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Abstract

Stochastic sampling methods are ubiquitous in statistical mechanics, Bayesian statis-

tics, and theoretical computer science. However, when the distribution that is being

sampled is multimodal, many of these techniques converge slowly, so that a great

deal of computing time is necessary to obtain reliable answers. Parallel and simu-

lated tempering are sampling methods that are designed to converge quickly even for

multimodal distributions. In this thesis, we assess the extent to which this goal is

acheived.

We give conditions under which a Markov chain constructed via parallel or simu-

lated tempering is guaranteed to be rapidly mixing, meaning that it converges quickly.

These conditions are applicable to a wide range of multimodal distributions arising in

Bayesian statistical inference and statistical mechanics. We provide lower bounds on

the spectral gaps of parallel and simulated tempering. These bounds imply a single

set of sufficient conditions for rapid mixing of both techniques. A direct consequence

of our results is rapid mixing of parallel and simulated tempering for several normal

mixture models in R
M as M increases, and for the mean-field Ising model.

We also obtain upper bounds on the convergence rates of parallel and simulated

tempering, yielding a single set of sufficient conditions for torpid mixing of both

techniques. These conditions imply torpid mixing of parallel and simulated tempering
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on a normal mixture model with unequal covariances in R
M as M increases and on

the mean-field Potts model with q ≥ 3, regardless of the number and choice of

temperatures, as well as on the mean-field Ising model if an insufficient (fixed) set of

temperatures is used. The latter result is in contrast to the rapid mixing of parallel

and simulated tempering on the mean-field Ising model with a linearly increasing set

of temperatures.
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Chapter 1

Introduction

Stochastic sampling methods have become ubiquitous in statistics, computer science,

and statistical physics. In physics, samples according to the energy function are used

to estimate the probability that a physical system in equilibrium is in a particular

configuration, the frequency with which the system changes between configurations,

and other physical quantities of interest. In Bayesian statistical model-fitting, sam-

ples from the posterior distribution of model parameters are used for simultaneous

estimation of the parameters along with the associated uncertainty, which can then

be used for prediction or for estimation of additional quantities of interest. Model

comparison (hypothesis testing) is another area of Bayesian statistics in which it is

often necessary to obtain samples from a distribution of interest. Model comparison

may be done, for instance, by drawing samples from the joint posterior distribution

of the model and the parameters.
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Another area where sampling methods are used in Bayesian statistics is in estima-

tion of missing data. One such technique is to draw samples from the joint posterior

distribution of the parameters and the missing data. This approach has an advantage

over traditional methods such as Expectation-Maximization in that it measures the

uncertainty in the missing data and incorporates that uncertainty into parameter

estimation. Missing data problems include censored data, classification, and latent

variable models such as stochastic volatility models.

For all of these applications, samples from a distribution of interest are used via

Monte Carlo integration to solve the described problem. In special cases it is possible

to draw independent samples exactly from the target distribution, for instance in con-

jugate Bayesian models; however, in general this is a difficult problem. In Bayesian

inference the target is a posterior distribution, the form of which can be complex and

which typically is only known up to a normalizing constant. In cases such as this

one, a widely-applicable approach is to construct a Markov chain having the target

distribution as its limiting distribution. Although the resulting samples are not in-

dependent, they satisfy laws of large numbers and often central limit theorems, and

thus can still be used for Monte Carlo integration (Tierney 1994; Robert and Casella

1999). Such Markov chain Monte Carlo (MCMC) methods have revolutionized com-

putation in Bayesian statistics (Gilks et al. 1996), provided significant breakthroughs

in theoretical computer science (Jerrum and Sinclair 1996), and become a staple of

physical simulations (Binder and Heermann 2002).
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Due to the variety of applications of MCMC, a number of MCMC procedures

have been developed. In Bayesian model-fitting, if the conditional posterior distri-

bution is available for each parameter then Gibbs sampling can be used (Geman

and Geman 1984; Gelfand and Smith 1990). If this is not the case, then sampling

can be performed via Metropolis-Hastings (Metropolis et al. 1953), although this

requires specification of a proposal kernel that is potentially difficult to tune. In

addition, adaptive rejection Metropolis sampling can be embedded into a Gibbs or

Metropolis-Hastings scheme (Gilks et al. 1995). The use of these methods together in

hybrid samplers is common, where the sampling method for each parameter or block

of parameters can be chosen using application-specific knowledge if that is available

(Tierney 1994).

For the problem of model selection, reversible jump provides an MCMC method

for sampling from the joint posterior distribution of the model and parameters (Green

1995). For estimation of missing data, data augmentation can be used to sample from

the joint posterior distribution of the parameters and missing data (Tanner and Wong

1987).

A common difficulty arising in the application of MCMC methods is that many

target distributions arising in statistics and statistical physics are strongly multi-

modal; in such cases a Markov chain consisting of only local moves can take an

impractically long time to reach stationarity. Even after reaching stationarity, the

chain can have very long-range dependence (slow “mixing”), which decreases the
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accuracy of the Monte Carlo estimates. Multimodality occurs in physical systems

that have multiple low-energy configurations separated by energy barriers, such as

the ferromagnetic Potts model (Swendsen and Wang 1987). In Bayesian statistics,

if there are multiple likely parts of the parameter space separated by regions of low

likelihood, then the posterior distribution can be multimodal. This can occur in

nonparametric models, mixture models, model selection and change point problems

(Neal 1996; Liang and Wong 2001; Lauritzen 1996; Liang and Wong 2000). For the

example of model selection in linear regression, the posterior probability of the pos-

sible models is a criterion for model selection and model averaging; Liang and Wong

(2000) show that multimodality of this posterior distribution over models can lead

to slow mixing of Metropolis-Hastings with local moves. The marginal distribution

of the Cp statistic for one of their examples is shown in Figure 1.1, illustrating this

multimodality.

Complicating matters further, standard techniques for detecting slow convergence

and mixing of MCMC cannot detect the presence of an undiscovered mode (Geweke

1992; Cowles and Carlin 1996). If the MCMC is trapped in a local mode, but has

mixed well within that mode, then it can pass such diagnostics. This means that

important modes can be missed by using MCMC. This is illustrated in Figure 1.2

for a mixture of two bivariate normals. Independent samples from the mixture are

shown, as are dependent samples from the same mixture obtained using a Metropolis-

Hastings chain with local steps. Although only one of the modes has been sampled,

4
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Figure 1.1: The marginal distribution of the Cp statistic over the possible models,

for a data set simulated as described in Liang and Wong (2000).

the autocorrelation and time series plots for this chain do not show the lack of con-

vergence.

In order to rigorously analyze the convergence and mixing of a Markov chain,

it is necessary to estimate or bound the true convergence and mixing rates. Since

the most commonly used MCMC algorithms construct reversible Markov chains, or

can be made reversible without significant alteration, the convergence and mixing

rates can both be bounded using the spectral gap of the transition operator (kernel)

(Madras and Slade 1993). A variety of techniques have been developed to obtain

bounds on the spectral gap of reversible Markov chains (Lawler and Sokal 1988;

Diaconis and Stroock 1991; Sinclair 1992).

Application of such techniques to Metropolis-Hastings with local moves shows

impractically slow mixing for a number of multimodal examples (Madras and Zheng
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Figure 1.2: Top left: Independent samples from a mixture of two bivariate nor-

mal distributions. Bottom left: Samples from the same mixture obtained by a

Metropolis-Hastings chain. Top and bottom right: The autocorrelation and time

series plots for this chain.
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2003), reinforcing the empirical evidence of slow mixing on multimodal distributions.

A number of alternative MCMC algorithms have therefore been proposed for sampling

from multimodal distributions. The evolutionary Monte Carlo algorithm (Liang and

Wong 2000) maintains a population of samples rather than a single sample, and

occasionally proposes hybridization of samples with the goal of discovering unexplored

modes. The slice sampler (Neal 2003) attempts to jump between the modes by

introducing a move that samples uniformly from the subset of the state space with

density at least as high as that of the current state.

Two of the most popular and empirically successful MCMC algorithms for multi-

modal problems are Metropolis-coupled MCMC or parallel tempering (Geyer 1991),

and simulated tempering (Geyer and Thompson 1995; Marinari and Parisi 1992).

These algorithms flatten a distribution via “heating”; this technique arises naturally

in physical systems where the temperature is a parameter of the system. Due to their

common use, adequate theoretical characterization of the convergence and mixing of

chains constructed via simulated or parallel tempering is of significant interest. Zheng

(2003) bounds the spectral gap of simulated tempering below by a multiple of the

spectral gap of parallel tempering, where the multiplier depends on a measure of the

overlap between distributions at adjacent temperatures. Madras and Piccioni (1999)

analyze a variant of simulated tempering as a mixture of the component chains at

each temperature.

Madras and Randall (2002) develop decomposition theorems for bounding the
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spectral gap of a Markov chain, then use those theorems to bound the mixing of sim-

ulated tempering in terms of the slowest mixing of the tempered chains. If Metropolis-

Hastings mixes slowly on the original (untempered) distribution, their bound cannot

be used to show fast mixing of simulated tempering.

However, fast mixing of simulated tempering has been shown for several multi-

modal distributions for which local Metropolis-Hastings mixes slowly. Madras and

Zheng (2003) bound the spectral gap of parallel and simulated tempering on two

examples, the “exponential valley” density and the mean-field Ising model. They use

the decomposition theorems of Madras and Randall (2002). However, unlike Madras

and Randall they decompose the state spaces of these examples into subsets on which

the target distribution is unimodal, one subset for each local mode, and bound the

mixing of parallel and simulated tempering in terms of the mixing within each subset.

Since for these examples Metropolis-Hastings is rapidly mixing on the unimodal sub-

sets, their bounds are able to show rapid mixing of parallel and simulated tempering.

This is in contrast to the standard (untempered) Metropolis-Hastings chain, which is

torpidly mixing. Here torpid mixing means that the spectral gap decreases exponen-

tially in the problem size, while rapid mixing means that it decreases polynomially.

The rapid / torpid mixing distinction is a measure of the computational tractability

of the algorithm.

The results of Madras and Zheng (2003) are extended by Bhatnagar and Randall

(2004) to show the rapid mixing of parallel and simulated tempering on an asymmet-

8



ric exponential valley density and the rapid mixing of a variant of parallel tempering

on the mean-field Ising model with external field. These authors use the same de-

composition as Madras and Zheng (2003). Bhatnagar and Randall (2004) also show

that parallel and simulated tempering are torpidly mixing on the mean-field Potts

model with q = 3, regardless of the number and choice of temperatures.

We generalize the decomposition approach of Madras and Zheng (2003) and Bhat-

nagar and Randall (2004) to obtain lower bounds on the spectral gap of any parallel

or simulated tempering chain for any target distribution, defined on any state space

(Theorem 3.1.1 and Corollary 3.1.1). As these authors do, we partition the state

space into subsets on which the target density is unimodal. Then we bound the

spectral gap of parallel and simulated tempering in terms of the mixing within each

unimodal subset and the mixing among the subsets. Since Metropolis-Hastings for a

unimodal distribution is often rapidly mixing, these bounds can be tighter than the

simulated tempering bound of Madras and Randall (2002).

We then use our bounds to obtain a set of conditions under which parallel and

simulated tempering chains are guaranteed to be rapidly mixing. We require that

Metropolis-Hastings is rapidly mixing when restricted to any one of the unimodal

subsets. The challenge is then to ensure that the tempering chain is able to cross

between the modes efficiently. In order to guarantee rapid mixing of the temper-

ing chain, we require that the highest-temperature chain mixes rapidly among the

unimodal subsets. We also require that the the overlap between distributions at ad-
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jacent temperatures decreases no more than polynomially in the problem size, which

is necessary in order to mix rapidly among the temperatures.

In the case where the modes are symmetric, we show that these conditions are

sufficient to guarantee rapid mixing, and give two examples where they hold: a

mixture of normal distributions with equal covariance matrices in R
M as M increases

(Section 4.2), and the mean-field Ising model (Section 4.1). Mixtures of normal

distributions are of interest due to their ubiquity in statistics. We also obtain an

additional condition that guarantees rapid mixing in the general (asymmetric) case,

and use this to show rapid mixing for a weighted mixture of normal distributions in

R
M as M increases. The additional condition states that a quantity related to the

persistence of the unimodal subsets is polynomially decreasing, where persistence is

as defined in Section 5.1.

We also show how the failure of this last condition can imply torpid mixing of

parallel and simulated tempering. We state that if there is a set with exponentially

low conductance at low temperatures (e.g. a unimodal subset of a highly multi-

modal distribution) and exponentially low persistence, then parallel and simulated

tempering are torpidly mixing. This is the case for a normal mixture model with un-

equal covariances in R
M and for the mean-field Potts model with q ≥ 3, as we show.

These results are regardless of the number and choice of temperatures in parallel or

simulated tempering.

Additionally, we show how the failure of the condition on the overlap can imply

10



torpid mixing. If the distribution has multiple high modes, so that local Metropolis-

Hastings is torpidly mixing at low temperatures, and if two adjacent temperatures are

widely spaced, so that the overlap between those levels is exponentially decreasing,

then parallel and simulated tempering are torpidly mixing. This is the case if fixed

temperatures are used for the mean-field Ising model, as we show.

We obtain a set of upper bounds on the spectral gaps of parallel and simulated

tempering (Theorems 5.1.1 and 5.1.2 and Corollary 5.1.1), which hold for any target

distribution, on any state space. These bounds imply the above conditions for torpid

mixing, which we use to show the torpid mixing of parallel and simulated tempering

on the normal mixture with unequal covariances in Section 6.1, on the mean-field

Potts model with q ≥ 3 in Section 6.2, and on the mean field Ising model with fixed

temperatures in Section 6.3. The second example builds on the results of Bhatnagar

(2007), who shows the torpid mixing of parallel and simulated tempering on the mean-

field Potts model with q = 3. Potts-type models are used in statistical physics as

well as in Bayesian image analysis and for modeling spatial random effects (Banerjee

et al. 2004; Geman and Geman 1984; Green and Richardson 2002).

11



Chapter 2

Background

2.1 Sampling Using Markov Chains

Take any σ-finite measure space (X ,F , λ) with F countably generated; for example,

X can be R
d and λ Lebesgue measure, or X can be countable and λ counting measure.

We will consider “arbitrary” subsets A ⊂ X , by which we are referring to any A ∈ F .

In order to draw samples from a distribution µ on (X ,F), one may simulate a Markov

chain that has µ as its limiting distribution, as we now describe. Let P be a transition

kernel on X , defined as in Tierney (1994), which operates on a distribution µ on the

left:

(µP )(A) =

∫

µ(dx)P (x,A) ∀A ⊂ X .

12



If µP = µ then call µ a stationary distribution of P . One way of finding a transition

kernel with stationary distribution µ is by constructing it to be reversible with respect

to µ, as we now describe.

P operates on complex-valued functions f on the right:

(Pf)(x) =

∫

f(y)P (x, dy) ∀x ∈ X .

Define the inner product (f, g)µ =
∫

f(x)g(x)µ(dx) and denote by L2(µ) the set of

functions f such that (f, f)µ is finite. P is called reversible with respect to µ if

(f, Pg)µ = (Pf, g)µ for all f, g ∈ L2(µ) and nonnegative definite if (Pf, f)µ ≥ 0

for all f ∈ L2(µ). If P is reversible with respect to µ then µ is easily seen to be a

stationary distribution of P .

We will primarily be interested in the case where µ has a density π with respect

to λ. Define π[A] = µ(A) and define (f, g)π, L2(π), and π-reversibility to be equal to

the corresponding quantities for µ.

