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Abstract

Generative adversarial networks (GANs) can implicitly learn rich distributions over
images, audio, and data which are hard to model with an explicit likelihood. We
present a practical Bayesian formulation for unsupervised and semi-supervised
learning with GANs. Within this framework, we use stochastic gradient Hamilto-
nian Monte Carlo to marginalize the weights of the generator and discriminator
networks. The resulting approach is straightforward and obtains good performance
without any standard interventions such as feature matching or mini-batch discrim-
ination. By exploring an expressive posterior over the parameters of the generator,
the Bayesian GAN avoids mode-collapse, produces interpretable and diverse candi-
date samples, and provides state-of-the-art quantitative results for semi-supervised
learning on benchmarks including SVHN, CelebA, and CIFAR-10, outperforming
DCGAN, Wasserstein GANs, and DCGAN ensembles.

1 Introduction

Learning a good generative model for high-dimensional natural signals, such as images, video
and audio has long been one of the key milestones of machine learning. Powered by the learning
capabilities of deep neural networks, generative adversarial networks (GANs) [4] and variational
autoencoders [6] have brought the field closer to attaining this goal.

GANs transform white noise through a deep neural network to generate candidate samples from
a data distribution. A discriminator learns, in a supervised manner, how to tune its parameters
so as to correctly classify whether a given sample has come from the generator or the true data
distribution. Meanwhile, the generator updates its parameters so as to fool the discriminator. As
long as the generator has sufficient capacity, it can approximate the CDF inverse-CDF composition
required to sample from a data distribution of interest. Since convolutional neural networks by design
provide reasonable metrics over images (unlike, for instance, Gaussian likelihoods), GANs using
convolutional neural networks can in turn provide a compelling implicit distribution over images.

Although GANs have been highly impactful, their learning objective can lead to mode collapse, where
the generator simply memorizes a few training examples to fool the discriminator. This pathology is
reminiscent of maximum likelihood density estimation with Gaussian mixtures: by collapsing the
variance of each component we achieve infinite likelihood and memorize the dataset, which is not
useful for a generalizable density estimate. Moreover, a large degree of intervention is required to
stabilize GAN training, including feature matching, label smoothing, and mini-batch discrimination
[9, 10]. To help alleviate these practical difficulties, recent work has focused on replacing the
Jensen-Shannon divergence implicit in standard GAN training with alternative metrics, such as
f-divergences [8] or Wasserstein divergences [1]. Much of this work is analogous to introducing
various regularizers for maximum likelihood density estimation. But just as it can be difficult to
choose the right regularizer, it can also be difficult to decide which divergence we wish to use for
GAN training.

It is our contention that GANs can be improved by fully probabilistic inference. Indeed, a posterior
distribution over the parameters of the generator could be broad and highly multimodal. GAN
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training, which is based on mini-max optimization, always estimates this whole posterior distribution
over the network weights as a point mass centred on a single mode. Thus even if the generator
does not memorize training examples, we would expect samples from the generator to be overly
compact relative to samples from the data distribution. Moreover, each mode in the posterior over the
network weights could correspond to wildly different generators, each with their own meaningful
interpretations. By fully representing the posterior distribution over the parameters of both the
generator and discriminator, we can more accurately model the true data distribution. The inferred
data distribution can then be used for accurate and highly data-efficient semi-supervised learning.

In this paper, we propose a simple Bayesian formulation for end-to-end unsupervised and semi-
supervised learning with generative adversarial networks. Within this framework, we marginalize the
posteriors over the weights of the generator and discriminator using stochastic gradient Hamiltonian
Monte Carlo. We interpret data samples from the generator, showing exploration across several
distinct modes in the generator weights. We also show data and iteration efficient learning of the true
distribution. We also demonstrate state of the art semi-supervised learning performance on several
benchmarks, including SVHN, MNIST, CIFAR-10, and CelebA. The simplicity of the proposed
approach is one of its greatest strengths: inference is straightforward, interpretable, and stable. Indeed
all of the experimental results were obtained without feature matching or any ad-hoc techniques.

We have made code and tutorials available at
https://github.com/andrewgordonwilson/bayesgan.

2 Bayesian GANs

Given a dataset D = {x(i)} of variables x(i) ∼ pdata(x
(i)), we wish to estimate pdata(x). We

transform white noise z ∼ p(z) through a generator G(z; θg), parametrized by θg, to produce
candidate samples from the data distribution. We use a discriminator D(x; θd), parametrized by θd,
to output the probability that any x comes from the data distribution. Our considerations hold for
general G and D, but in practice G and D are often neural networks with weight vectors θg and θd.

