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Convex analysis on Cartan subspaces
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1. Unitarily invariant norms and convex spectral functions

In 1937, von Neumann [31] gave a famous characterization of unitarily invariant
matrix norms (that is, norms f on Cp×q satisfying f(uxv) = f(x) for all unitary
matrices u and v and matrices x in Cp×q). His result states that such norms are those
functions of the form g ◦ �, where the map

x ∈ Cp×q 7→ �(x) ∈ Rp

has components the singular values �1(x) ≥ �2(x) ≥ · · · ≥ �p(x) of x (assuming
p ≤ q) and g is a norm on Rp, invariant under sign changes and permutations of
components. Furthermore, he showed the respective dual norms satisfy

(g ◦ �)D = gD ◦ � (1.1)

(where we regard Cp×q as a Euclidean space with inner product 〈x; y〉=Re tr x∗y for
matrices x and y in Cp×q).
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This simple duality relationship helps us calculate the subdi�erentials of these norms
(in the sense of convex analysis [24]). Speci�cally,

y ∈ @(g ◦ �)(x)

holds if and only if there are vectors w and z in Rp satisfying z ∈ @g(w); x=u(Diagw)v
and y= u(Diag z)v (see [32,33]). Such analysis also helps us understand the geometry
of the corresponding unit balls: for example, x is an extreme (exposed, smooth) point
of the unit ball of g ◦ � if and only if �(x) is an extreme (exposed, smooth) point of
the unit ball of g (see [1] and also [34,35,7,6,8]).
Of interest in the current intensive study of ‘semide�nite programming’ (see for

example [29]), although considerably less well known than von Neumann’s result, is
a 1957 theorem of Davis [4] giving an analogous characterization of weakly unitarily
invariant convex functions on the space Hn of n × n Hermitian matrices (that is,
functions f on Hn satisfying f(u∗xu) =f(x) for all unitary matrices u and Hermitian
matrices x). Davis’s result states that such functions are those of the form g ◦ �, where
the map

x ∈ Hn 7→ �(x) ∈ Rn

has as components the eigenvalues �1(x) ≥ �2(x) ≥ · · · ≥ �n(x) of x and g is a convex
function, invariant under coordinate permutations. Functions g◦� are sometimes called
spectral [11].
It transpires that a duality relationship analogous to (1.1) also exists in this setting

(with the same matrix inner product):

(g ◦ �)∗ = g∗ ◦ �; (1.2)

where ∗ denotes the Legendre–Fenchel conjugate [24]. Furthermore, an analogous char-
acterization of subgradients holds, and we can analyze the geometry of ‘spectral’ convex
sets (sets determined by eigenvalue properties) in a parallel manner to our previous
summary for unitarily invariant unit balls. These results appear in [19].
It seems clear that these important families of results are closely related: a unifying

framework should help our understanding and perhaps lead to interesting generaliza-
tions. That unifying framework is the aim of this paper. The result is a surprising and
elegant interplay between semisimple Lie theory and classical convex analysis.

2. The Kostant convexity theorem

In both von Neumann’s characterization of unitarily invariant norms and Davis’s
characterization of weakly unitarily invariant convex functions, a key feature is the re-
lationship between a convex matrix function and its restriction to the diagonal matrices.
This suggests that a Cartan subspace of a semisimple Lie algebra is the natural set-
ting, and in this framework the central result about convexity is the Kostant convexity
theorem outlined below.



A.S. Lewis / Nonlinear Analysis 42 (2000) 813–820 815

We begin by �xing some notation. Consider a real semisimple Lie algebra g with a
�xed Cartan decomposition

g= t ⊕ p:
In this decomposition, t is a subalgebra of g tangent to a maximal compact subgroup
K of the adjoint group Int(g), and the vector space sum is direct with respect to the
Killing form (denoted (·; ·)). We will follow the notation and basic results of Onishchik
and Vinberg [23, Chapter 5, Sections 3; 4].
We write Ad : K → GL(p) and ad : g → GL(p) for the natural adjoint representa-

tions. A subalgebra a of g is R-diagonalizable if g has a basis with respect to which
every operator ad x (for x in a) is represented as a diagonal matrix. Given such a sub-
algebra a contained in the Cartan subspace p, we de�ne the normalizer and centralizer
subgroups

NK (a) = {k ∈ K | (Ad k)a = a};
ZK (a) = {k ∈ K | (Ad k)x = x; for all x in a}:

The subalgebra a with inner product (·; ·) is a Euclidean space, and (with a slight abuse
of notation) the restricted homomorphism Ad : NK (a)→ GL(a) has kernel ZK (a) and
range the associated Weyl group

W ' NK (a)
ZK (a)

(see [23, p. 278]).
Let us �x a closed Weyl chamber D in a. Since for any element x of p, the orbit

(AdK)x intersects a in a W -orbit (see for example [14, p. 285]), we can make the
following de�nition.