If P is φ-irreducible and aperiodic (defined as in Roberts and Rosenthal (2004)),

nonnegative definite, and µ-reversible, then the Markov chain with transition kernel

P converges in distribution to µ at a rate related to the spectral gap:

Gap(P ) = inf
f∈L2(µ)

Varµ(f)>0

( E(f, f)

Varµ(f)

)

. (2.1)

Here E(f, f) is the Dirichlet form (f, (I−P )f)µ, and Varµ(f) is the variance (f, f)µ−

(f, 1)2
µ. It can easily be shown that Gap(P ) ∈ [0, 1] (for P not nonnegative definite,

Gap(P ) ∈ [0, 2]).

13



For any distribution µ0 having a density π0 with respect to µ, define the L2-norm

‖µ0‖2 = (π0, π0)
1/2
µ . For the Markov chain with transition kernel P define the rate of

convergence to stationarity as:

r = inf
µ0

lim
n→∞

− ln(‖µ0P
n − µ‖2)

n
(2.2)

where the infimum is taken over distributions µ0 that have a density π0 with respect

to µ such that π0 ∈ L2(µ). The rate r is equal to − ln(1 − Gap(P )); for every µ0

that has a density π0 ∈ L2(µ),

‖µ0P
n − µ‖2 ≤ ‖µ0 − µ‖2e

−rn ∀n ∈ N.

In addition, r is the largest quantity for which this holds for all such µ0. These

are facts from functional analysis (see e.g. Yuen (2001); Madras and Slade (1993);

Roberts and Tweedie (2001)). Therefore for a particular such starting distribution µ0,

the number of iterations n until the L2-distance to stationarity is less than some ε > 0

is on the order O(r−1). The constant here depends on ‖µ0 − µ‖2 and ε. Analogous

results hold when the chain is started deterministically at x for µ-a.e. x ∈ X , rather

than drawn randomly from a starting distribution µ0 (Roberts and Tweedie 2001).

Madras and Slade (1993) also show that the autocorrelation of the chain decays

at a rate r. Their proof is stated for finite state spaces but applies to general state

spaces as well. Therefore, informally speaking, the number of iterations of the chain

required to obtain some number N0 of approximately independent samples from µ is

O(N0r
−1).

14



Note that the quantity r is monotonically increasing with Gap(P ). Therefore

lower (upper) bounds on Gap(P ) correspond to lower (upper) bounds on the rate

of convergence to stationarity. In addition, − ln(1 − Gap(P ))/Gap(P ) approaches

1 as Gap(P ) → 0. Therefore the order at which Gap(P ) → 0 as a function of the

problem size is equal to the order at which the rate of convergence to stationarity

approaches zero. When Gap(P ) is exponentially decreasing as a function of the

problem size, we call P torpidly mixing. When Gap(P ) is polynomially decreasing

as a function of the problem size, we call P rapidly mixing. The rapid / torpid mixing

distinction is a measure of the computational tractability of an algorithm.

Next we describe a common way of constructing a transition kernel that is re-

versible with respect to a particular density of interest π.

2.2 Metropolis-Hastings

Consider a transition kernel P (w, dz) (the “proposal” kernel) that has a density

p(w, ·) with respect to λ for every w, and define the Metropolis-Hastings transition

kernel for P with respect to π as follows (Metropolis et al. 1953). Propose a move z

according to P (w, ·), where w is the current state, accept the move with probability

ρ(w, z) = min

{

1,
π(z)p(z, w)

π(w)p(w, z)

}

and otherwise reject. The resulting transition kernel is easily seen to be reversible

with respect to π. If p(w, z) = p(z, w) for all z 6= w then P is called symmetric.

15



2.3 Parallel and Simulated Tempering

If the Metropolis-Hastings proposal kernel moves only locally in the space, and if

π has more than one mode, then the Metropolis-Hastings chain may move between

the modes of π infrequently. Tempering is a modification of Metropolis-Hastings

wherein the density of interest π is “flattened” in order to allow movement among

the modes of π, meaning the following. For any inverse temperature β ∈ [0, 1] such

that
∫

π(z)βλ(dz) <∞, define

πβ(z) =
π(z)β

∫

π(w)βλ(dw)
∀z ∈ X .

Note that for any z, w ∈ X such that π(z), π(w) 6= 0, the ratio πβ(z)/πβ(w) mono-

tonically approaches one as β decreases, flattening the resulting density. For any β,

define Hβ to be the Metropolis-Hastings chain with respect to πβ; more generally,

assume that we have some way to specify a πβ-reversible transition kernel for each

β, and call this kernel Hβ.

Let B =
{

β ∈ [0, 1] :
∫

π(z)βλ(dz) <∞
}

. The parallel tempering algorithm (Geyer

1991) simulates parallel Markov chains with transition kernels Hβk
where β0 < . . . <

βN = 1 and β0 ∈ B. The inverse temperatures are commonly specified in a geometric

progression, and Predescu et al. (2004) show an asymptotic optimality result for this

choice.

Updates of individual chains are alternated with proposed swaps between temper-

atures, so that the process forms a single Markov chain with state x = (x[0], . . . , x[N ])

16



on the space Xpt = XN+1 and stationary density

πpt(x) =

N
∏

k=0

πβk
(x[k]) x ∈ Xpt.

with product measure λpt(dx) =
∏N

k=0 λ(dx[k]). The marginal density of x[N ] under

stationarity is π, the density of interest.

A holding probability of 1/2 is added to each update or swap move to guarantee

nonnegative definiteness. The update move T chooses k uniformly from {0, . . . , N}

and updates x[k] according to Hβk
:

T (x, dy) =
1

2(N + 1)

N
∑

k=0

Hβk
(x[k], dy[k])δ(x[−i] − y[−i]) x, y ∈ Xpt

where x[−i] = (x[0], . . . , x[i−1], x[i+1], . . . , x[N ]) and δ is Dirac’s delta function.

The swap move Q attempts to exchange two of the levels via one of the following

schemes:

SC1. sample k, l uniformly from {0, . . . , N} and propose exchanging the value of x[k]

with that of x[l]. The proposed state, denoted (k, l)x, is accepted according to

the Metropolis criteria preserving πpt:

ρ(x, (k, l)x) = min

{

1,
πβk

(x[l])πβl
(x[k])

πβk
(x[k])πβl

(x[l])

}

SC2. sample k uniformly from {0, . . . , N−1} and propose exchanging x[k] and x[k+1],

accepting with probability ρ(x, (k, k + 1)x).

Regardless of the choice of swapping scheme, both T and Q are reversible with respect

to πpt by construction, and nonnegative definite due to their 1/2 holding probability.
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We define the parallel tempering chain Ppt = QTQ, which is also nonnegative definite

and reversible with respect to πpt, so the rate of convergence of the parallel tempering

chain to πpt may be bounded using the spectral gap of Ppt.

Observe that the definitions of Q and T can be generalized to use arbitrary den-

sities φk 6= πβk
by replacing Hβk

with any φk-reversible kernel Tk; we may specify the

densities φk in any convenient way subject to φN = π. The resulting chain is called

a swapping chain, and its state space, measure, transition kernel, and associated

stationary density will be denoted by Xsc, λsc, Psc and πsc, respectively.

Rather than simulating parallel chains, a single chain can be augmented with a

level index k, so that the state is (z, k) ∈ Xst = X ⊗ {0, . . . , N} and the stationary

density is

πst(z, k) =
1

N + 1
φk(z) (z, k) ∈ Xst.

The resulting simulated tempering chain (Marinari and Parisi 1992; Geyer and Thomp-

son 1995) has two move types: T ′ samples z ∈ X according to Tk, conditional on k,

while Q′ attempts to change k via one of the following schemes:

ST1. propose a new level l uniformly from {0, . . . , N} and accept with probability

min
{

1, φl(z)
φk(z)

}

.

ST2. propose a move to l = k − 1 or l = k + 1 with equal probability and accept

with the probability from scheme ST1, unless l ∈ {−1, N + 1} in which case

the move is rejected.

ST3. draw the level k from its conditional distribution given z.

18



Once again, a holding probability of 1/2 is added to both T ′ and Q′. The transition

kernel of simulated tempering is then specified as Pst = Q′T ′Q′. Here we do not

require that φk are tempered versions of π, although this is the usual choice.

2.4 Example Target Distributions

2.4.1 Mean-Field Potts Model

The Potts model is from statistical physics. The Potts model and related models are

used in Bayesian image analysis and for modeling spatial random effects (Banerjee

et al. 2004; Geman and Geman 1984; Green and Richardson 2002).

We will consider the ferromagnetic mean-field Potts model with q ∈ {2, 3, . . .}

colors and M sites, defined as follows for z ∈ {1, . . . , q}M :

π(z) ∝ exp

{

α

2M

∑

i,j

1(zi = zj)

}

with α ≥ 0. The marginal distribution of the number of sites in each color is shown

in Figure 2.1. As shown in that figure, the distribution can be multimodal.

As we will see, the mean-field Potts model exhibits a phenomenon where a small

change in the value of the parameter α near a critical value αc causes a dramatic

change in the asymptotic behavior of π in M . This phenomenon occurs in more gen-

eral Potts models, so it is worthwhile to consider the mean-field Potts case. Consider
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Figure 2.1: The marginal distribution of the number of sites with color 1 (σ1) and

color 2 (σ2) for the mean-field Potts model with q = 3, M = 35, and α = 4 ln(2).

the proposal kernel S that proposes changing the color of a single site, where the site

and color are drawn uniformly at random. We will analyze the convergence rate of

parallel and simulated tempering in terms of the problem size M .

The mean-field Ising model is the mean-field Potts model with q = 2. It is

commonly rewritten as follows for w ∈ X = {−1,+1}M :

π(z) =
1

Z
exp







α′

2M

(

M
∑

i=1

wi

)2






(2.3)

where Z =
∑

w exp {α′(
∑

iwi)
2/(2M)} and α′ = α/2.

2.4.2 Mixtures of Normal Distributions

Many distributions in statistics are well-approximated by mixtures of normal distri-

butions. In fact, any density function in R
M can be approximated arbitrarily well by
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Figure 2.2: π(z) as a function of z for a mixture of two normals in R
2

a mixture of normal densities.

We will analyze the mixing of parallel and simulated tempering on various two-

component mixtures of normal distributions in R
M in terms of M . For any length-M

vector ν, M ×M covariance matrix Σ, and z ∈ R
M , let NM(z; ν,Σ) be the density of

a multivariate normal distribution in R
M with mean ν and covariance Σ, evaluated

at z. We will consider mixtures of the form

π(z) = aMNM(z; νM ,ΣM) + (1 − aM )NM(z; ν ′M ,Σ
′
M)

where aM ∈ [0, 1]. The density of one such mixture where M = 2 is shown in Fig-

ure 2.2. The Metropolis-Hastings proposal kernel S that we will use draws uniformly

from the ball of radius M−1 centered at the current state.

21



Chapter 3

Lower Bounds on the Convergence Rates

of Parallel and Simulated Tempering and

Conditions for Rapid Mixing

As shown in the previous chapter, a lower bound on the spectral gap of a Markov chain

implies a lower bound on the rate of convergence to stationarity. In this chapter we

obtain lower bounds on the spectral gaps of parallel and simulated tempering chains,

and show conditions for rapid mixing.

We are particularly interested in the case where Metropolis-Hastings with local

proposals is torpidly mixing due to the multimodality of π. We partition the space

into subsets on which the target is unimodal, one subset for each local mode. To

guarantee rapid mixing of parallel tempering we require that the number of modes J

is fixed (or at least bounded) in the problem size. We also require that each chain Tk

is rapidly mixing when restricted to any one of the unimodal subsets, and that the
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highest-temperature chain mixes rapidly among the subsets. Additionally, we require

that the overlap of adjacent temperature levels is at most polynomially decreasing in

the problem size, which is needed in order to mix rapidly among the levels. In the

case where the modes are symmetric, these conditions imply that the set of parallel

tempering chains is rapidly mixing. The same conditions imply the rapid mixing of

simulated tempering in the symmetric case. In the general (asymmetric) case, these

conditions are insufficient (see Chapters 5 and 6), so we give one additional condition

which implies rapid mixing of both techniques. We require that a quantity related to

the persistence (Section 5.1) of each unimodal subset decreases at most polynomially

in the problem size.

3.1 Lower Bounds on the Spectral Gaps of Swap-

ping and Simulated Tempering Chains and Con-

ditions for Rapid Mixing

We will obtain lower bounds on the spectral gaps of swapping and simulated temper-

ing chains. These will be used to prove a common set of conditions for rapid mixing of

swapping and simulated tempering chains. The bounds are in terms of several quan-

tities. Informally, the first quantity measures how well each chain Tk mixes when

restricted to each unimodal subset. The second is how well the highest-temperature

chain T0 mixes among the subsets. The third is the overlap of the distributions of

adjacent levels, and the fourth concerns the relative probability of a unimodal subset
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at distinct (inverse) temperatures, for each subset.

In order to bound the spectral gap of a swapping or simulated tempering chain

in terms of the mixing of the chain within each subset and the mixing of the chain

among the subsets, we will use a state space decomposition result due to Caracciolo

et al. (1992) and first published in Madras and Randall (2002). As in Madras and

Randall (2002), we use the following definitions.

For any transition kernel P reversible with respect to a distribution µ and any

subset A of the state space of P , define the restriction of P to A as

P |A(x,B) = P (x,B) + 1B(x)P (x,Ac) for x ∈ A, B ⊂ A. (3.1)

where 1B is the indicator function for the set B. Note that P |A is reversible with

respect to µ|A, the restriction of µ to A. Now take any partition A = {Aj : j =

1, . . . , J} of the state space of P such that µ(Aj) > 0 for all j, and define the

projection matrix of P with respect to A to be

P̄ (i, j) =
1

µ(Ai)

∫

Ai

∫

Aj

P (x, dy)µ(dx) i, j ∈ {1, . . . , J}. (3.2)

Note that P̄ is reversible with respect to the distribution on j ∈ {1, . . . , J} taking

value µ(Aj).

Now consider a swapping chain defined as in Section 2.3 for some density of

interest π on a state space X , with φk-reversible transition kernels Tk, using the

swapping scheme SC2. Let A be any partition of X such that φk[Aj] > 0 for all k, j.

The first quantity in our bound is the minimum over k and j of Gap(Tk|Aj
), which
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measures how well each chain Tk mixes within each partition element. The partition

would typically be chosen so that this quantity is large; in our examples we choose

A so that π|Aj
is unimodal (has a single local mode) for each j. However, the results

apply to any partition.

Next we consider how well the chain T0 mixes among the partition elements. Let

T̄0 to be the projection matrix of T0 with respect to A; the second quantity in our

bound is Gap(T̄0).

The third quantity is the overlap of {φk : k = 0, . . . , N} with respect to A, defined

as

δ(A) = min
|k−l|=1

j∈{1,...,J}

[

∫

Aj

min {φk(z), φl(z)}λ(dz)

]

/φk[Aj] (3.3)

The quantity δ(A) controls the rate of temperature changes in simulated tempering

(scheme ST2). For the swapping chain, note that for any i, j ∈ {1, . . . , J} and any

k ∈ {0, . . . , N − 1}, the marginal probability at stationarity of accepting a proposed

swap between x[k] ∈ Ai and x[k+1] ∈ Aj is

∫

z∈Ai

∫

w∈Aj

min {φk(z)φk+1(w), φk(w)φk+1(z)}λ(dw)λ(dz)

φk[Ai]φk+1[Aj]
≥ δ(A)2. (3.4)

We will show that our overlap quantity δ(A) is bounded below by the overlap used

in Madras and Randall (2002) and Zheng (2003), and that our definition is equal to

theirs in the case of π symmetric (as defined later in this section).