By placing distributions over θg and θd, we induce distributions over an uncountably infinite space of
generators and discriminators, corresponding to every possible setting of these weight vectors. The
generator now represents a distribution over distributions of data. Sampling from the induced prior
distribution over data instances proceeds as follows:
(1) Sample θg ∼ p(θg); (2) Sample z(1), . . . , z(n) ∼ p(z); (3) x̃(j) = G(z(j); θg) ∼ pgenerator(x).
For posterior inference, we propose unsupervised and semi-supervised formulations in Sec 2.1 - 2.2.

We note that in an exciting recent pre-print Tran et al. [11] briefly mention using a variational approach
to marginalize weights in a generative model, as part of a general exposition on hierarchical implicit
models (see also Karaletsos [5] for a nice theoretical exploration of related topics in graphical model
message passing). While this related work is promising, our approach has several key differences:
(1) our GAN representation is quite different, preserving a clear competition between generator and
discriminator; (2) our representation for the posteriors is straightforward, requires no interventions,
provides novel formulations for unsupervised and semi-supervised learning, and has state of the art
results on many benchmarks. Conversely, Tran et al. [11] is only pursued for fully supervised learning
on a few small datasets; (3) we use sampling to explore a full posterior over the weights, whereas
Tran et al. [11] perform a variational approximation centred on one of the modes of the posterior (and
due to the properties of the KL divergence is prone to an overly compact representation of even that
mode); (4) we marginalize z in addition to θg, θd; and (5) the ratio estimation approach in [11] limits
the size of the neural networks they can use, whereas in our experiments we can use comparably deep
networks to maximum likelihood approaches. In the experiments we illustrate the practical value of
our formulation.

Although the high level concept of a Bayesian GAN has been informally mentioned in various
contexts, to the best of our knowledge we present the first detailed treatment of Bayesian GANs,
including novel formulations, sampling based inference, and rigorous semi-supervised learning
experiments.
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2.1 Unsupervised Learning

To infer posteriors over θg , θd, we can iteratively sample from the following conditional posteriors:

p(θg|z, θd) ∝

(
ng∏
i=1

D(G(z(i); θg); θd)

)
p(θg|αg) (1)

p(θd|z,X, θg) ∝
nd∏
i=1

D(x(i); θd)×
ng∏
i=1

(1−D(G(z(i); θg); θd))× p(θd|αd) . (2)

p(θg|αg) and p(θd|αd) are priors over the parameters of the generator and discriminator, with
hyperparameters αg and αd, respectively. nd and ng are the numbers of mini-batch samples for the
discriminator and generator, respectively.1 We define X = {x(i)}nd

i=1.

We can intuitively understand this formulation starting from the generative process for data samples.
Suppose we were to sample weights θg from the prior p(θg|αg), and then condition on this sample
of the weights to form a particular generative neural network. We then sample white noise z from
p(z), and transform this noise through the network G(z; θg) to generate candidate data samples.
The discriminator, conditioned on its weights θd, outputs a probability that these candidate samples
came from the data distribution. Eq. (1) says that if the discriminator outputs high probabilities, then
the posterior p(θg|z, θd) will increase in a neighbourhood of the sampled setting of θg (and hence
decrease for other settings). For the posterior over the discriminator weights θd, the first two terms of
Eq. (2) form a discriminative classification likelihood, labelling samples from the actual data versus
the generator as belonging to separate classes. And the last term is the prior on θd.

Marginalizing the noise In prior work, GAN updates are implicitly conditioned on a set of noise
samples z. We can instead marginalize z from our posterior updates using simple Monte Carlo:

p(θg|θd) =
∫
p(θg, z|θd)dz =

∫
p(θg|z, θd)

=p(z)︷ ︸︸ ︷
p(z|θd) dz ≈

1

Jg

Jg∑
j=1

p(θg|z(j), θd) , z(j) ∼ p(z)

By following a similar derivation, p(θd|θg) ≈ 1
Jd

∑Jd

j p(θd|z(j),X, θg), z(j) ∼ p(z).

