Optimization, 2000, Vol. 48, pp. 409-427 © 2000 OPA (Overseas Publishers Association) N.V.
Reprints available directly from the publisher Published by license under
Photocopying permitted by license only the Gordon and Breach Science
Publishers imprint.

Printed in Malaysia.

DYKSTRA’S ALGORITHM WITH BREGMAN
PROJECTIONS: A CONVERGENCE PROOF

HEINZ H. BAUSCHKE® * and ADRIAN S. LEWIS®>!

2 Department of Mathematics and Statistics, Okanagan University College,
Kglowna, British Columbia V1V 1V7, Canada;
® Department of Combinatorics and Optimization, University
of Waterloo, Waterloo, Ontario N2L 3G1, Canada

( Received 18 June 1998, In final form 11 March 1999)

Dykstra’s algorithm and the method of cyclic Bregman projections are often employed
to solve best approximation and convex feasibility problems, which are fundamental in
mathematics and the physical sciences. Censor and Reich very recently suggested a
synthesis of these methods, Dykstra’s algorithm with Bregman projections, to tackle
a non-orthogonal best approximation problem. They obtained convergence when each
constraint is a halfspace. It is shown here that this new algorithm works for general
closed convex constraints; this complements Censor and Reich’s result and relates to a
framework by Tseng. The proof rests on Boyle and Dykstra’s original work and on
strong properties of Bregman distances corresponding to Legendre functions. Special
cases and observations simplifying the implementation of the algorithm are also
discussed.

Keywords: Best approximation; Bregman distance; Bregman projection; Convex feasi-
bility; Cyclic projections; Dykstra’s algorithm; Han’s algorithm; Hildreth’s method;
Legendre function

Mathematics Subject Classifications 1991: Primary: 49M; Secondary: 41A29, 65J0S,
90C25

*Corresponding author. This research was supported by an NSERC Postdoctoral
Fellowship and by the Department of Combinatorics and Optimization, University of
Waterloo. e-mail: bauschke@cecm.sfu.ca

tResearch partially supported by NSERC.

409



410 H. H. BAUSCHKE AND A. S. LEWIS
1. INTRODUCTION

Throughout the paper, we assume that

E is some Euclidean space R’ with inner product (-, -)
and induced norm || - ||,

and that

Ci,...,Cy are finitely many closed convex sets in E with

N
C:=()Ci#0.
i=1

Typically, the sets C; are the constraints of a problem and C is the set
of solutions; the problem of finding any solution is referred to as the
convex feasibility problem. ([4,22], and [40] are comprehensive starting
points to this vast and important area.) We now describe two fre-
quently employed algorithms for solving this problem.

1. The first algorithm solves a more ambitious best approximation
problem: given a point x € E, find the (unique) point in C that is
nearest to xo. This problem is common in both mathematics and
the physical sciences; it is often solved iteratively by Dykstra’s
algorithm: let q_(y_1y:=---:=¢o:=0. Denote the mod N function
with values in {1,...,N} by [-]. Set C,:=C, and let P, be the
orthogonal projection or nearest point mapping onto C,, for every
n > 1. Generate sequences (x,), (¢») in E by

Xp = Pn(xn—l + qn—N) and Gn = Xn-1 + gn-N — Xn,

for every n>1. In 1985, Boyle and Dysktra [7] proved that the
sequence (x,) converges to Pcxy, i.e., to the solution of the best ap-
proximation problem. (See Remark 4.2 for pointers to the literature).

2. The second algorithm employs more general Bregman projections
onto the constraints. These not necessarily orthogonal projections
are constructed as follows. We assume henceforth that (see
Definition 2.1)

f is a convex function of Legendre type on E,
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and that the corresponding Bregman distance Dy is defined by

Dy : E x int(dom f) — [0, +o00] :
(x,3)=f(x) =f ) = (Vf (), x = »)-

Let S be a closed convex nonempty set in E with SNint (dom f)# 0
and pick y €int(domf). Then the optimization problem

minimize Dys(x,y) subject to x & SNdom f

has a unique minimizer in int(domf), denoted P§f )y, called the

Bregman projection of y onto S with respect to f. (For a proof, see
[5, Theorem 3.12.(iii)].) Under a constraint qualification such as C N
int (domf)#®, we can now describe the method of cyclic Bregman
projections: given a starting point x,, we generate a sequence (x,) by
(Bregman) projecting cyclically onto the constraints:

P Py Y Py pY p)
Xo— X} —> X2 — " T XN —> XN+l 0.