The fourth and final quantity concerns the probability of a single partition element
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under φk, as a function of k, for each partition element:

γ(A) = min
j∈{1,...,J}

N
∏

k=1

min

{

1,
φk−1[Aj]

φk[Aj]

}

. (3.5)

Note that for any j ∈ {1, . . . , J} and any k, l ∈ {0, . . . , N} such that k < l, φk[Aj] ≥

γ(A)φl[Aj]. If φk[Aj] is monotonic as a function of k for each j, then γ(A) simplifies

to

min
j∈{1,...,J}

φ0[Aj]

φN [Aj]
.

In this case, γ(A) is equal to the minimum persistence of the partition elements,

where persistence is defined in Section 5.1. We will also show that for π symmetric,

γ(A) = 1. With these definitions, the following theorem bounds the spectral gap of

a swapping chain.

Theorem 3.1.1. Take any swapping chain Psc that uses the swapping scheme SC2

(Section 2.3). Given any partition A = {Aj : j = 1, . . . , J} of X such that φk[Aj] > 0

for all k, j, and given δ(A) as in (3.3) and γ(A) as in (3.5),

Gap(Psc) ≥
(

γ(A)J+3δ(A)2

212(N + 1)4J3

)

Gap(T̄0) min
k,j

Gap(Tk|Aj
).

In particular, the bound holds for parallel tempering. Theorem 3.1.1 will be

proven in Section 3.3. Note that for any I and set of constants {ai : i = 1, . . . , I}
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and {bi : i = 1, . . . , I}, we have that mini{ai/bi} ≤∑i ai/
∑

i bi. Therefore

δ(A) = min
k∈{0,...,N−1}

j∈{1,...,J}

min











∫

Aj

min{φk(z), φk+1(z)}λ(dz)

φk[Aj]
,

∫

Aj

min{φk(z), φk+1(z)}λ(dz)

φk+1[Aj]











≤ min
k∈{0,...,N−1}

∑

j

∫

Aj

min{φk(z), φk+1(z)}λ(dz)

max

{

∑

j

φk[Aj],
∑

j

φk+1[Aj]

} (3.6)

= min
k∈{0,...,N−1}

∫

min{φk(z), φk+1(z)}λ(dz).

The final expression for δ(A) is the definition of overlap that is used in Madras and

Randall (2002) and Zheng (2003). Therefore Theorem 3 of Zheng (2003), along with

our Theorem 3.1.1, implies the following bound for simulated tempering:

Corollary 3.1.1. Take any simulated tempering chain Pst that changes levels using

scheme ST3 (Section 2.3). Given any partition A = {Aj : j = 1, . . . , J} of X such

that φk[Aj] > 0 for all k, j,

Gap(Pst) ≥
(

γ(A)J+3δ(A)3

214(N + 1)5J3

)

Gap(T̄0) min
k,j

Gap(Tk|Aj
).

Theorem 3.1.1 and Corollary 3.1.1 then imply a common condition for rapid

mixing of swapping and simulated tempering chains. Recall from Section 2.1 that by

rapid mixing we mean that the spectral gap decreases at most polynomially in the

problem size. Then rapid mixing is implied by Theorem 3.1.1 and Corollary 3.1.1 if

the following condition holds.

27



Condition 3.1.1. J is fixed or bounded above in M . T̄0 is rapidly mixing. δ(A),

γ(A) and mink,j Gap(Tk|Aj
) are polynomially decreasing in the problem size. N is

polynomially bounded-above.

Define π to be symmetric if there exists a partition {Aj : j = 1, . . . , J} of X such

that for every pair of partition elements Ai, Aj there is some λ-measure-preserving

bijection fij from Ai to Aj that preserves π. Note that when π is symmetric with

respect to the partition A, the inequality in (3.6) is an equality.

If π is symmetric with respect to A, then πβ[Aj] = 1
J

for any inverse temperature

β. Therefore if the densities φk for the swapping or simulated tempering chain are

chosen as tempered versions of π then γ(A) = 1. In this case the restriction on γ(A)

in Condition 3.1.1 is automatically satisfied. Therefore for a symmetric distribution,

in order to have rapid mixing of parallel and simulated tempering we require only

that Hβ (e.g. Metropolis-Hastings) mixes rapidly when restricted to each partition

element, that Hβ mixes rapidly among the partition elements for the smallest inverse

temperature β = β0, and that the overlap is polynomially decreasing using a poly-

nomial number of inverse temperatures. These conditions holds for the mean-field

Ising model and for a symmetric normal mixture model, as we will show in the next

chapter.
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3.2 Tools for Bounding Spectral Gaps

In Sections 3.2.1 and 3.2.2 we give some results from the literature and slight exten-

sions thereon. These results will be used in Section 3.3 for the proof of Theorem 3.1.1.

3.2.1 A Bound for Finite State Space Markov Chains

We first consider a method for finite state space Markov chains. Let P and Q be

Markov chain transition matrices on state space X with |X | < ∞, reversible with

respect to densities πP and πQ, respectively. Denote by EP and EQ the Dirichlet

forms of P and Q, and let EP = {(x, y) : πP (x)P (x, y) > 0} and EQ = {(x, y) :

πQ(x)Q(x, y) > 0} be the edge sets of P and Q, respectively.

For each pair x 6= y such that (x, y) ∈ EQ, fix a path γxy = (x = x0, x1, x2, . . . , xk =

y) of length |γxy| = k such that (xi, xi+1) ∈ EP for i ∈ {0, . . . , k − 1}. Define

c = max
(z,w)∈EP







1

πP (z)P (z, w)

∑

γxy3(z,w)

|γxy|πQ(x)Q(x, y)







.

Then we have the following result.

Theorem 3.2.1. (Diaconis and Saloff-Coste 1993)

EQ ≤ cEP .
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3.2.2 Bounds for General State Space Markov Chains

The following results hold for general state space transition kernels P and Q, re-

versible with respect to distributions µP and µQ on a space X with countably gener-

ated σ-algebra F .

Theorem 3.2.2. Let {Aj : j = 1, . . . , J} be any partition of X such that µP (Aj) > 0

for all j. Define P |Aj
as in (3.1) and P̄ as in (3.2). For P nonnegative definite,

1

2
Gap(P̄ ) min

j=1,...,J
Gap(P |Aj

) ≤ Gap(P ) ≤ Gap(P̄ ).

The lower bound in Theorem 3.2.2 is a direct consequence of a result by Caracciolo

et al. (1992) that was first published in Madras and Randall (2002), as described in

Section 3.2.3. The proof of the upper bound, which is based on the proof of the result

in Madras and Randall (2002), is also given in Section 3.2.3.

Theorem 3.2.3. (Diaconis and Saloff-Coste 1996) Take any N ∈ N and let Pk,

k = 0, . . . , N , be µk-reversible transition kernels on state spaces Xk. Let P be the

transition kernel on X =
∏

k

Xk given by

P (x, dy) =

(

1

N + 1

) N
∑

k=0

Pk(x[k], dy[k]) δ(x[−k] − y[−k]) x, y ∈ X

where δ is Dirac’s delta function. P is called a product chain. It is reversible with

respect to µ(dx) =
∏

k

µk(dx[k]), and

Gap(P ) =
1

N + 1
min

k=0,...,N
Gap(Pk).
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Lemma 3.2 of Diaconis and Saloff-Coste (1996) states this result for finite state spaces;

however, the proof of that Lemma holds in the general case.

Lemma 3.2.1. Let µP = µQ. If Q(x,A\{x}) ≤ P (x,A\{x}) for every x ∈ X and

every A ⊂ X , then Gap(Q) ≤ Gap(P ).

Proof. As in Madras and Randall (2002), write Gap(P ) in the form

Gap(P ) = inf
f∈L2(µP )

VarµP
(f)>0

(
∫ ∫

|f(x) − f(y)|2µP (dx)P (x, dy)
∫ ∫

|f(x) − f(y)|2µP (dx)µP (dy)

)

.

and write Gap(Q) analogously. The result then follows immediately.

3.2.3 Proof of the Decomposition Bound

We will prove Theorem 3.2.2 using the following results; consider the context of Sec-

tion 3.2.2.

Theorem 3.2.4. (Caracciolo, Pelissetto and Sokal 1992) Let µP = µQ. Assume that

P is nonnegative definite and let P
1
2 be its nonnegative square root. Then

Gap(P
1
2QP

1
2 ) ≥ Gap(P̄ ) min

j=1,...,J
Gap(Q|Aj

)

This result is due to Caracciolo et al. (1992) but was published in Madras and Ran-

dall (2002).
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Lemma 3.2.2. (Madras and Zheng 2003)

Gap(P ) ≥ 1

n
Gap(P n) ∀n ∈ N

Note that although Madras and Zheng (2003) state this result for finite state spaces,

their proof extends easily to general spaces.

Lemma 3.2.3. (Madras and Zheng 2003)

Assume that µP = µQ and that P is nonnegative definite. Then

Gap(QPQ) ≥ Gap(P )

Now consider the context of Theorem 3.2.2. The lower bound in Theorem 3.2.2

follows directly from Theorem 3.2.4 and Lemma 3.2.2:

Gap(P ) ≥ 1

2
Gap(P 2) =

1

2
Gap(P

1
2PP

1
2 ) ≥ 1

2
Gap(P̄ ) min

j
Gap(P |Aj

)

We now give the proof of the upper bound in Theorem 3.2.2, which is based on the

proof of Theorem 3.2.4 given in Madras and Randall (2002). They define the operator

Π̄ on f ∈ L2(µP ) by

(Π̄f)(x) =

∫

Aj

f(y)µP (dy) if x ∈ Aj

and they define VA to be the space of all f ∈ L2(µP ) such that f is constant within

each set Aj. They note that the operator Π̄P Π̄ restricted to the M -dimensional
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vector space VA is equal to P̄ , and that as a consequence Gap(P̄ ) = Gap(Π̄P Π̄).

Using this observation, we can apply Lemma 3.2.3 to obtain Gap(P̄ ) ≥ Gap(P ).

3.3 Proof of the Lower Bound on the Spectral Gap

of a Swapping Chain

3.3.1 Overview of the Proof

As in Madras and Zheng (2003), consider the space Σ = Z
N+1
J of possible assignments

of levels to partition elements, and for x = (x[0], . . . , x[N ]) ∈ Xsc let the signature s(x)

be the vector (σ0, . . . , σN) ∈ Σ with

σk = j if x[k] ∈ Aj (0 ≤ k ≤ N).

For σ ∈ Σ, define

Xσ = {x ∈ Xsc : s(x) = σ}

so s induces a partition of Xsc. Define Pσ = Psc|Xσ , and let P̄sc be the projection

matrix of Psc with respect to the partition {Xσ}. Since Psc is nonnegative definite,

Theorem 3.2.2 gives

Gap(Psc) ≥
1

2
Gap(P̄sc) min

σ∈Σ
Gap(Pσ). (3.7)

Theorem 3.1.1 then follows by deriving bounds on Gap(P̄sc) and Gap(Pσ).
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3.3.2 Bounding the Spectral Gap of Pσ

For σ ∈ Σ consider the mixing of Psc when restricted to the set Xσ. If each of the

chains Tk mixes well when restricted to the set Aσk
, then the product chain T and

thus Psc will mix well when restricted to Xσ. Let Tσ = T |Xσ and note that for any

x, y ∈ Xσ with x 6= y,

Tσ(x, dy) =
1

2(N + 1)

N
∑

k=0

Tk|Aσk
(x[k], dy[k]) δ(x[−k] − y[−k]).

Therefore Tσ is also a product chain, and Theorem 3.2.3 provides its spectral gap:

Gap(Tσ) =
1

2(N + 1)
min

k∈{0,...,N}
Gap(Tk|Aσk

)

≥ 1

2(N + 1)
min

k∈{0,...,N}
j∈{1,...,J}

Gap(Tk|Aj
).

Note that since Psc = QTQ, and since Q has a 1/2 holding probability,

Pσ(x, dy) ≥ 1

4
Tσ(x, dy) ∀x, y ∈ Xσ.

Using Lemma 3.2.1 we have Gap(Pσ) ≥ Gap(Tσ)/4. Therefore

Gap(Pσ) ≥ 1

8(N + 1)
min

k∈{0,...,N}
j∈{1,...,J}

Gap(Tk|Aj
). (3.8)

3.3.3 Bounding the Spectral Gap of P̄sc

First note that P̄sc is reversible with respect to the probability mass function

π∗(σ)
def
= πsc[Xσ] =

N
∏

k=0

φk[Aσk
] ∀σ ∈ Σ.
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For any σ, τ ∈ Σ, P̄sc(σ, τ) is the conditional probability at stationarity of moving to

Xτ under Psc, given that the chain is currently in Xσ:

P̄sc(σ, τ) =
1

πsc[Xσ]

∫

Xσ

∫

Xτ

πsc(x)Psc(x, dy)λsc(dx).

We will begin by bounding this probability in terms of the probability of moving

to Xτ under Q (a swap move) and the probability of moving to Xτ under T (an

update move). For swap moves, let Q̄ be the projection matrix of Q with respect to

{Xσ : σ ∈ Σ}. Then for k ∈ {0, . . . , N − 1} we have

P̄sc(σ, (k, k + 1)σ) ≥ 1

4
Q̄(σ, (k, k + 1)σ) ∀σ

where the right hand side is the conditional probability of swapping x[k] and x[k+1]

under Q, and then holding twice. Similarly, for update moves we denote by T̄

the projection matrix of T with respect to {Xσ : σ ∈ Σ}, and denote σ[i,j] =

(σ0, . . . , σi−1, j, σi+1, . . . , σN). Then

P̄sc(σ, σ[i,j]) ≥ 1

4
T̄ (σ, σ[i,j]) ∀i, j.

Therefore the Dirichlet form Esc of P̄sc evaluated at f ∈ L2(π
∗) satisfies

Esc(f, f) ≥ 1

4
EQ̄(f, f) +

1

4
ET̄ (f, f).
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Recalling that T̄0 is the projection matrix of T0 with respect to A, note that

4(N + 1)ET̄ (f, f)

= 2(N + 1)
∑

σ,τ∈Σ

(f(σ) − f(τ))2π∗(σ)T̄ (σ, τ)

≥
∑

σ∈Σ

π∗(σ)

J
∑

j=1

(f(σ) − f(σ[0,j]))
2T̄0(σ0, j)

=
∑

σ1:N

[

N
∏

k=1

φk[Aσk
]

]

J
∑

i=1

J
∑

j=1

(f(i, σ1:N) − f(j, σ1:N ))2φ0[Ai]T̄0(i, j)

≥
∑

σ1:N

[

N
∏

k=1

φk[Aσk
]

]

Gap(T̄0)
J
∑

i=1

J
∑

j=1

(f(i, σ1:N) − f(j, σ1:N))2φ0[Ai]φ0[Aj]

= Gap(T̄0)
∑

σ∈Σ

π∗(σ)

J
∑

j=1

(f(σ) − f(σ[0,j]))
2φ0[Aj]

where the second inequality is by recognizing the Dirichlet form for T̄0. Therefore

Esc(f, f)

Gap(T̄0)
≥
[

1

8
EQ̄(f, f) +

∑

σ∈Σ

π∗(σ)

J
∑

j=1

(f(σ) − f(σ[0,j]))
2 φ0[Aj]

16(N + 1)

]

. (3.9)

Now consider a transition kernel T ∗ constructed as follows: with probability 1
2

transition according to Q̄; otherwise with probability 1
2(N+1)

draw σ[0] according to

the distribution {φ0[Aj] : j = 1, . . . , J} (i.e. independent samples at the highest

temperature); otherwise hold. Note that the Dirichlet form of T ∗ is precisely four

times the right hand side of (3.9). Clearly T ∗ is also reversible with respect to π∗, so

P̄sc and T ∗ have the same stationary distribution. Therefore

Gap(P̄sc) ≥
Gap(T ∗)Gap(T̄0)

4
. (3.10)

We will now bound Gap(T ∗) by comparison with another π∗-reversible chain.