De�nition 2.1. For any element x of the Cartan subspace p, let (x) denote the unique
element of the closed Weyl chamber D which is conjugate to x under AdK .

Let Pa : p→ a denote the orthogonal projection with respect to the Killing form.

Theorem 2.2 (Kostant [17]). Let x be an element of p. Then the projected orbit
Pa((AdK)x) is the convex hull of the W -orbit of (x).

For clarity, consider the following example.

Example 2.3 (Spectral Decomposition). Let g=sl(n;R), the special linear Lie algebra
of all n×n real matrices with trace zero. The usual Cartan decomposition has t=so(n),
the skew-symmetric matrices, and p=pn, the symmetric matrices with trace zero, which
corresponds to the maximal compact subgroup K=SO(n), the special orthogonal group.
The Killing form is given by (x; z) = 2n tr(xz) (see for example [28, p. 268] or [23,
p. 310]). We can choose the maximal subalgebra a as the diagonal matrices with trace
zero.
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Now standard calculations [28, p. 268] give the normalizer NK (a) as the group of
matrices with determinant 1 and each row and column having exactly one nonzero entry
of ±1, and the centralizer ZK (a) as the group of diagonal matrices with determinant
1 and diagonal entries ±1. Hence the Weyl group acts on a by permuting diagonal
entries: W is isomorphic to Pn, the group of n× n permutation matrices.
Let the closed Weyl chamber D be the set of diagonal matrices with trace zero and

nonincreasing diagonal entries. Then, in the notation of De�nition 2.1, for any matrix x
in pn; (x) is just Diag �(x), the diagonal matrix with diagonal entries the eigenvalues
of x arranged in nonincreasing order.
An easy calculation shows the projection Pa acts on a matrix in pn by setting

o�-diagonal entries to zero. Thus Kostant’s theorem specializes to the following re-
sult of Horn [5], related to earlier work of Schur [25] – see [21, pp. 22, 218]. (The
map diag : pn → Rn extracts the diagonal of a matrix.)

Corollary 2.4 (Horn and Johnson [15]). For any real symmetric matrix x with trace
zero;

diag{uTxu | u ∈ SO(n)}= conv(Pn�(x)):

Returning to our goal of unifying the results in the introduction, the convexity char-
acterizations in both cases are immediate consequences of the following general result.
We say a function g on a is W-invariant if g is constant on any W-orbit, and we make
an analogous de�nition for (AdK)-invariant functions on p: clearly such functions are
exactly those of the form g ◦ , where g is W -invariant. The next result characterizes
convexity for such functions (see [18] and [30, Theorem 1:2], extending earlier results
in [3]).

Theorem 2.5 (Invariant convex functions). Let g : a→ [−∞;+∞] be a W-invariant
function. Then g is convex if and only if g ◦  is convex on p.

The proof is an easy consequence of Kostant’s theorem: if g is convex we deduce
g◦◦Pa ≤ g◦, and the convexity of g◦ follows easily. (The converse is immediate.)
Davis’s characterization of weakly unitarily invariant convex functions follows imme-

diately by applying this theorem to the Hermitian version of the Spectral Decomposition
Example 2.3). The substantial part of von Neumann’s characterization (namely the con-
vexity of g◦�) follows by considering the usual Cartan decomposition of su(p; q), the
Lie algebra of trace zero, (p+ q)× (p+ q) complex matrices of the form(

u v

v∗ w

)

with u and w, respectively, p×p and q× q skew-Hermitian, into the subalgebra with
v= 0 and the Cartan subspace p with u= 0 and w = 0.
What about the duality relationships (1.1) and(1.2), the subgradient characterizations,

and the extremal geometric structure we outlined in the introduction? We see in the
next section that the framework for Kostant’s theorem also su�ces to explain these
results.
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More recent work has extended Kostant’s fundamental framework in various direc-
tions [2,12,13,16]. However, since the original setting su�ces to explain the examples
of primary interest in optimization and matrix analysis, we do not pursue these re�ne-
ments.