Bregman proved in 1967 [8] that the sequence (x,) converges to
some point in C, i.e., to a solution of the convex feasibility problem.
(Further results can be found in [1,5,8,16-18,20,23,43]. Bregman
distances are increasingly employed in other fields; see, for instance,
[10-15,21,28,29,38,41,42,48].)

If we set f:=(1/2)||-||, then Vf = I and the Bregman projection is
actually the ordinary orthogonal projection and the method of cyclic
Bregman projections becomes the famous method of cyclic (orthogo-
nal) projections. (See also [6].) The method of cyclic projections differs
from Dykstra’s algorithm only by the sequence (g,). Moreover, if each
constraint set is affine, then the algorithms coincide. (See Deutsch’s
[24] exhaustive review.)

It is very tempting to combine Dykstra’s algorithm with the method
of cyclic Bregman projections to obtain a new algorithm that would
solve the best approximation problem with Bregman distances. Censor
and Reich [19] very recently showed that such a synthesis is indeed
possible. They established convergence for the resulting Dykstra’s
algorithm with Bregman projections when the constraint sets are
halfspaces.
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The objective of this paper is to provide a convergence proof that
makes Dykstra’s algorithm with Bregman projections applicable in a
more general setting.

We obtain a convergence result for general constraint sets by a
nontrivial extension of Boyle and Dykstra’s original proof [7] and by
repeated use of the tools developed in [5].

We also note that Tseng’s powerful framework [49] yields a conver-
gence result in this setting as well. In summary, our main theorem
(Theorem 3.2) is complementary to Censor and Reich’s work and to
the result we deduced from Tseng’s framework.

The paper is organized as follows.

In Section 2, properties of Legendre functions and co-finite convex
functions are recalled. We introduce the notion of a “very strictly con-
vex function’, which is useful for our analysis, and provide examples.

Our main result (Theorem 3.2) is proved in Section 3 and then
compared to results by Censor and Reich and by Tseng’s framework.

The final Section 4 discusses applications. We remarked above that
Dykstra’s algorithm coincides with the method of cyclic Bregman
projections when f = (1/2)||]|* and the constraints are affine. Theorem
4.3 shows that this correspondence holds for more general functions f.
This is important as it avoids the computation of an auxiliary
sequence. We conclude with a generalization of another storage-saving
remark by Glunt ez al.

The notation and language we use is fairly standard and follows
Rockafellar’s fundamental [46]. Given a convex function g on E, the
domain of g (gradient of g, Hessian of g, Fenchel conjugate of g respec-
tively) is denoted by dom g(Vg, Vg, g" respectively). The interior
(relative interior, boundary, closure, convex hull, respectively) of a set
S in E is abbreviated by int S (riS,bd S,cl S, conv S, respectively).
Finally, I stands for the identity mapping.

2. TOOLS

2.1. Legendre Functions

DEeFINITION 2.1 Suppose fis a closed convex proper function on E
with int(domf)#®. Then f is Legendre or a convex function of
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Legendre type, if it satisfies every one of the following conditions:
(i) fis differentiable on int (domyf).
(i) lim,o+(Vf(x+ t(y — x)),y — x) = —o0, Vx € bd(dom f), Vy € int
(domf).

(iii) fis strictly convex on int (dom f).

Fact 2.2 (Rockafellar’s [46, Theorem 26.5]) A convex function f is
Legendre if and only if its conjugate f™ is. In this case, the gradient

mapping
Vf :int(dom f) — int(dom f*) : x — Vf(x)

is a topological isomorphism with inverse mapping (V/)~! = Vf*.

Fact 2.3 ([5, Proposition 3.16]) Suppose fis Legendre on E and S is
a closed convex set in E with SNint(domf)#@. Suppose further
y€int(domf). Then the Bregman projection ng )y of y onto S with
respect to f is characterized by

P{)y e Snint(domf) and (VF(y) — VF(P{y), s— P{y) <.

In addition, Df(ng)y,y) < Dyg(s,y) — Dy(s, ng)y), Vs € SNdomf.