Define the transition matrix T ∗∗ which chooses k uniformly from {0, . . . , N} and then
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draws σk according to the distribution {φk[Aj] : j = 1, . . . , J}. Clearly T ∗∗ moves

easily among the elements of Σ, and consequently has a large spectral gap as we will

see. By combining (3.10) with a comparison of T ∗ to T ∗∗, we will obtain a lower

bound on the spectral gap of P̄sc.

Comparison of T ∗ to T ∗∗ will be done using Theorem 3.2.1. To simplify notation

we write φk(j) as shorthand for φk[Aj] for the remainder of this section. Let j∗ be

the value of j that maximizes φN(j). For each edge (σ, σ[i,j]) in the graph of T ∗∗ we

define a path γσ,σ[i,j]
in T ∗ with the following 7 stages:

1. Change σ0 to j∗

2. Swap that j∗ “up” to level i

3. Take the new σi−1 (formerly σi) and swap it “down” to level 0

4. Change the value at level 0 to j (from former σi)

5. Swap the j at level 0 “up” to level i

6. Swap the j∗ that is now at level i− 1 “down” to level 0

7. Change the value at level 0 to σ0 (from j∗)

In each path, skip all steps that do not change the state. Using the defined path

set, we will obtain an upper bound c∗ on the quantity c in Theorem 3.2.1. Since T ∗

and T ∗∗ both have stationary distribution π∗, Theorem 3.2.1 then yields Gap(T ∗) ≥
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1
c∗

Gap(T ∗∗). To bound c, we will use Propositions 3.3.1 and 3.3.2.

Proposition 3.3.1. For the above-defined paths,

π∗(σ)T ∗∗(σ, σ[i,j])

π∗(τ1)T ∗(τ1, τ2)
≤ 4J γ(A)−(J+3)δ(A)−2 (3.11)

for all σ, i, and j, and any edge (τ1, τ2) in γσ,σ[i,j]
.

Proof. To obtain (3.11), first note that

π∗(σ)T ∗∗(σ, σ[i,j]) =
φi(j)

N + 1

[

N
∏

k=0

φk(σk)

]

=
1

N + 1
min{π∗(σ), π∗(σ[i,j])}max{φi(σi), φi(j)}.

For any state τ in the path γσ,σ[i,j]
we will find a lower bound on π∗(τ) in terms of

min
{

π∗(σ), π∗(σ[i,j])
}

. Consider the states in the path γσ,σ[i,j]
up to stage 4 (where

σi is at level 0). We will show that each state τ satisfies π∗(τ) ≥ π∗(σ)γ(A)J+2J−1.

Then by symmetry the states from stage 4 to the end of the path satisfy π∗(τ) ≥

π∗(σ[i,j])γ(A)J+2J−1.

Any state in stages 1 or 2 of the path from σ to σ[i,j] is of the following form for

some l ∈ {0, . . . , i}:

τ = (σ1, . . . , σl, j
∗, σl+1, . . . , σN).
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Therefore

π∗(τ) = π∗(σ)

[

l
∏

k=1

φk−1(σk)

φk(σk)

]

φl(j
∗)

φ0(σ0)

= π∗(σ)

[

l
∏

k=1

J
∏

m=1

[

I(σk = m)
φk−1(m)

φk(m)
+ I(σk 6= m)

]

]

φl(j
∗)

φ0(σ0)

≥ π∗(σ)

[

J
∏

m=1

N
∏

k=1

min

{

1,
φk−1(m)

φk(m)

}

]

φl(j
∗)

φ0(σ0)

≥ π∗(σ)γ(A)J+1J−1

where the last inequality uses the fact that by definition φN(j∗) ≥ J−1, so φk(j
∗) ≥

γ(A)J−1 for all k and

φl(j
∗)

φ0(σ0)
≥ γ(A)J−1

φ0(σ0)
≥ γ(A)J−1.

Now consider the states in stage 3 of the path, the last of which is also the first state

in stage 4. Any such state τ is of the form

τ = (σ1, . . . , σl, σi, σl+1, . . . , σi−1, j
∗, σi+1, . . . , σN)

for some l ∈ {0, . . . , i− 1}. Therefore

π∗(τ) = π∗(σ)

[

l
∏

k=1

φk−1(σk)

φk(σk)

]

φi(j
∗)φl(σi)

φ0(σ0)φi(σi)

≥ π∗(σ)γ(A)J+1J−1φl(σi)

φi(σi)
≥ π∗(σ)γ(A)J+2J−1

where the last step is because l < i. Putting the above together, we have that for all

τ in the path from σ to σ[i,j]

π∗(τ) ≥ min{π∗(σ), π∗(σ[i,j])}γ(A)J+2J−1.
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We use this to obtain (3.11) as follows: for any edge (τ1, τ2) on the path γσ,σ[i,j]
,

we have either τ2 = (k, k+1)τ1 for some k, or τ2 = τ1[0,m] for some m. The probability

of proposing the swap τ2 = (k, k + 1)τ1 according to Q is 1
2N

. Recall that for any

l1, l2 ∈ {1, . . . , J}, δ(A)2 is a lower bound for the marginal probability at stationarity

of accepting a proposed swap between xk ∈ Al1 and xk+1 ∈ Al2 . Thus we have

Q̄(τ1, τ2) ≥ δ(A)2/(2N), and so

π∗(σ)T ∗∗(σ, σ[i,j])

π∗(τ1)T ∗(τ1, τ2)
=

π∗(σ)φi(j)

(N + 1)π∗(τ1)T ∗(τ1, τ2)
(3.12)

≤ 2π∗(σ)φi(j)

(N + 1)π∗(τ1)Q̄(τ1, τ2)
≤ 4π∗(σ)φi(j)

π∗(τ1)δ(A)2

=
4 min{π∗(σ), π∗(σ[i,j])}max{φi(j), φi(σi)}

π∗(τ1)δ(A)2

≤ 4J max{φi(j), φi(σi)}
γ(A)J+2δ(A)2

≤ 4J

γ(A)J+2δ(A)2
.

In the case that, instead, τ2 = τ1[0,m] for some m, (3.12) becomes

π∗(σ)T ∗∗(σ, σ[i,j])

π∗(τ1)T ∗(τ1, τ2)
=

4π∗(σ)φi(j)

π∗(τ1)φ0(m)
(3.13)

and there are three possible cases: the edge (τ1, τ2) could be stage 1, stage 4, or stage

7 of γσ,σ[i,j]
. If it is stage 1, then (3.13) is bounded by

4π∗(σ)φi(j)

π∗(σ)φ0(j∗)
≤ 4

φ0(j∗)
≤ 4J

γ(A)
.

If the move is stage 4, then (3.13) is bounded by

4π∗(σ)φi(j)

π∗(τ1)φ0(j)
=

4 min{π∗(σ), π∗(σ[i,j])}max{φi(j), φi(σi)}
min{π∗(τ1), π∗(τ2)}max{φ0(j), φ0(σi)}

≤ 4

γ(A)

min{π∗(σ), π∗(σ[i,j])}
min{π∗(τ1), π∗(τ2)}

≤ 4Jγ(A)−(J+3)
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since φi(j) ≤ φ0(j)
γ(A)

≤ max{φ0(j),φ0(σi)}
γ(A)

and φi(σi) ≤ φ0(σi)
γ(A)

≤ max{φ0(j),φ0(σi)}
γ(A)

. Finally, if

the move is stage 7, then (3.13) is bounded by

4π∗(σ)φi(j)

π∗(σ[i,j])φ0(j∗)
=

4π∗(σ[i,j])φi(σi)

π∗(σ[i,j])φ0(j∗)
≤ 4J

γ(A)
.

The result (3.11) follows for any edge (τ1, τ2) on the path from σ to σ[i,j].

We also have the following result.

Proposition 3.3.2. For the above-defined paths,

∑

γσ,σ[i,j]
3(τ1,τ2)

|γσ,σ[i,j]
| ≤ 16(N + 1)2J2 (3.14)

for any edge (τ1, τ2) in the graph of T ∗.

Proof. We will bound the number of paths γσ,σ[i,j]
that go through any edge (τ1, τ2),

and the length of any such path.

Consider the set of paths for which the edge is in stage 1 of the path. Then τ1 = σ

and τ2 = σ[0,j∗], and since i ∈ {0, . . . , N} and j ∈ {1, . . . , J}, there are no more than

(N + 1)J such paths. Similarly, there are no more than (N + 1)J paths for which

the edge is in stage 4 of the path.

Now consider the set of paths for which the edge is in stage 2 of the path. Then

we must have τ1 = (σ1, . . . , σl, j
∗, σl+1, . . . , σN) for some l ∈ {0, . . . , i − 1} and τ2 =

(l, l+ 1)τ1. σ0 is unknown but has only J possible values, so with i,j unknown there

are no more than (N +1)J2 such paths. Similarly, there are no more than (N +1)J 2

paths for which the edge is in stage 3 of the path.
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If the edge has τ2 = (k, k + 1)τ1 for some k, then it can only be in stages 2,3,5,

or 6 of the path, while if τ2 = τ1[0,m] for some m then it can only be in stages 1,4,

or 7. Since the edge can be in at most 4 stages, each with at most (N + 1)J 2 paths,

the total number of paths containing any edge is no more than 4(N + 1)J 2. Each of

these paths has length at most 4N + 3 < 4(N + 1), so (3.14) follows.

Combining Propositions 3.3.1 and 3.3.2, we obtain an upper bound on the con-

stant c in Theorem 3.2.1:

c ≤ 26(N + 1)2J3

γ(A)J+3δ(A)2

and recalling that both T ∗ and T ∗∗ have stationary distribution π∗, application of

Theorem 3.2.1 yields

Gap(T ∗) ≥ γ(A)J+3δ(A)2

26(N + 1)2J3
Gap(T ∗∗).

Now since T ∗∗ is a product chain whose φk-reversible component chains each have

spectral gap 1 by definition (2.1), Theorem 3.2.3 gives Gap(T ∗∗) ≥ (N + 1)−1 and

we have

Gap(T ∗) ≥ γ(A)J+3δ(A)2

26(N + 1)3J3
.

Then we obtain the bound for Gap(P̄sc) from (3.10):

Gap(P̄sc) ≥
Gap(T ∗)Gap(T̄0)

4
≥
(

γ(A)J+3δ(A)2

28(N + 1)3J3

)

Gap(T̄0). (3.15)

Using (3.7), (3.8), and (3.15) then proves Theorem 3.1.1.
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Chapter 4

Multimodal Distributions for which

Parallel and Simulated Tempering are

Rapidly Mixing

We will give several bimodal distributions for which parallel and simulated tempering

are rapidly mixing as implied by Theorem 3.1.1 and Corollary 3.1.1. The first two

are symmetric, so that γ(A) = 1, and the last is not, so we show that γ(A) is

polynomially decreasing in the problem size.

4.1 Rapid Mixing on the Mean-Field Ising Model

Recall from Section 2.4.1 the definition of the mean field Ising model and the corre-

sponding proposal kernel S. Taking N = M , βk = k/N , and Tk equal to Metropolis-

Hastings for S with respect to φk = πβk
, it is shown in Madras and Zheng (2003)
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that parallel and simulated tempering are rapidly mixing. We will show that this is

also a consequence of Theorem 3.1.1 and Corollary 3.1.1.

As in Madras and Zheng (2003), partition X into A1 = {z ∈ X :
∑

i zi < 0} and

A2 = {z ∈ X :
∑

i zi ≥ 0}. Restricting to M odd, the density π is clearly symmetric

with respect to the partition {A1, A2}.

Since πβ0 is uniform, T0 = S. Note that S is a product chain as defined in

Theorem 3.2.3, composed of M chains that each have spectral gap equal to 1. By

Theorem 3.2.3, Gap(T0) = 1/M . Since T0 is rapidly mixing, so is T̄0 (Theorem 3.2.2).

It is shown in Madras and Zheng (2003) that the minimum over k and j of

Gap(Tk|Aj
) is polynomially decreasing. Also note that for any z ∈ X and any

k ∈ {0, . . . , N − 1},

π(z)βk+1−βk = π(z)
1
M ∈

[

1

Z1/M
,

1

Z1/M
exp {α′/2}

]

.

Therefore

φk+1(z)

φk(z)
= π(z)βk+1−βk





∑

w∈X
π(w)βk

∑

w∈X
π(w)βk+1





∈ [exp {−α′/2} , exp {α′/2}]

which implies that

∑

z∈X
min {φk(z), φk+1(z)} =

∑

z∈X
φk(z) min

{

1,
φk+1(z)

φk(z)

}

≥ exp {−α′/2} .
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Recalling that for π symmetric, the inequality in (3.6) is an equality, δ(A) is bounded

below by a constant for all M . Therefore by Theorem 3.1.1 and Corollary 3.1.1, this

set of parallel or simulated tempering chains is rapidly mixing.

4.2 Rapid Mixing on a Symmetric Mixture of Nor-

mals in R
M

Recall the definitions from Section 2.4.2. Let 1M denote the vector of M ones, and

IM denote the M ×M identity matrix. Take any b > 0, and consider the following

mixture of two normal densities in R
M :

π(z) =
1

2
NM(z;−b1M , IM) +

1

2
NM(z; b1M , IM). (4.1)

Observe that π is symmetric with respect to the partition of the state space defined

by A1 = {z :
∑

i zi < 0} and A2 = {z :
∑

i zi ≥ 0}. We will consider in this section

the following approximation to π, extending the same results to π in Section 4.4:

π̃(z) ∝ 1

2
NM(z;−b1M , IM)1A1(z) +

1

2
NM(z; b1M , IM)1A2(z) (4.2)

where 1 is the indicator function for a set. Recall that the proposal kernel S pro-

poses uniformly on the ball of radius M−1 centered at the current state. Metropolis-

Hastings for S with respect to the density

π̃|A1(z) ∝ NM(z;−b1M , IM)1A1(z)

or with respect to

π̃|A2(z) ∝ NM(z; b1M , IM)1A2(z)
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is rapidly mixing in M , as we will show in Section 4.3.4. We will also show that

Metropolis-Hastings for S with respect to π̃ is torpidly mixing (Section 4.3.2). In

Section 4.3 we will show that for any β,

π̃β(z) =
NM(z;−b1M , β

−1IM)1A1(z)

2Φ(b
√
Mβ1/2)

+
NM(z; b1M , β

−1IM)1A2(z)

2Φ(b
√
Mβ1/2)

where Φ is the cumulative normal distribution function in one dimension. All these

facts will be shown for a weighted normal mixture of which (4.2) is a special case.

Set N = M and βk = M−(M−k)/M (a geometric progression), and let Tk be the

Metropolis-Hastings kernel for S with respect to φk = π̃βk
. With these specifications,

parallel and simulated tempering are rapidly mixing, as implied by the following

additional facts. The quantity minj,k Gap(Tk|Aj
) is polynomially decreasing in M ,

as we will show in Section 4.3.4. Metropolis-Hastings for S with respect to π̃M−1 is

rapidly mixing (Section 4.3.3). The quantity δ(A) is also polynomially decreasing,

shown as follows.