This specific setup has several nice features for Monte Carlo integration. First, p(z) is a white noise
distribution from which we can take efficient and exact samples. Secondly, both p(θg|z, θd) and
p(θd|z,X, θg), when viewed as a function of z, should be reasonably broad over z by construction,
since z is used to produce candidate data samples in the generative procedure. Thus each term in the
simple Monte Carlo sum typically makes a reasonable contribution to the total marginal posterior
estimates. We do note, however, that the approximation will typically be worse for p(θd|θg) due to
the conditioning on a minibatch of data in Equation 2.

Classical GANs as maximum likelihood Our proposed probabilistic approach is a natural
Bayesian generalization of the classical GAN: if one uses uniform priors for θg and θd, and per-
forms iterative MAP optimization instead of posterior sampling over Eq. (1) and (2), then the local
optima will be the same as for Algorithm 1 of Goodfellow et al. [4]. We thus sometimes refer
to the classical GAN as the ML-GAN. Moreover, even with a flat prior, there is a big difference
between Bayesian marginalization over the whole posterior versus approximating this (often broad,
multimodal) posterior with a point mass as in MAP optimization (see Figure 3, Appendix).

Posterior samples By iteratively sampling from p(θg|θd) and p(θd|θg) at every step of an epoch
one can, in the limit, obtain samples from the approximate posteriors over θg and θd. Having such
samples can be very useful in practice. Indeed, one can use different samples for θg to alleviate
GAN collapse and generate data samples with an appropriate level of entropy, as well as forming
a committee of generators to strengthen the discriminator. The samples for θd in turn form a
committee of discriminators which amplifies the overall adversarial signal, thereby further improving
the unsupervised learning process. Arguably, the most rigorous method to assess the utility of these
posterior samples is to examine their effect on semi-supervised learning, which is a focus of our
experiments in Section 4.

1For mini-batches, one must make sure the likelihood and prior are scaled appropriately. See Appendix A.1.
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2.2 Semi-supervised Learning

We extend the proposed probabilistic GAN formalism to semi-supervised learning. In the semi-
supervised setting for K-class classification, we have access to a set of n unlabelled observations,
{x(i)}, as well as a (typically much smaller) set of ns observations, {(x(i)

s , y
(i)
s )}Ns

i=1, with class
labels y(i)s ∈ {1, . . . ,K}. Our goal is to jointly learn statistical structure from both the unlabelled
and labelled examples, in order to make much better predictions of class labels for new test examples
x∗ than if we only had access to the labelled training inputs.

In this context, we redefine the discriminator such that D(x(i) = y(i); θd) gives the probability that
sample x(i) belongs to class y(i). We reserve the class label 0 to indicate that a data sample is the
output of the generator. We then infer the posterior over the weights as follows:

p(θg|z, θd) ∝

(
ng∏
i=1

K∑
y=1

D(G(z(i); θg) = y; θd)

)
p(θg|αg) (3)

p(θd|z,X,ys, θg) ∝
nd∏
i=1

K∑
y=1

D(x(i) = y; θd)

ng∏
i=1

D(G(z(i); θg) = 0; θd)

Ns∏
i=1

(D(x(i)
s = y(i)s ; θd))p(θd|αd)

(4)

During every iteration we use ng samples from the generator, nd unlabeled samples, and all of the
Ns labeled samples, where typically Ns � n. As in Section 2.1, we can approximately marginalize
z using simple Monte Carlo sampling.

Much like in the unsupervised learning case, we can marginalize the posteriors over θg and θd. To
compute the predictive distribution for a class label y∗ at a test input x∗ we use a model average over
all collected samples with respect to the posterior over θd:

p(y∗|x∗,D) =
∫
p(y∗|x∗, θd)p(θd|D)dθd ≈

1

T

T∑
k=1

p(y∗|x∗, θ
(k)
d ) , θ

(k)
d ∼ p(θd|D) . (5)

We will see that this model average is effective for boosting semi-supervised learning performance.
In Section 3 we present an approach to MCMC sampling from the posteriors over θg and θd.

3 Posterior Sampling with Stochastic Gradient HMC

In the Bayesian GAN, we wish to marginalize the posterior distributions over the generator and
discriminator weights, for unsupervised learning in 2.1 and semi-supervised learning in 2.2. For this
purpose, we use Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [3] for posterior sampling.
The reason for this choice is three-fold: (1) SGHMC is very closely related to momentum-based
SGD, which we know empirically works well for GAN training; (2) we can import parameter settings
(such as learning rates and momentum terms) from SGD directly into SGHMC; and most importantly,
(3) many of the practical benefits of a Bayesian approach to GAN inference come from exploring
a rich multimodal distribution over the weights θg of the generator, which is enabled by SGHMC.
Alternatives, such as variational approximations, will typically centre their mass around a single
mode, and thus provide a unimodal and overly compact representation for the distribution, due to
asymmetric biases of the KL-divergence.