Fact 2.4 (three-point-identity; Chen and Teboulle’s [21, Lemma 3.1])
Suppose f'is a Legendre on E. If x, y €intdomf and b € domJ, then

Df(b,x) + Df(x’)’) - Df(bay) = (Vf(x) - Vf(y)’x - b)

Remark 2.5 Note that Fact 2.4 is a special case of the following
“four-point-identity’’:

(Vf(x) = Vf(y),a — b) = Ds(b, x) + Ds(a,y) — Ds(a, x) — Dy(b,y),

for x,y€int(domf) and a,bedom f. This trivial though useful
identity allows generalizations of concepts such as firm nonexpan-
siveness to a non-orthogonal setting; see [18, Section 5] for steps in this
direction.
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2.2. Co-finite Functions

DEFINITION 2.6 ([46, Section 13]) Suppose f is a closed convex
proper function on E. Then f is co-finite, if lim,_, . f(rx)/r = + oo,
Vx € E\{0}.

Fact 2.7 ([46, Corollary 13.3.1]) Suppose fis a closed convex proper
function on E. Then f'is co-finite if and only if dom f* = E.

2.3. Very Strictly Convex Functions

DEFINITION 2.8 Suppose f'is a closed convex proper function on E.
Suppose further f'is twice continuously differentiable on int (domf) #
0. We say that f'is very strictly convex, if V*f(x) is positive definite,
Vx € int (domf).

Remark 2.9 The class of very strictly convex functions lies strictly
between the class of strictly convex functions and the class of strongly
convex functions (see [36, Definition IV.1.1.1] for the definition of the
last class). It is clear that every very strictly convex function is strictly
convex; however, the converse is false: consider x— x* on R. On the
other hand, every twice continuously differentiable strongly convex
function is very strictly convex (use [36, Theorem IV.4.3.1.(iii)]); the
reverse implication again does not hold in general: consider exp on R.

PROPOSITION 2.10 Suppose f is a very strictly convex function on E.
Then for every compact convex subset K of int (domf), there exist reals
0<0 and B <+ oo such that for every x,y€ K

() Dy (x,y)20|x—y|?* and
@) [IV/x) = V(DI <8lx -yl

Proof Abbreviate the symmetric matrices in R’*/by S,. For a given
symmetric matrix 4 € S;, denote the largest (resp. smallest) eigenvalue
of A by A(A) (resp. A(A)). By [36, Section 1V.1.2.(e), page 155], the
induced mapping A (resp. \) in convex (resp. concave) on S;. Hence A
and A are continuous on S;. Thus, by assumption, the mappings A o
V2f and A o V?f are continuous on int (domf). Now fix an arbitrary
compact convex subset K of int(domf). Then, by continuity, 0 <
Ak :=min,ex (Ao V) (x) < Ak :=max,cx (A o V3 )(x) < + oco. Hence
Mil|A|? < (B, V3 (2)h) < Akl|h||*, Vz € K, Yh € X. Pick any two x,y € K.
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Then Taylor’s Theorem (see [45, Theorem 1.2.4] or [47, Exercise 5.(b)
on page 378]) yields some z on the line segment between x and y such
that

1

Ds(x,y) = f(x) = f(y) — (VF(), x — y) = 5 (x —y, VZf(2)(x — y)).

N

Hence (i) follows with 6:=(1/2)Ax. To prove (ii), note first that the
operator norm ||V3f(2)|| < A, Vz€K (see [44, Theorem XVIIIL.2.2]).
By a consequence of the Mean Value Theorem (see [44, Corollary
X111.4.3)), |9/ (x) = f )|l < sup.exl V3 @ll[lx - y|. Therefore, ©:=
Ak does the job. [ |

2.4. “All of the Above”

Let C(E) denote the class of closed convex proper functions on E that
are Legendre, co-finite, and very strictly convex. The class C(E) is impor-
tant to us, since our main result (Theorem 3.2) requires that the func-
tion determining the Bregman distance be a member of C(E). Suppose
now f is a separable function on E, i.e., it can be written as f(x) =
> fi(x)), where each f; is a function on R and x = (x,,...,x;). Sepa-
rable functions are almost always used in practice. Since

f belongs to C(E) if and only if each f; is in C(R),

we are particularly interested in C(R).