Let λ be Lebesgue measure in R
M . Take any M and any k ∈ {0, . . . , N − 1}.
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Note that βk/βk+1 = M−1/M , so that

∫

X

min {φk(z), φk+1(z)}λ(dz) = 2

∫

A2

min {φk(z), φk+1(z)} λ(dz)

=

∫

A2

min

{

NM (z; b1M , β
−1
k IM)

Φ(b
√
Mβk

1/2)
,
NM(z; b1M , β

−1
k+1IM)

Φ(b
√
Mβ

1/2
k+1)

}

λ(dz)

≥
∫

A2

min
{

NM(z; b1M , β
−1
k IM), NM(z; b1M , β

−1
k+1IM)

}

λ(dz)

= (2π)−M/2

∫

A2

β
M/2
k+1 ×

min

{

(

βk

βk+1

)M/2

exp

{

−βk

2

∑

i

(zi − b)2

}

, exp

{

−βk+1

2

∑

i

(zi − b)2

}}

λ(dz)

≥ 1√
M

(2π)−M/2

∫

A2

β
M/2
k+1 exp

{

−βk+1

2

∑

i

(zi − b)2

}

λ(dz)

=
1√
M

∫

A2

NM (z; b1M , β
−1
k+1IM) ≥ 1

2
√
M
. (4.3)

Therefore δ(A) is polynomially decreasing in M . By Theorem 3.1.1 and Corol-

lary 3.1.1, parallel and simulated tempering with this N and this set of inverse

temperatures are rapidly mixing.

In the case of a normal mixture with unequal weights, we must additionally show

that γ(A) is polynomially decreasing, and we will do this in Section 4.3. We will

also need to use more inverse temperatures in that case in order to show that δ(A)

is polynomially decreasing.
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4.3 Rapid Mixing on a Weighted Mixture of Nor-

mals in R
M

Recall the definitions from Section 2.4.2. Let 1M denote the vector of M ones, and

IM denote the M ×M identity matrix. Take any b > 0, and any sequence a1, a2, . . .

where aM ∈ [1/2, 1) for all M . As a generalization of the symmetric normal mixture

defined in (4.1), consider the following mixture of two normal densities in R
M :

π(z) = aMNM(z;−b1M , IM) + (1 − aM)NM(z; b1M , IM).

As in the symmetric case, partition X into A1 = {z :
∑

i zi < 0} and A2 = {z :

∑

i zi ≥ 0}. For technical reasons, we will use the following approximation to π:

π̃(z) ∝ aMNM(z;−b1M , IM)1A1(z) + (1 − aM)NM(z; b1M , IM)1A2(z) (4.4)

and will restrict aM/(1−aM) to be exponentially bounded-above, meaning that there

is some c ≥ 1 such that aM/(1 − aM ) ≤ cM for all M .

Recall that S is the proposal kernel that is uniform on the ball of radius M−1

centered at the current state. Metropolis-Hastings for S with respect to the density

π̃|A1(z) ∝ NM(z;−b1M , IM)1A1(z)

or with respect to

π̃|A2(z) ∝ NM(z; b1M , IM)1A2(z)

is rapidly mixing in M , as we will show in Section 4.3.4. However, Metropolis-

Hastings for S with respect to π̃ is torpidly mixing, which we will show in Sec-

tion 4.3.2.
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Note that for any β,

π̃β(z) ∝ aβ
MNM(z;−b1M , β

−1IM)1A1(z)

+ (1 − aM)βNM(z; b1M , β
−1IM)1A2(z) (4.5)

Let Φ be the cumulative normal distribution function in one dimension. Consider any

normal distribution with covariance σ2IM for σ > 0. Observe that the probability

under this normal distribution of any half-space that is Euclidean distance d from

the center of the normal distribution at its closest point is Φ(−d/σ). This is due to

the independence of the dimensions and can be shown by a rotation and scaling in

R
M .

Note that the distance between the half-space A2 and the point −b1M is equal to

b
√
M , as is the distance between A1 and b1M . Therefore the normalizing constant of

(4.5) is [aβ
M + (1 − aM)β]Φ(b

√
Mβ1/2).

Consider the inverse temperature specification that we used for the symmetric

case, with N = M and the set of inverse temperatures {M−(M−k)/M : k = 0, . . . ,M}.

Also recall the inverse temperature specification for the mean-field Ising model, with

N = M and the set of inverse temperatures {k/M : k = 0, . . . ,M}. For the mixture

of normals with unequal weights, we use both, taking the set of inverse temperatures

{M−(M−k)/M : k = 0, . . . ,M} ∪ {k/M : k = 1, . . . ,M}, so that N = 2M .

Metropolis-Hastings for S with respect to π̃M−1 is rapidly mixing, as we will show

in Section 4.3.3. In addition, minj,k Gap(Tk|Aj
) is polynomially decreasing in M ,

to be proven in Section 4.3.4. The quantities γ(A) and δ(A) are also polynomially
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decreasing, shown as follows.

Note that for any β,

π̃β[A1] =
aβ

M

aβ
M + (1 − aM)β

which is an increasing function of β since aM ≥ 1/2. Therefore

γ(A) =
φ0[A1]

φN [A1]
≥ 1

2φN [A1]
≥ 1

2

which does not depend on M . Also note that for any k ∈ {0, . . . , N − 1},

φk+1[A2]

φk[A2]
≥ φk[A1]φk+1[A2]

φk+1[A1]φk[A2]
=

(

1 − aM

aM

)βk+1−βk

≥
(

1 − aM

aM

)1/M

≥ c−1.

Therefore
∫

A2

min {φk(z), φk+1(z)}λ(dz)

max{φk[A2], φk+1[A2]}

=

∫

A2

min

{

φk[A2]
NM (z;b1M ,β−1

k IM )

Φ(b
√

Mβ
1/2
k )

, φk+1[A2]
NM (z;b1M ,β−1

k+1IM)

Φ(b
√

Mβ
1/2
k+1)

}

λ(dz)

max {φk[A2], φk+1[A2]}

≥
φk+1[A2]

∫

A2

min
{

NM(z; b1M , β
−1
k IM), NM(z; b1M , β

−1
k+1IM)

}

λ(dz)

φk[A2]

≥ c−1

∫

A2

min
{

NM(z; b1M , β
−1
k IM), NM(z; b1M , β

−1
k+1IM)

}

λ(dz)

≥ 1

2
√
M
c−1

where the last inequality is from (4.3), using the fact that βk/βk+1 ≥ M−1/M . This

argument can be repeated for A1. Note that

δ(A) = min
k∈{0,...,N−1},j

∫

Aj

min {φk(z), φk+1(z)}λ(dz)

max{φk[Aj], φk+1[Aj]}
.
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Therefore δ(A) is polynomially decreasing. By Theorem 3.1.1 and Corollary 3.1.1,

parallel and simulated tempering with this N and this set of inverse temperatures

are rapidly mixing on the weighted mixture of normals.

4.3.1 Tools for Bounding Spectral Gaps

We will need the following tools to prove the results of this section. These results

hold for any transition kernels P and Q defined on a space X with measure λ.

Theorem 4.3.1. (Lawler and Sokal 1988) Assume that P is reversible with respect

to a distribution µ on X . The conductance of a set A ⊂ X for which 0 < µ(A) < 1

is defined as:

ΦP (A) =
(1A, P1Ac)µ

µ(A)µ(Ac)

where 1A is the indicator function of the set A. Also define the conductance of P to

be ΦP = inf
A⊂X :0<µ(A)<1

ΦP (A). Then

Φ2
P

8
≤ Gap(P ) ≤ ΦP .

Note that since P is reversible with respect to µ, ΦP (A) can be rewritten as

ΦP (A) =
(1A, P1Ac)µ

µ(A)
+

(1Ac, P1A)µ

µ(Ac)
(4.6)

In order to show that T0 is rapidly mixing and that minj,k Gap(Tk|Aj
) is polynomi-

ally decreasing, we will need the following results regarding the mixing of Metropolis-
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Hastings. The first regards the mixing of Metropolis-Hastings with respect to a mix-

ture density.

Theorem 4.3.2. (Madras and Randall 2002) Let πP be some mixture density on X ,

so that there exists an I ∈ N and a set of weights ai and densities ψi (with respect to

λ) for i ∈ {1, . . . , I} such that for all z ∈ X

πP (z) =
I
∑

i=1

aiψi(z).

Let P be the Metropolis-Hastings chain for some proposal kernel Q with respect to

πP . For each i let Gapi denote the spectral gap of the Metropolis-Hastings chain for

Q with respect to ψi. Define the overlap quantity

d = min
i=1,...,I−1

∫

min{ψi(z), ψi+1(z)}λ(dz).

Then

Gap(P ) ≥ d

2(I − 1)
min

i=1,...,I
aiGapi.

We will also need a result regarding the mixing of Metropolis-Hastings with re-

spect to “similar” densities:

Lemma 4.3.1. (Madras and Piccioni 1999) Assume that P and Q are Metropolis-

Hastings kernels for the same symmetric proposal kernel, with respect to the densities

πP and πQ, respectively. Also assume that there exists an a ≥ 1 such that

a−1 ≤ πP (z)

πQ(z)
≤ a
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for all z ∈ X such that πP (z) and πQ(z) do not vanish simultaneously. Then

a−2Gap(P ) ≤ Gap(Q) ≤ a2Gap(P )

The last two results regard the mixing of Metropolis-Hastings with respect to

a normal distribution in R
M as M increases. They are consequences of results in

Kannan and Li (1996a) and Kannan and Li (1996b), as shown in Section 4.5.

Theorem 4.3.3. Take any M ∈ N and any σ, τ > 0. Let S ′ be the proposal kernel

in R
M that draws uniformly from the ball of radius σ centered at the current state.

Consider the Metropolis-Hastings kernel for S ′ with respect to any normal density

with covariance matrix τ 2IM . The conductance ΦMH of the kernel satisfies

ΦMH ≥ Φ2
loc
σ

23/2τ
√
Mπ

for a quantity Φloc that satisfies

Φloc ≥ min

{

exp

{

−2
√
Mσ2

τ 2

}

,
1

4

}

.

Theorem 4.3.4. Take any M ∈ N and any σ, τ > 0. Consider any normal den-

sity in R
M that has covariance matrix τ 2IM , and take the restriction of this den-

sity to any half-space that contains the center of the normal distribution. Take the

Metropolis-Hastings kernel for S ′ with respect to this restricted normal density. Then

the conductance ΦMH of the kernel satisfies

ΦMH ≥ Φ2
loc
σ

23/2τ
√
Mπ
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for a quantity Φloc that satisfies

Φloc ≥ min

{

1

2
exp

{

−2
√
Mσ2

τ 2

}

,
1

8

}

.

4.3.2 Metropolis-Hastings is Torpidly Mixing for β = 1

Recall the weighted normal mixture π̃, the corresponding proposal kernel S, and the

sets A1 and A2. Consider the Metropolis-Hastings kernel for S with respect to π̃.

Note that the boundary BA2 of A2 with respect to the Metropolis-Hastings kernel is

the set of z ∈ A2 such that z is within distance M−1 of the hyperplane
∑

i zi = 0.

Recall that the probability under any normal distribution with covariance σ2IM for

σ > 0 of any half-space that is distance d from the center of the normal distribution

is Φ(−d/σ), where Φ is the cumulative normal distribution function. Therefore

π̃[BA2 ]

π̃[A2]
=

Φ
(

b
√
M
)

− Φ
(

b
√
M −M−1

)

Φ
(

b
√
M
)

≤ 2
[

Φ
(

b
√
M
)

− Φ
(

b
√
M −M−1

)]

≤ 2
[

1 − Φ
(

b
√
M −M−1

)]

= 2Φ
(

−b
√
M +M−1

)

.

For M large enough, this is bounded above by 2Φ
(

−b
√
M/2

)

. Analytic integration

shows that for any a > 0, Φ(−a) ≤ N1(a; 0, 1)/a. Therefore π̃[BA2 ]/π̃[A2] is expo-

nentially decreasing. Similarly, for BA1 equal to the boundary of A1 with respect

to the Metropolis-Hastings kernel, π̃[BA1 ]/π̃[A1] is exponentially decreasing. Using
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the form of conductance in (4.6), the conductance of A2 is exponentially decreasing,

which implies that Metropolis-Hastings is torpidly mixing, by Theorem 4.3.1.

4.3.3 Metropolis-Hastings is Rapidly Mixing for β = M−1

We will show that T0 is rapidly mixing, where T0 is the Metropolis-Hastings kernel for

S with respect to π̃M−1 . This will imply that T̄0 is rapidly mixing, by Theorem 3.2.2.

Recall that there is some c ≥ 1 such that aM/(1−aM ) ∈ [1/2, cM ] for allM . Therefore

(aM)M−1

(aM)M−1 + (1 − aM)M−1 ∈
[

1

2
,

1

1 + c−1

]

and

(1 − aM)M−1

(aM)M−1 + (1 − aM)M−1 ∈
[

1

1 + c
,
1

2

]

.

Using (4.5),

π̃M−1(z) ∈
[

2

1 + c
ψ̃(z),

2

1 + c−1
ψ̃(z)

]

z ∈ X

where

ψ̃(z) ∝ 1

2
NM(z;−b1M ,MIM)1A1(z) +

1

2
NM(z; b1M ,MIM)1A2(z) z ∈ X

Note that for z ∈ A1, we have NM (z;−b1M , IM) ≥ NM(z; b1M , IM). Similarly, for

z ∈ A2, we have NM(z;−b1M , IM) ≤ NM(z; b1M , IM). Therefore ψ̃ is within a factor

of two of the density

ψ(z)
def
=

1

2
NM(z;−b1M ,MIM) +

1

2
NM(z; b1M ,MIM) z ∈ X
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Therefore π̃M−1 and ψ are within a constant factor of one another. Recall that S

has proposal radius M−1. We wish to show that Metropolis-Hastings for S with

respect to π̃M−1 is rapidly mixing. By Lemma 4.3.1, it is equivalent to show that

Metropolis-Hastings for S with respect to ψ is rapidly mixing. By Theorem 4.3.2 it

is furthermore sufficient to show that:

1. the overlap d between NM(z;−b1M ,MIM) and NM(z; b1M ,MIM) is polynomi-

ally decreasing in M,

2. Metropolis-Hastings for S with respect toNM(z;−b1M ,MIM) is rapidly mixing,

and

3. Metropolis-Hastings for S with respect to NM (z; b1M ,MIM) is rapidly mixing.

Consider the Metropolis-Hastings chain for S with respect to NM (z;−b1M ,MIM).

Applying Theorem 4.3.3 with σ = M−1 and τ = M1/2 then shows that this Metropolis-

Hastings chain is rapidly mixing, so condition 2 above is satisfied. By symmetry,

condition 3 is also satisfied.

Now we will show that the overlap between NM(z;−b1M ,MIM) andNM(z; b1M ,MIM)

is constant in M. Recall that for z ∈ A1, NM(z;−b1M ,MIM) ≥ NM(z; b1M ,MIM).

Therefore

∫

A1

min{NM(z;−b1M ,MIM), NM(z; b1M ,MIM)}λ(dz)

=

∫

A1

NM(z; b1M ,MIM)λ(dz) = Φ(−b)
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By symmetry,

∫

min{NM(z;−b1M ,MIM), NM(z; b1M ,MIM)}λ(dz) = 2Φ(−b)

Therefore the overlap between NM(z;−b1M ,MIM) and NM(z; b1M ,MIM) is constant,

so T0 is rapidly mixing.