The posteriors in Equations 3 and 4 are both amenable to HMC techniques as we can compute the
gradients of the loss with respect to the parameters we are sampling. SGHMC extends HMC to the
case where we use noisy estimates of such gradients in a manner which guarantees mixing in the
limit of a large number of minibatches. For a detailed review of SGHMC, please see Chen et al. [3].
Using the update rules from Eq. (15) in Chen et al. [3], we propose to sample from the posteriors
over the generator and discriminator weights as in Algorithm 1. Note that Algorithm 1 outlines
standard momentum-based SGHMC: in practice, we found it help to speed up the “burn-in” process
by replacing the SGD part of this algorithm with Adam for the first few thousand iterations, after
which we revert back to momentum-based SGHMC. As suggested in Appendix G of Chen et al. [3],
we employed a learning rate schedule which decayed according to γ/d where d is set to the number
of unique “real” datapoints seen so far. Thus, our learning rate schedule converges to γ/N in the
limit, where we have defined N = |D|.
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Algorithm 1 One iteration of sampling for the Bayesian GAN. α is the friction term for SGHMC, η is the
learning rate. We assume that the stochastic gradient discretization noise term β̂ is dominated by the main
friction term (this assumption constrains us to use small step sizes). We take Jg and Jd simple MC samples for
the generator and discriminator respectively, and M SGHMC samples for each simple MC sample. We rescale
to accommodate minibatches as in Appendix A.1.

• Represent posteriors with samples {θj,mg }Jg,M
j=1,m=1 and {θj,md }Jd,M

j=1,m=1 from previous iteration
for number of MC iterations Jg do
• Sample Jg noise samples {z(1), . . . , z(Jg)} from noise prior p(z). Each z(i) has ng samples.
• Update sample set representing p(θg|θd) by running SGHMC updates for M iterations:

θj,mg ← θj,mg + v; v← (1− α)v + η

 Jg∑
i=1

Jd∑
k=1

∂ log p(θg|z(i), θk,md )

∂θg

+ n; n ∼ N (0, 2αηI)

• Append θj,mg to sample set.
end for
for number of MC iterations Jd do
• Sample minibatch of Jd noise samples {z(1), . . . , z(Jd)} from noise prior p(z).
• Sample minibatch of nd data samples x.
• Update sample set representing p(θd|z, θg) by running SGHMC updates for M iterations:

θj,md ← θj,md + v; v← (1− α)v + η

 Jd∑
i=1

Jg∑
k=1

∂ log p(θd|z(i),x, θk,mg )

∂θd

+ n; n ∼ N (0, 2αηI)

• Append θj,md to sample set.
end for

4 Experiments

We evaluate our proposed Bayesian GAN (henceforth titled BayesGAN) on six benchmarks (synthetic,
MNIST, CIFAR-10, SVHN, and CelebA) each with four different numbers of labelled examples. We
consider multiple alternatives, including: the DCGAN [9], the recent Wasserstein GAN (W-DCGAN)
[1], an ensemble of ten DCGANs (DCGAN-10) which are formed by 10 random subsets 80% the
size of the training set, and a fully supervised convolutional neural network. We also compare to the
reported MNIST result for the LFVI-GAN, briefly mentioned in a recent pre-print [11], where they
use fully supervised modelling on the whole dataset with a variational approximation. We interpret
many of the results from MNIST in detail in Section 4.2, and find that these observations carry
forward to our CIFAR-10, SVHN, and CelebA experiments.

For all real experiments we use a 5-layer Bayesian deconvolutional GAN (BayesGAN) for the gener-
ative model G(z|θg) (see Radford et al. [9] for further details about structure). The corresponding
discriminator is a 5-layer 2-class DCGAN for the unsupervised GAN and a 5-layer, K + 1 class
DCGAN for a semi-supervised GAN performing classification over K classes. The connectivity
structure of the unsupervised and semi-supervised DCGANs were the same as for the BayesGAN.
Note that the structure of the networks in Radford et al. [9] are slightly different from [10] (e.g. there
are 4 hidden layers and fewer filters per layer), so one cannot directly compare the results here with
those in Salimans et al. [10]. Our exact architecture specification is also given in our codebase. The
performance of all methods could be improved through further calibrating architecture design for
each individual benchmark. For the Bayesian GAN we place a N (0, 10I) prior on both the generator
and discriminator weights and approximately integrate out z using simple Monte Carlo samples. We
run Algorithm 1 for 5000 iterations and then collect weight samples every 1000 iterations and record
out-of-sample predictive accuracy using Bayesian model averaging (see Eq. 5). For Algorithm 1
we set Jg = 10, Jd = 1, M = 2, and nd = ng = 64. All experiments were performed on a single
TitanX GPU for consistency, but BayesGAN and DCGAN-10 could be sped up to approximately the
same runtime as DCGAN through multi-GPU parallelization.