Examples 2.11 Every function listed below is closed convex proper
on R, Legendre, co-finite, and very strictly convex:

@) (“norm™) f(x):=(1/2)x*.
(ii) (“Boltzmann/Shannon”) f(x):=xInx— x on [0, + ool.
(iii) (“Hellinger”) f(x) := —vV1 —x2 on [-1,+1].
(iv) (“Fermi/Dirac”) f(x):=xInx+ (1 — x) In(1 — x) on [0, 1].
(v) (“De Pierro and Iusem”) f(x):=(1/2)x*+2x+(1/2), if x<—1;
-1 —In(-x), if —1<x < 0; 400, otherwise.

Proof Follows from the discussion of these functions in [5, Section
6.1], Fact 2.7, and some calculus. [ ]
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Remarks 2.12 (i) Analogous to [S, Proposition 5.1], one can develop
criteria under which sums or infimal convolutions of members of C(E)
belong to C(E) again. (ii) As an aside, we note that the function by De
Pierro and Iusem in Examples 2.11 is not a “‘Bregman function (with
the zone being the negative reals)” in the sense of Censor and Lent [17].

3. MAIN RESULT

ProPOSITION 3.1 Suppose (px) is a sequence of nonnegative reals with
S P2 < +oo. Let R, := 3 _i_, px be the nth partial sum and m be an
arbitrary nonnegative integer. Then lim,Rn(pp—m + - - + pn-1 + pn) = 0.

Proof By Cauchy/Schwarz, Ry(pn-m~+--+pn) < VP[> k=1 P2 (Pn-m+
---+p,); hence it suffices to show that lim,\/n(ps—m+---+pn)=0.
Suppose not. Then there exists € > 0 such that eventually p,_,,+---+
pn>€/+/n, which implies, again by Cauchy/Schwarz,

g2 2 2 2
; < (pn—m+ "'+Pn) < (m+ 1)(pn—m+ "'+pn)'

Summing over sufficiently large n yields the desired contradiction. W

We are now ready for the main result.

THEOREM 3.2 Suppose f is a closed convex proper function on E and
Ci,...,Cy are finitely many closed convex sets in E with C:=N;C;#0.

Assumption on the Bregman distance: f is very strictly convex, co-
finite, and Legendre.
Constraint qualification: CNint (domf) # 0.

Let g_(v—1):=---:=¢_1:=¢0:=0. Denoting the mod N function
with values in {1, ..., N} by [], set C,,:=Cj,;; and P, := Pg_), for every
n> 1. Finally, let x, € int (dom f) and define sequences (x,), (¢,) by

Xn := (Pn o Vf*)(Vf(xn-1) + g»-~) and
gn = Vf(xn-1) + qn-~n — Vf(xn),

for every n> 1. Then the sequence (x,) converges to Pg) Xp.-
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Proof Because f is co-finite, we have domf* = E (Fact 2.7) and so
the sequences are well-defined. The following hold true for every n > 1:

xn € CyNint(domf), (xn—Cn,qn) 20, 50 (Xn,qn) =t¢, (gn); (1)

Vf(xn—l) - Vf(xn) =dqn — 4n-N; (2)
Vi(xo) = V()= > ak- (3)
k=n—-N+1

Facts 2.2 and 2.3 imply (1). The definition of the sequences (g, yields
(2). Equation (3) follows from (2) by induction.

The next identity is crucial; it is true for 0 <m<n and every
c€ dom f:

n

Dy(c,xm) = Dy(e, %) + Y (Dy(xi, Xk—1) + (gk-n, Xk-v — X))
k=m+1
n m

+ ) m—c@) - D, (—cq). (4)

k=n—N+1 k=m—(N-1)

We prove (4) by induction on n, where m is arbitrary but fixed:
clearly, (4) holds when n = m. Now let n > m. We observe thgt

Df(ca xn) = Df(ca Xnt1) + Df(xn+17xn)
— (Vf (Xn+1) = Vf(xn), Xnsr1 — €)
= Ds(c, Xn+1) + Dp(Xn+1, Xn)
+ (Xnt1 = €, Gnt1 — Gn+1-N)
= Dy(¢, Xn+1) + Dy(Xn+1, Xn)
+ (Gn+1-Ns Xnt1-N — Xn+1)