4.3.4 Metropolis-Hastings is Rapidly Mixing when Restricted

to A1 or to A2

We will show that the infimum of the spectral gap of Metropolis-Hastings for S

with respect to π̃β|A2 over β ≥ M−1 is polynomially decreasing in M. This implies

that regardless of the choice of inverse temperatures, since β0 = M−1, the minimum

of Gap(Tk|A2) over k is polynomially decreasing in M. The same then holds for

Gap(Tk|A1). Applying Theorem 4.3.4 with σ = M−1 and τ = β−1/2 shows that

inf
β∈[M−1,1]

Φloc ≥ inf
β∈[M−1,1]

min

{

1

2
exp

{

−2
√
Mβ

M2

}

,
1

8

}

= min

{

1

2
exp

{

−2M−3/2
}

,
1

8

}

≥ min

{

1

2
exp {−2} , 1

8

}

so that the local conductance is bounded below by a constant. Note that σ/τ is poly-

nomially decreasing in M. Therefore by Theorem 4.3.4, the infimum over β ≥ M−1

of the conductance of Metropolis-Hastings is polynomially decreasing. By Theo-

rem 4.3.1, the infimum over β ≥ M−1 of the spectral gap is also polynomially de-

creasing.
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4.4 Rapid Mixing on the Symmetric Normal Mix-

ture, with Tails

Consider the symmetric normal mixture π and its truncation approximation π̃ as

defined in Section 4.2. We will show that the results of that section for π̃ also hold

for π. We will need a result showing that when a mixture density is tempered, the

result is “close” to a mixture of the tempered densities, meaning the following:

Theorem 4.4.1. Consider any mixture density π ′, defined on a space X with measure

λ, so that

π′(z) =
I
∑

i=1

aiψi(z) z ∈ X

where
∑

i

ai = 1 and the ψi are densities with respect to λ. Define the following

quantity for any β, j ∈ {1, . . . , I}:

pβ,j =

∫

aβ
jψj(w)βλ(dw)

∑

i

∫

aβ
i ψi(w)βλ(dw)

.

Define the following density:

ψβ(z) =
I
∑

j=1

pβ,jψjβ(z)

where ψjβ is ψj tempered by β as defined in Section 2.3. Then

π′
β(z) ∈ [I−2ψβ(z), I2ψβ(z)].

Proof. Note that ψβ(z) = 0 if and only if π′(z) = 0. Define the following function for
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any j ∈ {1, . . . , I} and z ∈ X such that π′(z) > 0:

fβ,j(z) = ψjβ(z)











[

∑

i

aiψi(z)

]β

∑

i

aβ
i ψi(z)β





















∑

i

∫

aβ
i ψi(w)βλ(dw)

∫

[

∑

i

aiψi(w)

]β

λ(dw)











.

Note that π′
β(z) is equal to

∑

j pβ,jfβ,j(z) for all z ∈ X such that π′(z) > 0. Now

observe the following bound:

[

∑

i

aiψi(z)

]β

≥
[

max
i

{aiψi(z)}
]β

= max
i

{

aβ
i ψi(z)

β
}

≥ 1

I

∑

i

aβ
i ψi(z)

β

which implies that

∫

[

∑

i

aiψi(w)

]β

λ(dw) ≥ 1

I

∫

∑

i

aβ
i ψi(w)βλ(dw).

Also note the following bound in the other direction:

[

∑

i

aiψi(z)

]β

≤
[

I max
i

{aiψi(z)}
]β

= Iβ max
i

{

aβ
i ψi(z)

β
}

≤ Iβ
∑

i

aβ
i ψi(z)

β ≤ I
∑

i

aβ
i ψi(z)

β

which implies that

∫

[

∑

i

aiψi(w)

]β

λ(dw) ≤ I

∫

∑

i

aβ
i ψi(w)βλ(dw)

Therefore for any β and any z such that π′(z) > 0,

[

∑

i

aiψi(z)

]β

∑

i

aβ
i ψi(z)β

∈ [I−1, I]
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and
∫
∑

i

aβ
i ψi(w)βλ(dw)

∫

[

∑

i

aiψi(w)

]β

λ(dw)

∈ [I−1, I]

Therefore










[

∑

i

aiψi(z)

]β

∑

i

aβ
i ψi(z)β





















∑

i

∫

aβ
i ψi(w)βλ(dw)

∫

[

∑

i

aiψi(w)

]β

λ(dw)











∈
[

I−2, I2
]

This proves that for any β and j, fβ,j(z) ∈ [I−2ψjβ(z), I2ψjβ(z)]. Therefore Theorem

4.4.1 holds.

Let us apply Theorem 4.4.1 to the symmetric mixture of normals given in (4.1).

Note that pβ,1 = pβ,2 = 1/2 for any β. Therefore for any β,

ψβ(z) =
1

2
NM(z;−b1M , β

−1IM) +
1

2
NM (z; b1M , β

−1IM)

and

πβ(z) ∈
[

2−2ψβ(z), 22ψβ(z)
]

(4.7)

It is straightforward to show that ψβ(z) is within a factor of two of π̃β(z) for every z

and β. Therefore πβ(z) is within a factor of 23 of π̃β(z). In Section 4.2 we showed that

for π̃, mink,j Gap(Tk|Aj
) is polynomially decreasing in M , T0 is rapidly mixing, and

the overlap δ(A) is polynomially decreasing. Using Lemma 4.3.1, these conditions

also hold for π. Therefore parallel and simulated tempering are rapidly mixing for

the symmetric normal mixture π.
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4.5 Proof of Metropolis-Hastings Mixing on Nor-

mal Densities

We will prove Theorems 4.3.3 and 4.3.4 using the following results from Kannan and

Li (1996a) and Kannan and Li (1996b). First, define a real-valued function g on R
M

to be log-concave if it is nonnegative and if, for any z, w ∈ R
M and any ρ ∈ [0, 1],

g(z)ρg(w)1−ρ ≤ g(ρz + (1 − ρ)w).

Then we have the following result.

Theorem 4.5.1. (Kannan and Li (1996a), Theorem 3.1) Take any M ∈ N and any

log-concave function g on R
M . Let f be the density defined as follows:

f(z) ∝ g(z)NM(z; 0, IM) z ∈ R
M

Take any σ > 0, and define a proposal kernel S ′ in R
M that proposes uniformly on

the ball of radius σ centered at the current state. Let B(σ, z) denote this ball, where

z is the current state, and let vol(B(σ, z)) denote the volume of B(σ, z). Consider

the Metropolis-Hastings kernel for S ′ with respect to f . For any z ∈ R
M such that

f(z) > 0, define the following quantity, where λ is Lebesgue measure in R
M :

Φloc(z) =

∫

w∈B(σ,z)

min {f(z), f(w)}λ(dw)

f(z) vol(B(σ, z))

Define the “local conductance” of the Metropolis-Hastings kernel as

Φloc = inf
z∈RM :f(z)>0

Φloc(z).
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Then the conductance ΦMH of the Metropolis-Hastings kernel satisfies

ΦMH ≥ Φ2
loc
σ

23/2
√
Mπ

.

The proof of Theorem 4.5.1 is in Kannan and Li (1996b), as is the following lemma:

Lemma 4.5.1. (Kannan and Li 1996b) Take any ball Br of radius r in R
M that is

centered on the surface of another ball BR of radius R, where R ≥
√

Mr
2

. Then the

volume of their intersection satisfies

vol(Br ∩BR) ≥
(

1

2
− r

√
M

4R

)

vol(Br).

The proof of Theorem 4.3.3 uses Theorem 4.5.1 and Lemma 4.5.1 and is closely

related to the proof of a similar bound in Kannan and Li (1996b). Consider the

context of Theorem 4.3.3. First scale by a factor of τ−1 and translate to center the

normal density at zero, yielding a standard normal target density. The proposal

radius is σ′ = σ/τ after scaling and translation. Since the acceptance probability

of Metropolis-Hastings is invariant to such linear transformations of the space, the

conductance ΦMH is unchanged. We will therefore show that Metropolis-Hastings for

proposal radius σ′, with respect to the standard normal density, satisfies

Φloc ≥ min

{

exp
{

−2
√
Mσ′2

}

,
1

4

}

and

ΦMH ≥ Φ2
loc
σ′

23/2
√
Mπ

.

62



We will show this result by applying Theorem 4.5.1 with g(z) = 1 for all z ∈ X , so

that f(z) = NM(z; 0, IM). First we bound the local conductance of the chain. Let

the current state be denoted z. If ‖z‖2 ≤
√
Mσ′,

Φloc(z) ≥
inf

w∈B(σ′ ,z)
f(w)

f(z)
=

inf
w∈B(σ′ ,z)

exp{−‖w‖2
2/2}

exp{−‖z‖2
2/2}

=
exp{−(‖z‖2 + σ′)2/2}

exp{−‖z‖2
2/2}

= exp{−(‖z‖2σ
′ +

σ′2

2
)}

≥ exp{−(
√
Mσ′2 +

σ′2

2
)} ≥ exp{−2

√
Mσ′2}.

If ‖z‖2 >
√
Mσ′,

Φloc(z) ≥

∫

w∈B(σ′,z)

1(f(w) ≥ f(z))λ(dw)

vol(B(σ′, z))

=

∫

w∈B(σ′ ,z)

1(‖w‖2 ≤ ‖z‖2)λ(dw)

vol(B(σ′, z))

=
vol(B(σ′, z) ∩B(‖z‖2, 0))

vol(B(σ′, z))
. (4.8)

Then we can apply Lemma 4.5.1, obtaining

vol(B(σ′, z) ∩ B(‖z‖2, 0))

vol(B(σ′, z))
≥ 1

2
− σ′√M

4‖z‖2
≥ 1

4

Therefore we have proven the bound on Φloc. Since g is log-concave, we can ap-

ply Theorem 4.5.1, giving the desired bound on the conductance of the Metropolis-

Hastings chain.

Next we prove Theorem 4.3.4. Consider the restriction of the normal distri-

bution to the half-space that contains the center of the normal distribution. It is

straightforward to show that such a restriction reduces the local conductance of the
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Metropolis-Hastings kernel by at most a factor of two, relative to the unrestricted

normal in Theorem 4.3.3. Application of Theorem 4.5.1 then implies the desired

result.

.
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Chapter 5

Upper Bounds on the Convergence Rates

of Parallel and Simulated Tempering and

Conditions for Torpid Mixing

As we showed in Section 2.1, an upper bound on the spectral gap of a Markov chain

implies an upper bound on the rate of convergence to stationarity. In this chapter

we will give upper bounds on the spectral gaps of parallel and simulated tempering

chains, as well as conditions for torpid mixing.

5.1 Upper Bounds on the Spectral Gaps of Swap-

ping and Simulated Tempering Chains and Con-

ditions for Torpid Mixing

Consider a parallel or simulated tempering chain as defined in Section 2.3. It is typi-

cally assumed that if such a chain has high acceptance rates for swap or temperature-
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changing moves between all adjacent temperature levels, then it is mixing quickly.

We show that this is not necessarily the case: if the target distribution has a subset

with low conductance for β close to 1 and low persistence (defined below), then the

tempering chain mixes slowly. In addition, we show that if the inverse temperatures

of two adjacent levels are far apart so that the overlap (also defined below) of the

levels is small, the tempering chain mixes slowly.

For purposes of sampling from continuous π, consider sets A ⊂ X that contain

a single local mode of π along with the surrounding area of high density. If π has

multiple modes, separated by areas of low density, and if the proposal kernel makes

only local moves, then the conductance of A with respect to Metropolis-Hastings is

typically small for β close to 1. The conductance of a set A ⊂ X is defined as follows

for any transition kernel P that is reversible with respect to a distribution µ on X ,

where we require that 0 < µ(A) < 1:

ΦP (A) =
(1A, P1Ac)µ

µ(A)µ(Ac)

and where 1A is the indicator function of the set A. The conductance of A is an

upper bound on the spectral gap of P (Lawler and Sokal 1988). Note that since P is

reversible with respect to µ,

(1A, P1Ac)µ =

∫

x∈A

∫

y∈Ac

µ(dx)P (x, dy) = (1Ac, P1A)µ

so we can rewrite ΦP (A) as

(1A, P1Ac)µ

µ(A)
+

(1Ac, P1A)µ

µ(Ac)
. (5.1)
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In particular, ΦP (A) ≤ 2.

We will first give upper bounds on the spectral gap of any parallel or simulated

tempering chain with φk = πβk
for some N and {βk : k = 0, . . . , N}, in terms of an

arbitrary subset A of X . The set A can be taken so that π|A is unimodal as described

above, but we only require that 0 < π[A] < 1.

Recall the definition of Hβ in Section 2.3. The bounds will be in terms of the

conductance of A under Hβ and the persistence of A under tempering by β, defined

as

γ(A, β) = min

{

1,
πβ[A]

π[A]

}

(5.2)

The persistence measures how much smaller the probability of A is under πβ than

under π, if it is smaller. If A has low persistence for small values of β, then a parallel

or simulated tempering chain starting in Ac may take a long time to discover A at

small β. If A is a unimodal subset of a multimodal distribution then it may have low

conductance for β close to 1, so the tempering chain may take a long time to discover

A at every inverse temperature, even if the probability of A is high under π. This

leads to slow mixing of the tempering chain, as we will see. It also contradicts the

general presumption that if the simulated or parallel tempering chain is monitored to

ensure that the swapping or level-changing acceptance rates are high, then the chain

is mixing quickly.

Recall B from Section 2.3. Using the conductance ΦHβ
(A) and the persistence

γ(A, β), we have the following result.
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Figure 5.1: The probability of A = A2 under π̃β as a function of β, for the approx-

imated mixture of normals in Section 6.1 with M = 35, σ1 = 6, and σ2 = 5.

Theorem 5.1.1. Consider a parallel tempering chain Ppt that uses either of the

swapping schemes SC1 or SC2, or a simulated tempering chain Pst that changes

levels using scheme ST1 (Section 2.3), such that φk = πβk
and Tk = Hβk

for some

N and some {βk : k = 0, . . . , N}. For any A ⊂ X such that 0 < π[A] < 1, Gap(Ppt)

and Gap(Pst) are bounded above by

6 sup
β∈B

{

γ(A, β)ΦHβ
(A)
}

and 192

[

sup
β∈B

{

γ(A, β)ΦHβ
(A)
}

]1/4

respectively.

This is a consequence of a more general result for any swapping or simulated temper-

ing chain (φk not necessarily tempered versions of π). In this case, the persistence of
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A is defined for each level k as

γ(A, k) = min

{

1,
φk[A]

φN [A]

}

. (5.3)

This quantity is related in the following way to γ({Aj}) for a partition {Aj : j =

1, . . . , J} of X , as defined in Section 3.1. If φk[Aj] is a monotonic function of k for

each j, then

γ({Aj}) = min
j,k

γ(Aj, k).

Next consider the conductance ΦTk
(A). We will show that it is related to the

projection matrix T̄k for Tk with respect to the partition {A,Ac}, as defined in Sec-

tion 3.1 and in Madras and Randall (2002). The transition T̄k is a 2 × 2 matrix; the

spectral gap of such a matrix is given by the sum of the off-diagonal elements. This

sum is precisely ΦTk
(A), written in the form (5.1), so that Gap(T̄k) = ΦTk

(A).

Using ΦTk
(A) and γ(A, k), for any A ⊂ X such that 0 < φk[A] < 1 for all

k ∈ {0, . . . , N}, Gap(Psc) and Gap(Pst) are bounded above by

6 max
k

{γ(A, k)ΦTk
(A)} and 192

[

max
k

{γ(A, k)ΦTk
(A)}

]1/4

(5.4)

respectively. Note that these bounds directly imply Theorem 5.1.1. The bound for

Psc is proven in Section 5.2, and that for Pst is proven in Section 5.3.

