ‖−1

that appeared in the last section has an important alternative description using the
following generalization of the Eckart–Young theorem [3, Thm 2.8]. We denote
the space of continuous linear maps from X to Y by L(X, Y ).

THEOREM 4.1 (Distance to nonsurjectivity). For any closed convex precess 
:
X → Y ,

‖
−1‖−1 = inf
G∈L(X,Y )

{‖G‖ : 
 + G not surjective}.

In particular, if 
 is surjective then so is 
 + G for all small perturbations G in
L(X, Y ).

To apply this result to the process 
b we consider maps G in L(X×R, Y ). Any
such map has the form

G(x, t) = Ax − ty (x ∈ X, t ∈ R)

for some map A in L(X, Y ) and vector y in Y , and a standard calculation shows
the norm of this map is given by ‖G‖ = ‖A‖ ∨ ‖y‖ (where ∨ denotes max). In
other words, L(X × R, Y ) is isomorphic to L(X, Y ) × Y (with this norm). Hence
we deduce the relationship

‖
−1
b ‖−1 = inf{‖A‖ ∨ ‖y‖ : (
 + A)b+y not surjective}. (4.2)

Our aim is now to relate this to the original inclusion b ∈ 
(x) using Proposi-
tion 2.2 (Surjectivity and stability). It is therefore natural to consider the following
quantity, measuring how close the inclusion is to inconsistency.

DEFINITION 4.3 (Distance to inconsistency).

ρ(
, b) = inf{‖A‖ ∨ ‖y‖ : (
 + A)−1(b + y) = ∅}.
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To connect this quantity with Equation (4.2) we need the following result.

PROPOSITION 4.4 In the space L(X, Y ) × Y we have

{(A, y) : (
 + A)b+y not surjective} = cl{(A, y) : (
 + A)−1(b + y) = ∅}.

Proof. Theorem 4.1 (Distance to nonsurjectivity) shows that the surjectivity of a
closed convex process is stable under small continuous linear perturbations. Hence
the left-hand side is a closed set, which therefore contains the right-hand side by
Proposition 2.2 (Surjectivity and stability).

On the other hand, for any pair (A, y) in the left-hand side, we know b + y ∈
core((
+A)(X)), by Proposition 2.2. Hence there is a sequence yr → y satisfying
(
 + A)−1(b + yr) = ∅ for all indices r, which shows (A, y) belongs to the
right-hand side. ✷

We can now state our main result.

THEOREM 4.5 (Surjectivity and consistency). Suppose X and Y are Banach spa-
ces and consider a given vector b in Y and a closed convex process 
: X → Y .
The following four quantities are equal:

(i) the distance to inconsistency of the inclusion b ∈ 
(x) (namely ρ(
, b));
(ii) the distance to nonsurjectivity of the homogenized process 
b;

(iii) ‖
−1
b ‖−1;

(iv) inf{‖y‖ : system P(y) is inconsistent}.
Proof. The equality of quantities (i) and (ii) follows from the previous result,

that of (ii) and (iii) is Equation (4.2), and that of (iii) and (iv) is Proposition 3.6. ✷
Notice that whereas the distance to inconsistency (quantity (i) in the above

result) involves perturbations to the process 
, quantities (iii) and (iv) involve only
the original process.

By comparing with Proposition 3.5 (Small solutions), we can now relate the
distance to inconsistency to our original question of determining the minimal norm
of solutions to inclusions.

COROLLARY 4.6 (Condition measure).

inf ‖
−1(b)‖ � ‖b‖
ρ(
, b)

.

Thus the quantity ‖b‖/ρ(
, b) is a natural condition measure for the inclusion
b ∈ 
(b).

We end with an example.
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EXAMPLE 4.7 (Conic linear systems). A conic linear system is a system of the
form

b − Ax ∈ CY , x ∈ CX,

where A: X → Y is a continuous linear map and CX ⊂ X and CY ⊂ Y are closed
convex cones (see for example [2]). We can model any such system as a process
inclusion b ∈ 
(x) by defining


(x) =
{

Ax + CY if x ∈ CX,

∅ otherwise.
(4.8)

In this case the system P(y) becomes

tb − Ax + y ∈ CY , ‖x‖ + t � 1, 0 � t ∈ R, x ∈ CX.

Theorem 4.5 now shows that the infimum of ‖y‖ such that the above system is
inconsistent equals the distance to inconsistency of the original conic linear system,
namely the infimum of ‖G‖ ∨ ‖y‖ over continuous linear maps G: X → Y and
vectors y in Y such that the system

b + y − (A + G)x ∈ CY , x ∈ CX,

is inconsistent. This recaptures [4, Thm 1.3], without the assumption made there
of reflexivity.

It is worth remarking that the processes we consider in this paper are consid-
erably more general than those arising immediately from conic linear systems. To
take a simple example, the closed convex process

x ∈ R �→ {z ∈ R : 0 � z � x}
cannot be written in the conic linear form (4.8).
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