+ (xn+1 — ¢, qn+]> - <xn—N+] -, qn—N+1>;

here, the first equality follows from the three-point-identity (Fact 2.4)
and the second one from (2). The last displayed equality yields the
induction step and so identity (4) holds. Let us start exploring (4) by
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choosing m = 0 and ¢ € CNint(domy’). Then for every n>0:

n

Dy(c, x0) = Dy(c, Xn) + 3 _(Dy(Xk, Xe—1) + (Qe—n» Xe—n — Xk))
k=1
n

+ Z (Xk = €, qk)-

k=n—N+1

By (2), all terms on the right-hand side are nonnegative. Hence

o0
(Df(c,xp)) is bounded and ZDf(xk,Xk_l) < +o00.
k=1

Now dom f™ is open and (D (c, x,,)) is bounded, hence (x,,) is bounded
(by [5, Corollary 3.11]). The boundedness of (Dy (c, x,,)) and the fact
that c € int (dom f') together imply that cluster points of (x,) must lie
in int (dom ") (by [S, Theorem 3.8.(i)]). But now Dy (xx, xx —1) — 0 and
[5, Theorem 3.9.(iii)] imply that x; — x; _; — 0. Let us record what we
just learnt:

(xx) is a bounded sequence in int (dom f), all of its cluster points
lie in int (dom f), and xx — xk—_1 — 0.

Now (3) implies the identity

(c=Xn VF(x0)=VF(xa)) = Y (e=Xsqe)+ D (%% —Xmqk)-

k=n—N+1 k=n—N+1
(3)

Denote the first (resp. second) sum on the right-hand side of (5) by
S1(n) (resp. Sx(n)). By (1), Si(n) is always nonpositive. Concerning
S,(n), we will prove that

n

im > [(xk = xa a0 0. (6)

k=n—(N-1)
Let K:=cl(conv {x,:n>0}). Then, by [46, Theorem 17.2], K = conv
(cl {x,:n>0}) = conv({x,:n>0} U cluster points of (x,)) C conv (int
(dom f)) = int(domf). Hence, by assumption and Proposition 2.10,
there exist reals § > 0 and © < + oo such that D, (x,y) > 8|| x— y||*and
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| Vf(x)- VW <8 | x—y],Vx,y€ K. In particular, for every k > 1,
D(xk, xk-1) > 0l|xx — xx—1)*  and
IVF(Xk-1) = Vf (xi) || < Bllxa—1 — xell-
In view of > 22, Ds(xk,Xk-1) < +o0o, we deduce
"
D lxe-1 = xel? < +oo.
k=1
Now note the following telescoping identity:
gk =gk — 0= gk — g~
= (qk — qk-N) + (qk-N — Gr—2n) + - + (9] — GpK)-N)-
This yields

gkl < llgk — ge-nll + llge-n — gr-anll + - - + llgap — gu-n |l
and hence, using (2) and the defining property of 6,

n—1

n—1
Y el <3 llgk — genl
k=n—(N-1) k=1

(7)
n—1 n—1
=) IV ok1) = VA <O [kt — xell-
k=1 k=1

With (7), we obtain

n n—-1
3 a-xmadl < Y Ik — xalllal
k=n—(N-1) k=n—(N-1)
n—1 n
< > Yo lxier =l
k=n—(N-1) I=n—N+2
n—1 n
<O et —xell Dol — xl-
k=1 I=n-N+2

By Proposition 3.1, the limit inferior of the sequence generated by the
last expression is equal to 0. Therefore, (6) holds.

Hence we obtain a subsequence (k,) of (n) such that (recall (5) and
the nonpositivity of S;(n)) for every c€ C:
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kn

> ok —xk,q)| -0 and
k=k,—(N—1) (8)

0 > lim(e — xi,, Vf (x0) — Vf (x,))-

After passing to another subsequence if necessary, we assume without
loss of generality that

xx, — ¢*, for some ¢* € int (dom f), and [k,] =j, for some index j.