Recall from Section 2.1 that torpid mixing of a chain means that the spectral gap

of the transition kernel is exponentially decreasing in the problem size. Theorem 5.1.1

implies that if there is some inverse temperature βa ∈ B such that the conductance

of A is exponentially decreasing in the problem size for β ∈ [βa, 1], and such that
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the persistence of A is exponentially decreasing for β ∈ [0, βa)∩B, then parallel and

simulated tempering are torpidly mixing. In Section 6.1 we will specify a mixture of

normals with unequal covariances in R
M . We will that show for an approximation

of the normal mixture (π̃) formed by truncation of the overlapping parts of the tails,

the persistence of a set A containing the narrower mode is exponentially decreasing

for β < 1
2
. Figure 5.1 shows π̃β[A] as a function of β for M = 35. It is clear from

the figure that for β < 1
2
, π̃β[A] is much smaller than π[A]. This effect becomes more

extreme as M increases, leading to exponentially small persistence for β < 1
2
. We will

also show that for the mixture π̃ the conductance of the same set A is exponentially

decreasing for β ≥ 1
2
. Therefore Theorem 5.1.1 will imply the torpid mixing of parallel

and simulated tempering for this mixture. The untruncated version of the normal

mixture is addressed at the end of this section.

For a general target distribution, even if every subset has high persistence for small

values of β, having a subset with low persistence within an intermediate β-interval

is enough to cause slow mixing by creating a bottleneck in the parallel or simulated

tempering chain. This is because a proposed move between a small β and a large β ′

typically has a very low probability of being accepted. The probability of acceptance

of a proposed move in the simulated tempering chain from inverse temperature β to

inverse temperature β ′, conditional on z ∈ A, will be called the overlap of πβ and πβ′

with respect to A, and is given by

δ(A, β, β ′) =

∫

A

min {πβ(z), πβ′(z)}λ(dz)

πβ[A]
.
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More generally, for any swapping chain or simulated tempering chain define the over-

lap of levels k and l with respect to A to be:

δ(A, k, l) =

∫

A

min {φk(z), φl(z)}λ(dz)

φk[A]
. (5.5)

The quantity δ(A, k, l) is related as follows to the overlap of {φk : k = 0, . . . , N} with

respect to a partition {Aj, j = 1, . . . , J} of X , as defined in Section 3.1:

δ({Aj}) = min
|k−l|=1,j

δ(Aj, k, l).

The quantity δ({Aj}) is in turn a lower bound on the overlap quantity defined in

Zheng (2003). Using δ(A, k, l), γ(A, k), and the conductance ΦTk
(A), we have the

following result, which is proven for Psc in Section 5.2 and for Pst in Section 5.3.

Theorem 5.1.2. Consider a swapping chain Psc that uses either of the swapping

schemes SC1 or SC2, or a simulated tempering chain Pst that changes levels using

scheme ST1 (Section 2.3). For any A ⊂ X such that 0 < φk[A] < 1 for all k, and

for any k∗ ∈ {1, . . . , N},

Gap(Psc) ≤ 12 max
k≥k∗,l<k∗

{γ(A, k) max {ΦTk
(A), δ(A, k, l), δ(Ac, k, l)}}

and

Gap(Pst) ≤ 192

[

max
k≥k∗,l<k∗

{γ(A, k) max {ΦTk
(A), δ(A, k, l)}}

]1/4

.

For the case where the φk are tempered versions of π, the bounds in Theorem 5.1.2

show that adjacent inverse temperatures must be chosen close enough for the overlaps
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to be large, since it is clear that if there is some level k∗ such that the overlap of any

pair of levels k ≥ k∗ and l < k∗ with respect to A and Ac is exponentially decreasing,

and such that the conductance of A is exponentially decreasing for k ≥ k∗, then

the parallel or simulated tempering chain is torpidly mixing. This is the case for the

mean-field Ising model with fixed inverse temperatures, as we will show in Section 6.3.

Although the bounds in Theorem 5.1.2 are for a specific N and set of densities

φk, if the φk are tempered versions of π then the bounds can be generalized to not

depend on the number and choice of inverse temperatures:

Corollary 5.1.1. Consider a parallel tempering chain Ppt that uses either of the

swapping schemes SC1 or SC2, or a simulated tempering chain Pst that changes

levels using scheme ST1 (Section 2.3), such that φk = πβk
and Tk = Hβk

for some

N and {βk : k = 0, . . . , N}. Take any inverse temperature βb ∈ B such that βb >

inf{β ∈ B} and any A ⊂ X such that 0 < π[A] < 1. Regardless of the choice of N

and {βk},

Gap(Ppt) ≤ 12 sup
β∈[βb,1]

β′∈[0,βb)∩B

{

γ(A, β) max
{

ΦHβ
(A), δ(A, β, β ′), δ(Ac, β, β ′)

}}

and

Gap(Pst) ≤ 192






sup

β∈[βb,1]

β′∈[0,βb)∩B

{

γ(A, β) max
{

ΦHβ
(A), δ(A, β, β ′)

}}







1/4

.

This is a corollary of Theorems 5.1.1 and 5.1.2, verified by setting k∗ = min{k :
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Figure 5.2: The probability of A = A2 under πβ as a function of β, for the mixture

of normals in Section 6.1 with M = 35, σ1 = 6, and σ2 = 5.

βk ≥ βb}. If k∗ = 0 then use Theorem 5.1.1; otherwise, use Theorem 5.1.2. Note

that if there is some inverse temperature βa > βb such that the conductance of A is

exponentially decreasing in the problem size for β ∈ [βa, 1], such that the persistence

of A is exponentially decreasing for β ∈ [βb, βa), and such that the overlap of β

and β ′ with respect to A and Ac is exponentially decreasing for β ∈ [βa, 1] and

β ′ ∈ [0, βb) ∩ B, then parallel and simulated tempering are torpidly mixing. This

latter condition on the overlap is presumably the case in most problems of interest,

for which a range of intermediate β values are necessary to interpolate between small

and large values of β. Therefore having a set A with low conductance for β close

to 1 and low persistence for β in some intermediate β-interval leads to slow mixing

of parallel and simulated tempering. Note that this is possible since πβ[A] is not

necessarily a monotonic function of β; if we include the tails of the normal mixture
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from Figure 5.1, we obtain Figure 5.2. In order to show torpid mixing with the tails

included, we would need to use Corollary 5.1.1 rather than Theorem 5.1.1, since the

set A has low persistence within an intermediate β-interval and higher persistence

for small β, as shown in Figure 5.2.

5.2 Proof of the Upper Bounds on the Spectral

Gap of a Swapping Chain

We will prove the bounds in (5.4) and Theorem 5.1.2 for the swapping chain. Recall

the context of those results. Also recall from Section 2.3 that Psc = QTQ. Note that

by the definition of the spectral gap given in (2.1), Gap(QTQ) = 8Gap( 1
8
QTQ +

7
8
I). By Lemma 3.2.1, Gap( 1

8
QTQ + 7

8
I) ≤ Gap((1

2
T + 1

2
Q)3). By Lemma 3.2.2,

Gap((1
2
T + 1

2
Q)3) ≤ 3Gap(1

2
T + 1

2
Q). Therefore

Gap(Psc) ≤ 24Gap(
1

2
T +

1

2
Q). (5.6)

Take any A ⊂ X such that 0 < φk[A] < 1 for all k, and any k∗ ∈ {0, . . . , N}. We will

set k∗ = 0 to prove the bound in (5.4) and k∗ > 0 to prove Theorem 5.1.2. Define

B = {x ∈ Xsc : ∀k ≥ k∗, x[k] ∈ Ac}. The spectral gap of ( 1
2
T + 1

2
Q) is bounded above

by the conductance of B for ( 1
2
T + 1

2
Q):

Gap(
1

2
T +

1

2
Q) ≤ (1B, (

1
2
T + 1

2
Q)1Bc)πsc

πsc[B]πsc[Bc]

=
(1B, T1Bc)πsc

2πsc[B]πsc[Bc]
+

(1B, Q1Bc)πsc

2πsc[B]πsc[Bc]
. (5.7)
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Observe that πsc[B
c] = 1 − ∏

k≥k∗

φk[A
c], so that for any k ≥ k∗,

πsc[B
c] ≥ max{φk[A], φN [A]}.

Therefore

(1B, T1Bc)πsc

πsc[B]πsc[Bc]
=

1

πsc[Bc]

1

2(N + 1)

∑

k≥k∗

(1Ac, Tk1A)φk

φk[Ac]

≤ 1

2πsc[Bc]
max
k≥k∗

{

(1Ac, Tk1A)φk

φk[Ac]

}

≤ 1

2
max
k≥k∗

{

1

max{φk[A], φN [A]}
(1Ac, Tk1A)φk

φk[Ac]

}

=
1

2
max
k≥k∗

{γ(A, k)ΦTk
(A)} . (5.8)

To show the bounds in (5.4), take k∗ = 0. In this case (1B, Q1Bc)πsc = 0, so combining

(5.6), (5.7) and (5.8) proves the bound in (5.4) for the swapping chain. To show

Theorem 5.1.2, take k∗ > 0. First consider the swapping scheme SC1. Note that

(1B, Q1Bc)πsc

πsc[B]πsc[Bc]

=
1

πsc[Bc]

∑

k≥k∗,l<k∗

1

(N + 1)2

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[Ac]

≤ 1

4πsc[Bc]
max

k≥k∗,l<k∗

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[Ac]

≤ 1

4
max

k≥k∗,l<k∗

φk[A]

max{φk[A], φN [A]}

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[Ac]

=
1

4
max

k≥k∗,l<k∗

γ(A, k)

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[Ac]
.
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Consider the case where φl[A
c] < φk[A

c]. Then for any k, l,

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[Ac]

≤

∫

z∈Ac

∫

w∈A

min{φl(w), φk(w)} [φk(z) + φl(z)]λ(dw)λ(dz)

φk[A]φk[Ac]

=

(φk[A
c] + φl[A

c])
∫

w∈A

min{φl(w), φk(w)}λ(dw)

φk[A]φk[Ac]

≤ 2

∫

w∈A

min{φl(w), φk(w)}λ(dw)

φk[A]
= 2δ(A, k, l).

If φl[A
c] ≥ φk[A

c], exchanging the roles of A and Ac yields an upper bound of

2δ(Ac, k, l). Therefore

(1B, Q1Bc)πsc

πsc[B]πsc[Bc]
≤ 1

2
max

k≥k∗,l<k∗

[γ(A, k) max {δ(A, k, l), δ(Ac, k, l)}] . (5.9)

Combining (5.6), (5.7), (5.8), and (5.9), we have that for k∗ > 0, Gap(Psc) is bounded

above by

12 max

{

max
k≥k∗

γ(A, k)ΦTk
(A), max

k≥k∗,l<k∗

γ(A, k) max{δ(A, k, l), δ(Ac, k, l)}
}

which implies Theorem 5.1.2 for the swapping chain. Note that the above proof

holds with only slight modification for the swapping scheme where swaps between

only adjacent levels are proposed, rather than swaps between arbitrary levels (scheme

SC2).
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5.3 Proof of the Upper Bounds on the Spectral

Gap of a Simulated Tempering Chain

We will prove the bounds in (5.4) and Theorem 5.1.2 for the simulated tempering

chain. Recall the context of those results. Take k∗ ∈ {0, . . . , N}; we will set k∗ = 0

to prove (5.4) and k∗ > 0 to prove Theorem 5.1.2. Define D = {k ∈ {0, . . . , N} : k ≥

k∗, γ(A, k) ≥ 1
2
ΦTk

(A)} and B = {(z, k) ∈ Xst : k ∈ D, z ∈ A}. Note that N ∈ D so

D 6= ∅. Just as in the proof for the swapping chain, we have

Gap(Pst) ≤ 12

[

(1B, T
′1Bc)πst

πst[B]πst[Bc]
+

(1B, Q
′1Bc)πst

πst[B]πst[Bc]

]

. (5.10)

Note that for any I and set of constants {ai : i = 1, . . . , I} and {bi : i = 1, . . . , I}, we

have that
∑

i ai/
∑

i bi ≤ maxi{ai/bi}. Therefore

(1B, T
′1Bc)πst

πst[B]πst[Bc]
=

(1B, T
′1Bc)πst

πst[B]
+

(1B, T
′1Bc)πst

πst[Bc]

=

1
2(N+1)

∑

k∈D

(1A, Tk1Ac)φk

1
N+1

∑

k∈D

φk[A]
+

1
2(N+1)

∑

k∈D

(1A, Tk1Ac)φk

1
N+1

∑

k∈D

φk[Ac] + |Dc|
N+1

≤

∑

k∈D

(1A, Tk1Ac)φk

2
∑

k∈D

φk[A]
+

∑

k∈D

(1A, Tk1Ac)φk

2
∑

k∈D

φk[Ac]

≤ max
k∈D

(1A, Tk1Ac)φk

2φk[A]
+ max

k∈D

(1A, Tk1Ac)φk

2φk[Ac]

≤ max
k∈D

(1A, Tk1Ac)φk

2φk[A]φk[Ac]
+ max

k∈D

(1A, Tk1Ac)φk

2φk[A]φk[Ac]

= max
k∈D

ΦTk
(A). (5.11)

To show Theorem 5.1.2 we will take k∗ > 0. In this case |D| < N + 1. To

show the bounds in (5.4) we will take k∗ = 0. Then if |D| = N + 1, we have
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(1B, Q
′1Bc) = 0. In addition if |D| = N + 1 then for every k we have ΦTk

(A)/2 ≤

γ(A, k), so ΦTk
(A)2/4 ≤ γ(A, k)ΦTk

(A)/2. Also note that γ(A, k)ΦTk
(A) ≤ 2 so

[γ(A, k)ΦTk
(A)/2]1/2 ≤ [γ(A, k)ΦTk

(A)/2]1/4. Therefore if |D| = N + 1 then (5.10)

and (5.11) together imply that

Gap(Pst) ≤ 12 max
k

ΦTk
(A) ≤ 24

[

max
k

γ(A, k)ΦTk
(A)

2

]1/2

≤ 24

[

max
k

γ(A, k)ΦTk
(A)

2

]1/4

. (5.12)

This result implies the bound in (5.4) for the case where |D| = N + 1. From now on

we consider the other case, where |D| < N + 1.

Define

c =

∑

k∈D

φk[A]

|D|max
k∈D

φk[A]
.