5



In Table 1 we summarize the semi-supervised results, where we see consistently improved perfor-
mance over the alternatives. All runs are averaged over 10 random subsets of labeled examples for
estimating error bars on performance (Table 1 shows mean and 2 standard deviations). We also
qualitatively illustrate the ability for the Bayesian GAN to produce complementary sets of data
samples, corresponding to different representations of the generator produced by sampling from the
posterior over the generator weights (Figures 1, 2, 6). The supplement also contains additional plots
of accuracy per epoch and accuracy vs runtime for semi-supervised experiments. We emphasize
that all of the alternatives required the special techniques described in Salimans et al. [10] such as
mini-batch discrimination, whereas the proposed Bayesian GAN needed none of these techniques.

4.1 Synthetic Dataset

We present experiments on a multi-modal synthetic dataset to test the ability to infer a multi-modal
posterior p(θg|D). This ability not only helps avoid the collapse of the generator to a couple training
examples, an instance of overfitting in regular GAN training, but also allows one to explore a set of
generators with different complementary properties, harmonizing together to encapsulate a rich data
distribution. We generate D-dimensional synthetic data as follows:

z ∼ N (0, 10 ∗ Id), A ∼ N (0, ID×d), x = Az+ ε, ε ∼ N (0, 0.01 ∗ ID), d� D

We then fit both a regular GAN and a Bayesian GAN to such a dataset with D = 100 and d = 2. The
generator for both models is a two-layer neural network: 10-1000-100, fully connected, with ReLU
activations. We set the dimensionality of z to be 10 in order for the DCGAN to converge (it does not
converge when d = 2, despite the inherent dimensionality being 2!). Consistently, the discriminator
network has the following structure: 100-1000-1, fully-connected, ReLU activations. For this dataset
we place an N (0, I) prior on the weights of the Bayesian GAN and approximately integrate out z
using J = 100 Monte-Carlo samples. Figure 1 shows that the Bayesian GAN does a much better
job qualitatively in generating samples (for which we show the first two principal components), and
quantitatively in terms of Jensen-Shannon divergence (JSD) to the true distribution (determined
through kernel density estimates). In fact, the DCGAN (labelled ML GAN as per Section 2) begins to
eventually increase in testing JSD after a certain number of training iterations, which is reminiscent
of over-fitting. When D = 500, we still see good performance with the Bayesian GAN. We also see,
with multidimensional scaling [2], that samples from the posterior over Bayesian generator weights
clearly form multiple distinct clusters, indicating that the SGHMC sampling is exploring multiple
distinct modes, thus capturing multimodality in weight space as well as in data space.

4.2 MNIST

MNIST is a well-understood benchmark dataset consisting of 60k (50k train, 10k test) labeled images
of hand-written digits. Salimans et al. [10] showed excellent out-of-sample performance using only
a small number of labeled inputs, convincingly demonstrating the importance of good generative
modelling for semi-supervised learning. Here, we follow their experimental setup for MNIST.

We evaluate the Bayesian DCGAN for semi-supervised learning using Ns = {20, 50, 100, 200}
labelled training examples. We see in Table 1 that the Bayesian GAN has improved accuracy over the
DCGAN, the Wasserstein GAN, and even an ensemble of 10 DCGANs! Moreover, it is remarkable
that the Bayesian GAN with only 100 labelled training examples (0.2% of the training data) is able to
achieve 99.3% testing accuracy, which is comparable with a state of the art fully supervised method
using all 50, 000 training examples! We show a fully supervised model using ns samples to generally
highlight the practical utility of semi-supervised learning.