It follows that ¢*€ C; and thus c¢*€C, since x,—x,1—0. Now
Dy (-, ) is separately continuous on int (dom f) x int (dom f), because
Vf and f are continuous on int (dom f). Hence Ds(c, xi,) — Ds(c, c*)
and Dy(xy,, xo) — Dy(c*,xo). Thus for an arbitrary but fixed c € C, we
conclude:

(¢ — ¢*, Vf(x0) — Vf(c"))
= Dys(c, c*) + Ds(c*, x0) — Dys(c, xo)

= lim(Dy(c, x,) + Dy (xk,, Xo) — Df(c, Xo)) (9)
= lim(c — xy,, Vf(x0) — Vf (xx,))
<0,

here, the first and the third equality come from the three-point-identity
(Fact 2.4) and the inequality comes from (8). By Fact 2.3,

¢t = PY) (xp).
Now (9) and (5) yield (with ¢* and k,,)
0 — (¢* — xx,, Vf(x0) — Vf(xx,))

ke k1
= D le—xa)+ D (e — Xk,
kekn—N-+1 kmky—N-+1

The second sum tends to 0 by (8). Hence so must the first sum,

which we know to possess exclusively nonpositive terms:

kn
0« E (¢* — xk,qk) <0. (10)
k=k,—N+1

It remains to show that the entire sequence (x,) converges to c".
Assume the contrary. Then there exist € > 0 and a subsequence (/,) of
(n) such that ||c* — x; || > €, Vn. After passing to a subsequence of (/,)
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if necessary, we assume WLOG that /, > k,, Vn. Since K contains c¢*
and (x;,), we conclude Ds(c*, x;,) > €20, Vn. Equation (4) (with ¢* and
k, < 1,), (10) and [5, Proposition 3.2.(ii)] yield

kn
0 — Dy(c*,x,) = Dy(c*, x,) — Z (xk — ¢*, qi)
k=kn—(N—1)
kn
> Y =Xk @) 0.
k=ko—(N-1)

Thus Df(c*,x;,) — E',ﬁ’;kn_w_])(xk —c*,qx) = 0 Hence, by (10),
Ds(c*,x;,) — 0, which is a contradiction. [ ]

Remark 3.3

e The proof of Theorem 3.2 follows the [2, Proof of Theorem 11.2.1],
which in turn rests on Boyle and Dykstra’s original work [7].

e The analyses of Dykstra’s algorithm for two (possibly nonintersect-
ing) sets by Bauschke and Borwein and by Iusem and De Pierro
relies on identities which can be interpreted as special cases of the
key identity (4) above; see [3, Lemma 4.5] and [39, Proposition 4].

e Every function listed in Examples 2.11 satisfies the assumption on
the distance.

e Examples of Bregman projections appear in [5].

Remark 3.4 A second look at the proof of Theorem 3.2 reveals the
following.

e The assumption that f be co-finite can be replaced by “domf* is
open and the sequences are well-defined””. This would cover the
“Burg entropy”, — ) _; In x;, for instance; however, we do not know
whether or not the sequences are well-defined.

e The assumption that f be very strictly convex can be replaced by the
conclusion of Proposition 2.10.

Remark 3.5 We now compare Theorem 3.2 to the two related com-
plementary though different results mentioned in Section 1.

Tseng [49] proposed a very general and powerful algorithmic frame-
work that covers Han’s algorithm (Remark 4.2). Analogous to his deri-
vation of Han’s result in [49, Section 4], we can apply his framework
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to our algorithmic setting. We find that Tseng’s framework:

o allows essentially cyclic control (which is more general than our
cyclic control though more cumbersome to describe);

e has less stringent assumptions on f; but

e requires the constraint qualification int (domf) N, ri (C;) # 0
(the relative interior can be dropped for polyhedral sets). On
the one hand, his framework is clearly more flexible in some cir-
cumstances. On the other hand, our framework has a genuinely
less restrictive constraint qualification. (For instance, consider
f£=1/2]-|*> on R? and two disks that have exactly one point in
common.)

Censor and Reich essentially suggested the framework we investigated
here in [19]. Their convergence result

e works when each set is a halfspace; and

o the function f'is a Bregman function (which excludes some Legendre
functions; see Remarks 2.12. (ii) and also [5, Section 4]); but

e their constraint qualification (‘“‘strong zone consistency’) is less
restrictive than ours; and

e neither very strict convexity nor co-finiteness is needed. (In practice,
it appears to be quite hard to verify some of their assumptions; see
[17, Subsections 6.1 and 6.4].)