3. Group invariant convex analysis

The more sophisticated convex-analytic results outlined in the introduction arise ele-
gantly by combining the framework of the Kostant convexity theorem with a straight-
forward algebraic structure introduced in [20].

De�nition 3.1. Given a Euclidean space (E; 〈·; ·〉), a closed subgroup G of the orthog-
onal group O(E), and a G-invariant map � : E → E, we say (E;G; �) is a normal
decomposition system if
(i) for any point x in E there is a transformation  in G satisfying  (x) = �(x),

and
(ii) any points d and e in E satisfy the inequality

〈d; e〉 ≤ 〈�(d); �(e)〉: (3.2)

This structure in fact corresponds exactly with the idea of a group-induced cone
preordering [22, De�nition 2:2], and an Eaton triple [27]: the range of � is the cone
inducing the ordering.
We return to the notation of the previous section.

Proposition 3.3. (a; W; |a) is a normal decomposition system.

Proof. We just need to check inequality (3.2), and this is [17, Lemma 3:2].

In fact, as proved in [9], (E;W; ) is a normal decomposition system whenever W
is a �nite reection group on E and  maps W -orbits to their (unique) intersection
with a �xed closed Weyl chamber: see also [18]. Indeed, all normal decomposition
systems (E;G; �) with the group G �nite must have this form, by [26, Theorem 4:1].
The characterization problem for general groups G is studied in [22].

Proposition 3.4. (p;AdK; ) is a normal decomposition system.

Proof. Again we just need to check inequality (3.2), and this is an easy consequence of
Kostant’s theorem and the previous proposition. A more direct proof simply considers
the stationarity condition at an optimal solution of the variational problem

max(x; (AdK)y)

for �xed points x and y in p: see [18].

A similar result holds for compact Lie groups: see [27, Example 2].
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In the Spectral Decomposition Example (2.3), inequality (3.2) becomes the funda-
mental inequality, for n× n symmetric matrices x and y,

tr(xy) ≤ �(x)T�(y);

(see for example [15]) while in the case g = su(p; q) discussed at the end of the
previous section we obtain von Neumann’s famous inequality

Re tr(x∗y) ≤ �(x)T�(y) for all x; y ∈ Cp×q:

With these two propositions in place we can now apply all the consequences of [20,
Assumption 4.1]. The following list is not exclusive but covers the results outlined in
the introduction. By the remark above, a similar result holds for compact Lie groups.

Theorem 3.5 (Conjugates and subgradients). Any W-invariant function g : a→ [−∞;
+∞] satis�es

(g ◦ )∗ = g∗ ◦ :

For any elements x and y of p with g((x)) �nite; y ∈ @(g◦ )(x) holds if and only if
(y) ∈ @g((x)) holds and there exists an element k of the group K such that x and
y both lie in (Ad k)D. Furthermore; g ◦  is convex; or essentially strictly convex; or
essentially smooth [24] if and only if g is likewise.

Proof. Apply Theorems 4:4, 4:5 and Corollary 6:2 in [20].

We say a subset C of a Euclidean space is invariant under a group G of orthogonal
linear transformations if  C = C for any transformation  in G.

Theorem 3.6 (Invariant convex sets). An (AdK)-invariant subset C of p is convex if
and only if C ∩ a is convex. In this case an element x of p is an extreme (exposed)
point of C if and only if (x) is an extreme (exposed) point of C ∩ a.

Proof. The convexity is an immediate consequence of Kostant’s theorem. (The sym-
metric matrix case for closed sets C appeared in [10].) The extremal properties follow
from Theorem 5.5 and Corollary 6:3 in [20].

Theorem 3.7 (Invariant norms). (AdK)-invariant norms on p are those functions of
the form g ◦ ; where g is a W -invariant norm on a. In this case the dual norms
satisfy

(g ◦ )D = gD ◦ ;

and an element x of p is an extreme (exposed; smooth) point of the unit ball of g ◦ 
if and only if (x) is an extreme (exposed; smooth) point of the unit ball of g: in
particular; g ◦  is a strict (smooth) norm if and only if g is likewise.

Proof. Apply [20, Theorem 6:5].
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The results in the introduction follow by considering the Lie algebras sl(n;C)R and
su(p; q). Other interesting cases arise from the other classical simple Lie algebras:
see [18].
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