gaussian identities

sam roweis

(revised July 1999)

0.1 multidimensional gaussian

a d-dimensional multidimensional gaussian (normal) density for \mathbf{x} is:

$$
\mathcal{N}(\mu, \Sigma) = (2\pi)^{-d/2} |\Sigma|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right]
$$

(1)

it has entropy:

$$
S = \frac{1}{2} \log_2 \left((2\pi e)^d |\Sigma|\right) - \text{const bits}
$$

(2)

where Σ is a symmetric positive semi-definite covariance matrix and the (unfortunate) constant is the log of the units in which \mathbf{x} is measured over the “natural units”

0.2 linear functions of a normal vector

no matter how \mathbf{x} is distributed,

$$
E[\mathbf{A}\mathbf{x} + \mathbf{y}] = \mathbf{A}(E[\mathbf{x}]) + \mathbf{y}
$$

(3a)

$$
\text{Covar}[\mathbf{A}\mathbf{x} + \mathbf{y}] = \mathbf{A}(\text{Covar}[\mathbf{x}])\mathbf{A}^T
$$

(3b)

in particular this means that for normal distributed quantities:

$$
\mathbf{x} \sim \mathcal{N}(\mu, \Sigma) \Rightarrow (\mathbf{A}\mathbf{x} + \mathbf{y}) \sim \mathcal{N}(\mathbf{A}\mu + \mathbf{y}, \mathbf{A}\Sigma\mathbf{A}^T)
$$

(4a)

$$
\mathbf{x} \sim \mathcal{N}(\mu, \Sigma) \Rightarrow \Sigma^{-1/2}(\mathbf{x} - \mu) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

(4b)

$$
\mathbf{x} \sim \mathcal{N}(\mu, \Sigma) \Rightarrow (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi^2_n
$$

(4c)
0.3 marginal and conditional distributions

Let the vector \(z = [x^T y^T]^T \) be normally distributed according to:

\[
z = \begin{bmatrix} x \\ y \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} A & C \\ C^T & B \end{bmatrix} \right)
\]

(5a)

where \(C \) is the (non-symmetric) cross-covariance matrix between \(x \) and \(y \) which has as many rows as the size of \(x \) and as many columns as the size of \(y \). Then the marginal distributions are:

\[
x \sim \mathcal{N}(a, A) \quad (5b)
\]
\[
y \sim \mathcal{N}(b, B) \quad (5c)
\]

and the conditional distributions are:

\[
x \vert y \sim \mathcal{N}(a + CB^{-1}(y - b), A - CB^{-1}C^T) \quad (5d)
\]
\[
y \vert x \sim \mathcal{N}(b + C^T A^{-1}(x - a), B - C^T A^{-1}C) \quad (5e)
\]

0.4 multiplication

The multiplication of two gaussian functions is another gaussian function (although no longer normalized). In particular,

\[
\mathcal{N}(a, A) \cdot \mathcal{N}(b, B) \propto \mathcal{N}(c, C)
\]

(6a)

where

\[
C = (A^{-1} + B^{-1})^{-1} \quad (6b)
\]
\[
c = CA^{-1}a + CB^{-1}b \quad (6c)
\]

Amazingly, the normalization constant \(z_c \) is Gaussian in either \(a \) or \(b \):

\[
z_c = (2\pi)^{-d/2} |C|^{1/2} |A|^{-1/2} |B|^{-1/2} \exp \left[-\frac{1}{2}(a^T A^{-1}a + b^T B^{-1}b - c^T C^{-1}c) \right]
\]

(6d)

\[
z_c(a) \sim \mathcal{N}((A^{-1}CA^{-1})^{-1}(A^{-1}CB^{-1})b, (A^{-1}CA^{-1})^{-1}) \quad (6e)
\]
\[
z_c(b) \sim \mathcal{N}((B^{-1}CB^{-1})^{-1}(B^{-1}CA^{-1})a, (B^{-1}CB^{-1})^{-1}) \quad (6f)
\]
0.5 quadratic forms

the expectation of a quadratic form under a gaussian is another quadratic form (plus an annoying constant). in particular, if \(x \) is gaussian distributed with mean \(m \) and variance \(S \) then,

\[
\int \frac{(x - \mu)^T \Sigma^{-1}(x - \mu)}{x} \mathcal{N}(m, S) \, dx
= (\mu - m)^T \Sigma^{-1}(\mu - m) + \text{Tr} \left[\Sigma^{-1} S \right]
\]

(7a)

if the original quadratic form has a linear function of \(x \) the result is still simple:

\[
\int \frac{(Wx - \mu)^T \Sigma^{-1}(Wx - \mu)}{x} \mathcal{N}(m, S) \, dx
= (\mu - Wm)^T \Sigma^{-1}(\mu - Wm) + \text{Tr} \left[W^T \Sigma^{-1} WS \right]
\]

(7b)

0.6 convolution

the convolution of two gaussian functions is another gaussian function (although no longer normalized). in particular,

\[
\mathcal{N}(a, A) \ast \mathcal{N}(b, B) \propto \mathcal{N}(a + b, A + B)
\]

(8)

this is a direct consequence of the fact that the Fourier transform of a gaussian is another gaussian and that the multiplication of two gaussians is still gaussian.

0.7 Fourier transform

the (inverse)Fourier transform of a gaussian function is another gaussian function (although no longer normalized). in particular,

\[
\mathcal{F}[\mathcal{N}(a, A)] \propto \mathcal{N}(jA^{-1}a, A^{-1})
\]

(9a)

\[
\mathcal{F}^{-1}[\mathcal{N}(b, B)] \propto \mathcal{N}(-jB^{-1}b, B^{-1})
\]

(9b)

where \(j = \sqrt{-1} \)
0.8 constrained maximization

the maximum over x of the quadratic form:

$$\mu^T x - \frac{1}{2} x^T A^{-1} x$$

subject to the J conditions $c_j(x) = 0$ is given by:

$$A\mu + ACA, \quad \Lambda = -4(C^T AC)C^T A\mu$$

where the jth column of C is $\partial c_j(x)/\partial x$