4. APPLICATIONS

Example 4.1 ([7, Theorem 4.1]) Suppose we let f:=1/2|| - |* in Theo-
rem 3.2. Then we obtain Dykstra’s algorithm in Euclidean space.

Remark 4.2

e Boyle and Dykstra’s convergence proof actually works in gen-
eral Hilbert space. For applications and generalizations, see [3],
[2, Theorem 11.2.1], [26, 25, 30, 37, 31-33, 39].

e Han'’s algorithm [34] is Example 4.1 with an additional constraint
qualification imposed. :

e If we assume that the constraint sets in Example 4.1 are halfspaces,
then we obtain Hildreth’s method [35] for quadratic programming;
see [39, Section 3].
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Dykstra pointed out in [27] that the method of cyclic orthogonal projec-
tions, which allows us to ignore the sequence (g,,), arises when the con-
straints in Example 4.1 are all affine subspaces. Fortunately, as the next
result shows, this is true not only for f = 1/2 || - ||* but also in our setting.

THEOREM 4.3 Suppose f is Legendre, co-finite, and very strictly con-
vex on E. Suppose further C,,...,Cy are finitely many affine subspaces
of E with C:=(); C; and CNintdomf+# (. Denoting the mod N function
with values in {1,...,N} by [ -], set C,;:=Cy,;) and Py, := P(Cf"),for every
n> 1. Let yo € int dom f and define the sequence of cyclic Bregman pro-
Jjections by

Yn ‘= FpYyn-1,

for every n>1. Then (y,) converges to P(g)yo.

Proof Denote the linear subspace parallel to C, by L,, for every
n> 1. Consider the sequence (x,) generated by the Dykstra algorithm
with starting point xg := yo. In view of Theorem 3.2, it suffices to show
that x,, = y,, for every n> 1. We do this by induction on n. Because
g_w-1=-=¢go=0, we have x, = y,, for every n€{0,1,...,N}.
To do the induction step, we assume that x,_;, = y,_;, for some
n > N. By Eq. (1) in the proof of Theorem 3.2, we have 0 < (x, _n—
CrsGn—nN) = (Lnqn—- ). Hence g,_y € L. This implies (because y, €
C, so that C,—y, = L, as well)

(Cn — Yn,y qn—N) =0.

We claim that y,= P, (Vf*(Vf(xn_1)+¢qn_n)). (This would
complete the proof, as the latter point is x, by definition.) Clearly,
yn€int(domf)N C,. Fix an arbitrary ¢, € C,. Then, using Fact 2.3,
Xn_1 = y¥n_1, and the last displayed equation,

{€n = Yy VF(VF (Vf (Xn=1) + gn-n)) = Vif (n))
= (n = Yn, Vf(Xn-1) + gn-n — Vf(yn))
= (€n = Yn, Vf(¥n-1) = Vf(¥n)) + (Cn = Yns qn-N)
= (€n = Y Vf (1) = Vf (n))
<0.

Again by Fact 2.3, the claim follows. [ ]

Remark 4.4 Theorem 4.3 is related to [5, Theorem 8.4]; see also [5,
Remark 8.5].
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Remark 4.5 Suppose fis Legendre, co-finite, and very strictly convex
on E. Suppose further we only have two constraints, say 4 and B,
where B is an affine subspace. (A standard product space construction
always allows a reduction to this case; see [3, Section 6] and [5, Section
7.1].) Assume int (dom /)N AN B#® and let x, € int (dom (). A second
glance at the proof of Theorem 4.3 reveals that then Dykstra’s algo-
rithm with Bregman projections with respect to f simplifies to: bg := X,
Po:=0,

ay ‘= (P‘Sf) o Vf*)(vf(bn—l +pn—l))’
Pn = Vf(bn-1) + pn-1 — Vf(an),
bn = P(Bf)am

for every n> 1. Glunt et al. [32] pointed out (see also [33, page 292])
that when f:=1/2|| - ||, it is not necessary to store the sequence (p,).
This nice observation works also in our setting: let wg:= x¢ and update
according to

Wn 1= VF*(VF (Wa1) + VP PP Wasr) — VF (PP wn1)),

for every n>1. An easy induction yields Vf(w,) = Vf(b,)+pn
identically, and hence, by Theorem 3.2, the sequence (ng ) Wn)

converges to Pf,frz,,xo.
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