Moreover, Tran et al. [11] showed that a fully supervised LFVI-GAN, on the whole MNIST training
set (50, 000 labelled examples) produces 140 classification errors – almost twice the error of our
proposed Bayesian GAN approach using only ns = 100 (0.2%) labelled examples! We suspect
this difference largely comes from (1) the simple practical formulation of the Bayesian GAN in
Section 2, (2) marginalizing z via simple Monte Carlo, and (3) exploring a broad multimodal
posterior distribution over the generator weights with SGHMC with our approach versus a variational
approximation (prone to over-compact representations) centred on a single mode.

We can also see qualitative differences in the unsupervised data samples from our Bayesian DCGAN
and the standard DCGAN in Figure 2. The top row shows sample images produced from six generators
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Figure 1: Left: Samples drawn from pdata(x) and visualized in 2-D after applying PCA. Right 2 columns:
Samples drawn from pMLGAN(x) and pBGAN(x) visualized in 2D after applying PCA. The data is inherently
2-dimensional so PCA can explain most of the variance using 2 principal components. It is clear that the
Bayesian GAN is capturing all the modes in the data whereas the regular GAN is unable to do so. Right:
(Top 2) Jensen-Shannon divergence between pdata(x) and p(x; θ) as a function of the number of iterations of
GAN training for D = 100 (top) and D = 500 (bottom). The divergence is computed using kernel density
estimates of large sample datasets drawn from pdata(x) and p(x; θ), after applying dimensionality reduction
to 2-D (the inherent dimensionality of the data). In both cases, the Bayesian GAN is far more effective at
minimizing the Jensen-Shannon divergence, reaching convergence towards the true distribution, by exploring
a full distribution over generator weights, which is not possible with a maximum likelihood GAN (no matter
how many iterations). (Bottom) The sample set {θkg} after convergence viewed in 2-D using Multidimensional
Scaling (using a Euclidean distance metric between weight samples) [2]. One can clearly see several clusters,
meaning that the SGHMC sampling has discovered pronounced modes in the posterior over the weights.

produced from six samples over the posterior of the generator weights, and the bottom row shows
sample data images from a DCGAN. We can see that each of the six panels in the top row have
qualitative differences, almost as if a different person were writing the digits in each panel. Panel
1 (top left), for example, is quite crisp, while panel 3 is fairly thick, and panel 6 (top right) has
thin and fainter strokes. In other words, the Bayesian GAN is learning different complementary
generative hypotheses to explain the data. By contrast, all of the data samples on the bottom row
from the DCGAN are homogenous. In effect, each posterior weight sample in the Bayesian GAN
corresponds to a different style, while in the standard DCGAN the style is fixed. This difference
is further illustrated for all datasets in Figure 6 (supplement). Figure 3 (supplement) also further
emphasizes the utility of Bayesian marginalization versus optimization, even with vague priors.

However, we do not necessarily expect high fidelity images from any arbitrary generator sampled
from the posterior over generators; in fact, such a generator would probably have less posterior
probability than the DCGAN, which we show in Section 2 can be viewed as a maximum likelihood
analogue of our approach. The advantage in the Bayesian approach comes from representing a whole
space of generators alongside their posterior probabilities.

Practically speaking, we also stress that for convergence of the maximum-likelihood DCGAN we had
to resort to using tricks including minibatch discrimination, feature normalization and the addition of
Gaussian noise to each layer of the discriminator. The Bayesian DCGAN needed none of these tricks.
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Table 1: Detailed supervised and semi-supervised learning results for all datasets. In almost all experiments
BayesGAN outperforms DCGAN and W-DCGAN substantially, and typically even outperforms ensembles of
DCGANs. The runtimes, per epoch, in minutes, are provided in rows including the dataset name. While all
experiments were performed on a single GPU, note that DCGAN-10 and BayesGAN methods can be sped up
straightforwardly using multiple GPUs to obtain a similar runtime to DCGAN. Note also that the BayesGAN is
generally much more efficient per epoch than the alternatives, as per Figure 4. Results are averaged over 10
random supervised subsets ± 2 stdev. Standard train/test splits are used for MNIST, CIFAR-10 and SVHN. For
CelebA we use a test set of size 10k. Test error rates are across the entire test set.

Ns No. of misclassifications for MNIST. Test error rate for others.

Supervised DCGAN W-DCGAN DCGAN-10 BayesGAN

MNIST N=50k, D = (28, 28) 14 15 114 32

20 — 1823± 412 1687± 387 1087 ± 564 1432± 487
50 — 453± 110 490± 170 189 ± 103 332± 172

100 2134± 525 128± 11 156± 17 97± 8.2 79 ± 5.8
200 1389± 438 95± 3.2 91± 5.2 78± 2.8 74 ± 1.4

CIFAR-10 N=50k, D = (32, 32, 3) 18 19 146 68

1000 63.4± 2.6 58.2± 2.8 57.1± 2.4 31.1 ± 2.5 32.7± 5.2
2000 56.1± 2.1 47.5± 4.1 49.8± 3.1 29.2± 1.2 26.2 ± 4.8
4000 51.4± 2.9 40.1± 3.3 38.1± 2.9 27.4± 3.2 23.4 ± 3.7
8000 47.2± 2.2 29.3± 2.8 27.4± 2.5 25.5± 2.4 21.1 ± 2.5

SVHN N=75k, D = (32, 32, 3) 29 31 217 81

500 53.5± 2.5 31.2± 1.8 29.4± 1.8 27.1± 2.2 22.5 ± 3.2
1000 37.3± 3.1 25.5± 3.3 25.1± 2.6 18.3± 1.7 12.9 ± 2.5
2000 26.3± 2.1 22.4± 1.8 23.3± 1.2 16.7± 1.8 11.3 ± 2.4
4000 20.8± 1.8 20.4± 1.2 19.4± 0.9 14.0± 1.4 8.7 ± 1.8

CelebA N=100k, D = (50, 50, 3) 103 98 649 329

1000 53.8± 4.2 52.3± 4.2 51.2± 5.4 47.3± 3.5 33.4 ± 4.7
2000 36.7± 3.2 37.8± 3.4 39.6± 3.5 31.2± 1.8 31.8 ± 4.3
4000 34.3± 3.8 31.5± 3.2 30.1± 2.8 29.3 ± 1.5 29.4± 3.4
8000 31.1± 4.2 29.5± 2.8 27.6± 4.2 26.4± 1.1 25.3 ± 2.4

This robustness arises from a Gaussian prior over the weights which provides a useful inductive bias,
and due to the MCMC sampling procedure which alleviates the risk of collapse and helps explore
multiple modes (and uncertainty within each mode). To be balanced, we also stress that in practice the
risk of collapse is not fully eliminated – indeed, some samples from p(θg|D) still produce generators
that create data samples with too little entropy. In practice, sampling is not immune to becoming
trapped in sharply peaked modes. We leave further analysis for future work.

Figure 2: Top: Data samples from six different generators corresponding to six samples from the posterior over
θg . The data samples show that each explored setting of the weights θg produces generators with complementary
high-fidelity samples, corresponding to different styles. The amount of variety in the samples emerges naturally
using the Bayesian approach. Bottom: Data samples from a standard DCGAN (trained six times). By contrast,
these samples are homogenous in style.
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4.3 CIFAR-10

CIFAR-10 is also a popular benchmark dataset [7], with 50k training and 10k test images, which is
harder to model than MNIST since the data are 32x32 RGB images of real objects. Figure 6 shows
datasets produced from four different generators corresponding to samples from the posterior over
the generator weights. As with MNIST, we see meaningful qualitative variation between the panels.
In Table 1 we also see again (but on this more challenging dataset) that using Bayesian GANs as a
generative model within the semi-supervised learning setup significantly decreases test set error over
the alternatives, especially when ns � n.

4.4 SVHN

The StreetView House Numbers (SVHN) dataset consists of RGB images of house numbers taken
by StreetView vehicles. Unlike MNIST, the digits significantly differ in shape and appearance. The
experimental procedure closely followed that for CIFAR-10. There are approximately 75k training
and 25k test images. We see in Table 1 a particularly pronounced difference in performance between
BayesGAN and the alternatives. Data samples are shown in Figure 6.

4.5 CelebA

The large CelebA dataset contains 120k celebrity faces amongst a variety of backgrounds (100k
training, 20k test images). To reduce background variations we used a standard face detector [12] to
crop the faces into a standard 50× 50 size. Figure 6 shows data samples from the trained Bayesian
GAN. In order to assess performance for semi-supervised learning we created a 32-class classification
task by predicting a 5-bit vector indicating whether or not the face: is blond, has glasses, is male, is
pale and is young. Table 1 shows the same pattern of promising performance for CelebA.

5 Discussion

By exploring rich multimodal distributions over the weight parameters of the generator, the Bayesian
GAN can capture a diverse set of complementary and interpretable representations of data. We have
shown that such representations can enable state of the art performance on semi-supervised problems,
using a simple inference procedure.

Effective semi-supervised learning of natural high dimensional data is crucial for reducing the
dependency of deep learning on large labelled datasets. Often labeling data is not an option, or
it comes at a high cost – be it through human labour or through expensive instrumentation (such
as LIDAR for autonomous driving). Moreover, semi-supervised learning provides a practical and
quantifiable mechanism to benchmark the many recent advances in unsupervised learning.

Although we use MCMC, in recent years variational approximations have been favoured for inference
in Bayesian neural networks. However, the likelihood of a deep neural network can be broad with
many shallow local optima. This is exactly the type of density which is amenable to a sampling based
approach, which can explore a full posterior. Variational methods, by contrast, typically centre their
approximation along a single mode and also provide an overly compact representation of that mode.
Therefore in the future we may generally see advantages in following a sampling based approach in
Bayesian deep learning. Aside from sampling, one could try to better accommodate the likelihood
functions common to deep learning using more general divergence measures (for example based on
the family of α-divergences) instead of the KL divergence in variational methods, alongside more
flexible proposal distributions.

In the future, one could also estimate the marginal likelihood of a probabilistic GAN, having integrated
away distributions over the parameters. The marginal likelihood provides a natural utility function for
automatically learning hyperparameters, and for performing principled quantifiable model comparison
between different GAN architectures. It would also be interesting to consider the Bayesian GAN in
conjunction with a non-parametric Bayesian deep learning framework, such as deep kernel learning
[13, 14]. We hope that our work will help inspire continued exploration into Bayesian deep learning.

Acknowledgements We thank Pavel Izmailov for helping to create a tutorial for the codebase and
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A Supplementary Material

In this supplementary material, we provide (1) futher details of the MCMC updates, (2) illustrate a
tutorial figure, (3) show data samples from the Bayesian GAN for SVHN, CIFAR-10, and CelebA,
and (4) give performance results as a function of iteration and runtime.

A.1 Rescaling conditional posteriors to accommodate mini-batches

The key updates in Algorithm 1 involve iteratively computing log p(θg|z, θd) and log p(θd|z,X, θg),
or log p(θd|z,X,Ds, θg) for the semi-supervised learning case (where we have defined the supervised
dataset of size Ns as Ds). When Equations (1) and (2) are evaluated on a minibatch of data, it is
necessary to scale the likelihood as follows:

log p(θg|z, θd) =

(
ng∑
i=1

logD(G(z(i); θg); θd)

)
N

ng
+ log p(θg|αg) + constant (6)

For example, as the total number of training points N increases, the likelihood should dominate the
prior. The re-scaling of the conditional posterior over θd, as well as the semi-supervised objectives,
follow similarly.
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A.2 Additional Results

Figure 3: We illustrate a multimodal posterior over the parameters of the generator. Each setting of
these parameters corresponds to a different generative hypothesis for the data. We show here samples
generated for two different settings of this weight vector, corresponding to different writing styles.
The Bayesian GAN retains this whole distribution over parameters. By contrast, a standard GAN
represents this whole distribution with a point estimate (analogous to a single maximum likelihood
solution), missing potentially compelling explanations for the data.
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BayesGAN

Figure 4: Test accuracy as a function of iteration number. We can see that after about 1000 SG-HMC
iterations, the sampler is mixing reasonably well. We also see that per iteration the Bayesian GAN
with SG-HMC is learning the data distribution more efficiently than the alternatives.
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Figure 5: Test accuracy as a function of walk-clock time.
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CIFAR10

SVHN

CelebA

Figure 6: Data samples for the CIFAR10, SVHN and CelebA datasets from four different generators
created using four different samples from the posterior over θg. Each panel corresponding to a
different θg has different qualitative properties, showing the complementary nature of the different
aspects of the distribution learned using a fully probabilistic approach.
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Figure 7: A larger set of data samples for CIFAR10 from four different generators created using four
different samples from the posterior over θg . Each panel corresponding to a different θg has different
qualitative properties, showing the complementary nature of the different aspects of the distribution
learned using a fully probabilistic approach.

Figure 8: A larger set of data samples for SVHN from four different generators created using four
different samples from the posterior over θg . Each panel corresponding to a different θg has different
qualitative properties, showing the complementary nature of the different aspects of the distribution
learned using a fully probabilistic approach.

15



Figure 9: A larger set of data samples for CelebA from four different generators created using four
different samples from the posterior over θg . Each panel corresponding to a different θg has different
qualitative properties, showing the complementary nature of the different aspects of the distribution
learned using a fully probabilistic approach.
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