Note that πst[B
c] ≥ |Dc|

N+1
. Therefore

(1B, Q
′1Bc)πst

πst[B]πst[Bc]
=

1

πst[Bc]

∑

k∈D





φk[A]
∑

i∈D

φi[A]





∑

l∈Dc

δ(A, k, l)

2(N + 1)

≤ |D||Dc|
2(N + 1)πst[Bc]

max
k∈D,l∈Dc











φk[A]
∑

i∈D

φi[A]



 δ(A, k, l)







≤ |D|
2

max
k∈D,l∈Dc











φk[A]
∑

i∈D

φi[A]



 δ(A, k, l)







=
|D|max

k∈D
φk[A]

2
∑

k∈D

φk[A]
max

k∈D,l∈Dc











φk[A]

max
i∈D

φi[A]



 δ(A, k, l)







≤ 1

2c
max

k∈D,l∈Dc
{γ(A, k)δ(A, k, l)}.
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Using this result and (5.11),

max

{

(1B, T
′1Bc)πst

πst[B]πst[Bc]
,
(1B, Q

′1Bc)πst

πst[B]πst[Bc]

}

≤ max

{

max
k∈D

ΦTk
(A),

1

2c
max

k∈D,l∈Dc
γ(A, k)δ(A, k, l)

}

. (5.13)

Combining (5.10) and (5.13), we have that

Gap(Pst) ≤ 24 max

{

max
k∈D

ΦTk
(A),

1

c
max

k∈D,l∈Dc
γ(A, k)δ(A, k, l)

}

. (5.14)

Now define k̃ to be the k ∈ D that maximizes φk[A]. Also define C = {(z, k) ∈

Xst : k = k̃, z ∈ A}. Since 0 < |D| < N +1, we must have N > 0, so πst[C
c] ≥ N

N+1
≥

1
2
. Note that

Gap(Pst) ≤ 12

[

(1C , T
′1Cc)πst

πst[C]πst[Cc]
+

(1C , Q
′1Cc)πst

πst[C]πst[Cc]

]

. (5.15)

Also note that

(1C , T
′1Cc)πst

πst[C]πst[Cc]
≤ 2(1C , T

′1Cc)πst

πst[C]

=
(1A, Tk̃1Ac)φk̃

φk̃[A]

≤ ΦTk̃
(A) ≤ max

k∈D
ΦTk

(A). (5.16)

79



Note that γ(A, k̃) = 1. Therefore

(1C , Q
′1Cc)πst

πst[C]πst[Cc]
≤ 2(1C , Q

′1Cc)πst

πst[C]

=
1

N + 1

∑

l∈D,l 6=k̃

δ(A, k̃, l) +
1

N + 1

∑

l∈Dc

δ(A, k̃, l)

=
1

N + 1

∑

l∈D,l 6=k̃

δ(A, k̃, l) +
1

N + 1

∑

l∈Dc

γ(A, k̃)δ(A, k̃, l)

≤ 1

N + 1

∑

l∈D,l 6=k̃

φl[A]

φk̃[A]
+

1

N + 1

∑

l∈Dc

γ(A, k̃)δ(A, k̃, l)

≤ c+
1

N + 1

∑

l∈Dc

γ(A, k̃)δ(A, k̃, l)

≤ 2 max{c,max
l∈Dc

γ(A, k̃)δ(A, k̃, l)}

≤ 2 max{c, max
k∈D,l∈Dc

γ(A, k)δ(A, k, l)}. (5.17)

Combining (5.15), (5.16), and (5.17), we obtain

Gap(Pst) ≤ 48 max

{

max
k∈D

ΦTk
(A), c, max

k∈D,l∈Dc
γ(A, k)δ(A, k, l)

}

. (5.18)

Consider the case where

c <

[

max
k∈D,l∈Dc

γ(A, k)δ(A, k, l)

]1/2

. (5.19)

Since ΦTk
(A) ≤ 2 we have ΦTk

(A)/2 ≤ [ΦTk
(A)/2]1/2. Therefore in the case where

(5.19) holds, (5.18) implies that

Gap(Pst) ≤ 48 max

{

max
k∈D

ΦTk
(A),

[

max
k∈D,l∈Dc

γ(A, k)δ(A, k, l)

]1/2
}

≤ 96

[

max

{

max
k∈D

ΦTk
(A), max

k∈D,l∈Dc
γ(A, k)δ(A, k, l)

}]1/2

(5.20)
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If instead we have

c ≥
[

max
k∈D,l∈Dc

γ(A, k)δ(A, k, l)

]1/2

,

then (5.14) implies (5.20).

Note that for any k, l,

γ(A, k)δ(A, k, l) ≤ min

{

1,
φk[A]

φN [A]

}

min

{

1,
φl[A]

φk[A]

}

≤ γ(A, l)

where the final inequality can be shown by considering the case where φl[A] > φk[A]

separately from the case where φl[A] ≤ φk[A]. For every k ∈ D, we have ΦTk
(A)/2 ≤

γ(A, k) so ΦTk
(A)2/4 ≤ γ(A, k)ΦTk

(A)/2. For all l ∈ Dc such that l ≥ k∗, we have

γ(A, l) < ΦTl
(A)/2 so γ(A, l)2 < γ(A, l)ΦTl

(A)/2. Consider (5.20) for the case where

k∗ = 0. Then

Gap(Pst) ≤ 96

[

max

{

max
k∈D

ΦTk
(A),max

l∈Dc
γ(A, l)

}]1/2

≤ 192
[

max
k

γ(A, k)ΦTk
(A)
]1/4

(5.21)

Equation (5.21) is the bound in (5.4) for simulated tempering.

Now take k∗ > 0 to show Theorem 5.1.2. Then (5.20) yields

Gap(Pst) ≤ 96

[

max

{

max
k∈D

ΦTk
(A), max

l≥k∗,l∈Dc
γ(A, l), max

k∈D,l<k∗

γ(A, k)δ(A, k, l)

}]1/2

≤ 192

[

max

{

[

max
k≥k∗

γ(A, k)ΦTk
(A)

]1/2

, max
k∈D,l<k∗

γ(A, k)δ(A, k, l)

}]1/2

≤ 192

[

max

{

max
k≥k∗

γ(A, k)ΦTk
(A), max

k≥k∗,l<k∗

γ(A, k)δ(A, k, l)

}]1/4

which implies Theorem 5.1.2 for simulated tempering.
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Chapter 6

Multimodal Distributions for which

Parallel and Simulated Tempering are

Torpidly Mixing

In this chapter we will use Theorems 5.1.1 and 5.1.2 to show the torpid mixing of

parallel and simulated tempering on several multimodal distributions.

6.1 Torpid Mixing on a Mixture of Normals with

Unequal Variances in R
M

Recall the definitions from Section 2.4.2. Let 1M denote the vector of M ones, and

IM denote the M ×M identity matrix. Consider the following mixture of two normal

densities in R
M with unequal covariances:

π(z) =
1

2
NM(z;−1M , σ

2
1IM) +

1

2
NM(z; 1M , σ

2
2IM)
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where 0 < σ2 < σ1. Recall that S is the proposal kernel that is uniform on the ball

of radius M−1 centered at the current state. For technical reasons we will use the

following approximation to π, where A1 = {z ∈ R
M :

∑

i zi < 0} and A2 = {z ∈

R
M :

∑

i zi ≥ 0}:

π̃(z) ∝ 1

2
NM(z;−1M , σ

2
1IM)1A1(z) +

1

2
NM(z; 1M , σ

2
2IM)1A2(z). (6.1)

Metropolis-Hastings for S with respect to the density

π̃|A1(z) ∝ NM(z;−1M , σ
2
1IM)1A1(z)

or with respect to

π̃|A2(z) ∝ NM(z; 1M , σ
2
2IM)1A2(z)

is rapidly mixing in M , as implied by Theorem 4.3.4. However, Metropolis-Hastings

for S with respect to π̃ is torpidly mixing in M , as we will show. We will also show

that parallel and simulated tempering are torpidly mixing, regardless of the number

and choice of temperatures. This is in contrast to the case where σ1 = σ2, for which

rapidly mixing parallel and simulated tempering chains exist, as shown in Section 4.2.

First, calculate π̃β[A2] as follows. Let Φ be the cumulative normal distribution

function in one dimension. Consider any normal distribution in R
M with covariance

σ2IM for some σ > 0. Recall from Section 4.3 that the probability under this normal

distribution of any half-space that is Euclidean distance d away from the center at its

closest point is Φ(−d/σ). Note that the distance between the set A2 and the point
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−1M is
√
M . Let λ denote Lebesgue measure. Then

∫

A1

NM(z;−1M , σ
2
1IM)βλ(dz)

= (2π)−Mβ/2σ−Mβ
1

∫

A1

exp

{

− β

2σ2
1

∑

i

(zi + 1)2
}

λ(dz)

= (2π)(M/2)(1−β)σ
M(1−β)
1 β−M/2

∫

A1

NM(z;−1M ,
σ2

1

β
IM)λ(dz)

= (2π)(M/2)(1−β)σ
M(1−β)
1 β−M/2Φ

(√
Mβ1/2

σ1

)

.

Similarly,

∫

A2

NM(z; 1M , σ
2
2IM)βλ(dz) = (2π)(M/2)(1−β)σ

M(1−β)
2 β−M/2Φ

(√
Mβ1/2

σ2

)

.

Therefore

π̃β[A2]

π̃β[A1]
=

(

σ2

σ1

)M(1−β) Φ
(√

Mβ1/2

σ2

)

Φ
(√

Mβ1/2

σ1

) .

Recall the definition of B from Section 2.3. Note that for the mixture π̃ we have B =

(0, 1]. We will apply Theorem 5.1.1 with A = A2, showing that parallel tempering is

torpidly mixing on the mixture π̃. Define the inverse temperaure βa = 1
2
. Observe

that for any inverse temperature β, Φ
(√

Mβ1/2

σ1

)

≥ 1
2
. Therefore

sup
β∈(0,βa)

π̃β[A2] ≤ sup
β∈(0,βa)

π̃β[A2]

π̃β[A1]
≤ 2 sup

β∈(0,βa)

(

σ2

σ1

)M(1−β)

= 2

(

σ2

σ1

)M(1−βa)

which is exponentially decreasing. Also note that π̃[A2] >
1
2
. Therefore

sup
β∈[0,βa)∩B

γ(A2, β) ≤ sup
β∈[0,βa)∩B

π̃β[A2]/π̃[A2] (6.2)
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is exponentially decreasing.

Define the boundary BA2 of A2 to be the set of z ∈ A2 such that it is possible to

move to A1 via one move according to the proposal kernel S. Note that BA2 is equal

to the set of z ∈ A2 such that z is within distance M−1 of the hyperplane
∑

i zi = 0.

Therefore

sup
β∈[βa,1]

π̃β[BA2 ]

π̃β[A2]
= sup

β∈[βa,1]

Φ
(√

Mβ1/2

σ2

)

− Φ
(

(
√

M−M−1)β1/2

σ2

)

Φ
(√

Mβ1/2

σ2

)

≤ 2 sup
β∈[βa,1]

{

Φ

(√
Mβ1/2

σ2

)

− Φ

(

(
√
M −M−1)β1/2

σ2

)}

≤ 2 sup
β∈[βa,1]

{

1 − Φ

(

(
√
M −M−1)β1/2

σ2

)}

= 2 sup
β∈[βa,1]

{

Φ

(

−(
√
M −M−1)β1/2

σ2

)}

= 2Φ

(

−(
√
M −M−1)(βa)1/2

σ2

)

.

For M > 1, this is bounded above by

2Φ

(

−
√
M(βa)1/2

2σ2

)

. (6.3)

Analytic integration shows that for any a > 0, Φ(−a) ≤ N1(a; 0, 1)/a. Therefore

(6.3) is exponentially decreasing. Similarly, for BA1 equal to the boundary of A1

with respect to the Metropolis-Hastings kernel,

sup
β∈[βa,1]

π̃β[BA1 ]

π̃β[A1]

is exponentially decreasing. Recall that for any β, Hβ is the Metropolis-Hastings

kernel for S with respect to π̃β. Then using the form of the conductance given in
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(5.1),

sup
β∈[βa,1]

ΦHβ
(A2) (6.4)

is exponentially decreasing. In particular, ΦHβ
(A2) is exponentially decreasing for

β = 1, so Metropolis-Hastings with respect to π̃ is torpidly mixing. Using the fact

that (6.2) and (6.4) are exponentially decreasing, Theorem 5.1.1 implies that parallel

and simulated tempering are also torpidly mixing.

6.2 Torpid Mixing on the Mean-Field Potts Model

for q ≥ 3

Recall the mean-field Potts model and the associated proposal kernel S as defined

in Section 2.4.1. For q ≥ 3 define αc = 2(q−1) ln(q−1)
q−2

, and for q = 2 define αc = 2.

The value α = αc is called the critical value, and we will see that the asymptotic

properties of π are dramatically different for α = αc, α < αc, and α > αc.

Metropolis-Hastings for S with respect to the mean-field Potts density with q ≥ 3

and α ≥ αc is torpidly mixing, as we will show. We will also use Theorem 5.1.1

to show that both parallel and simulated tempering are torpidly mixing for q ≥ 3

and α ≥ αc. This builds on the results of Bhatnagar (2007), who showed the torpid

mixing of parallel and simulated tempering for the mean-field Potts model with q = 3

and α = αc. We use the same cut of the state space as Bhatnagar (2007), since it

is a cut with low conductance for β close to 1. Unlike Bhatnagar (2007), we prove

the torpid mixing result by showing that the persistence of one of the cut sets is
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exponentially decreasing for small inverse temperatures.

For k ∈ {1, . . . , q} define σk(z) =
∑

i 1(zi = k). Note that π can be written

π(z) ∝ exp

{

α

2M

(

q
∑

k=1

σk(z)
2

)}

,

so the marginal distribution of the vector σ is

ρ(σ) ∝
(

M

σ1, . . . , σq

)

exp

{

α

2M

(

q
∑

k=1

σ2
k

)}

.

Let a = (a1, . . . , aq) = σ/M be the proportion of sites in each color. As in Gore and

Jerrum (1999), we use Stirling’s formula to write
(

M
σ1,...,σq

)

as follows:

(

M

σ1, . . . , σq

)

= exp

{(

−
q
∑

k=1

ak ln ak

)

M + ∆(a)

}

(6.5)

where x ln x for x = 0 is defined to be limx→0+ x ln x = 0 and where ∆(a) is an error

term satisfying

sup
a

|∆(a)| = O(lnM). (6.6)

As in Gore and Jerrum (1999), use (6.5) to rewrite ρ as follows:

ρ(σ) ∝ exp {fα(a)M + ∆(a)}

where

fα(a) =

q
∑

k=1

gα(ak)

and gα(x) = α
2
x2 − x ln x. Note that fα does not depend on M .

It is shown in Gore and Jerrum (1999) that any local maximum a∗ of the function

fα takes the form a∗ = (x, 1−x
q−1

, . . . , 1−x
q−1

) or a permutation thereof for some x ∈ [ 1
q
, 1)
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that satisfies g′α(x) = g′α(1−x
q−1

). Gore and Jerrum (1999) also show that for q ≥ 3 and

α = αc, the local maxima occur for x = 1
q

and x = q−1
q

. Define m1 = (1
q
, . . . , 1

q
),

m2 = ( q−1
q
, 1

q(q−1)
, . . . , 1

q(q−1)
), and m3 = ( 1

q(q−1)
, q−1

q
, 1

q(q−1)
, . . . , 1

q(q−1)
). Note that

fαc(m1) = fαc(m2)

and that for any a, permuting the elements of a does not change the value of fα(a).

Therefore for q ≥ 3 the q+1 local maxima of the function fαc are also global maxima.

We will additionally need the following result:

Proposition 6.2.1. For any q ≥ 3 and α < αc, fα has a unique global maxi-

mum at m1. For α > αc, any global maximum of the function fα takes the form

(x, 1−x
q−1

, . . . , 1−x
q−1

) or a permutation thereof for some x ∈
[

q−1
q
, 1
)

.

Proof. For fixed a, the derivative of fα(a) with respect to α is
∑

k a
2
k/2. Note that

∑

k a
2
k has a unique global minimum at a = m1. Let m1,k denote the kth element of

m1. Then for any α < αc and any a 6= m1,

fα(a) − fα(m1) = fαc(a) − fαc(m1) +
α− αc

2

[

∑

k

a2
k −

∑

k

m2
1,k

]

< 0 (6.7)

so fα has a unique global maximum at m1.

Now consider α > αc. For x ∈ [0, 1] define f̂α(x) = fα(x, 1−x
q−1

, . . . , 1−x
q−1

). Note that

for a = (x, 1−x
q−1

, . . . , 1−x
q−1

), we have
∑

k a
2
k = x2 + (1−x)2

q−1
, which is a strictly increasing
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function of x for x ∈ [ 1
q
, 1). Therefore for x ∈ [ 1

q
, q−1

q
),

f̂α(x) − f̂α(
q − 1

q
) =

f̂αc(x) − f̂αc(
q − 1

q
) +

α− αc

2

[

x2 +
(1 − x)2

q − 1
− (q − 1)2

q2
− 1

q2(q − 1)

]

< 0.

This implies that (x, 1−x
q−1

, . . . , 1−x
q−1

) is not a global maximum of fα. The result follows.

Asymptotically, the distribution of a(z) concentrates near the global maxima of

fα(a), meaning the following:

Proposition 6.2.2. (Gore and Jerrum 1999) For any q ∈ {2, 3, . . .}, α ≥ 0 and

ε > 0 define Cα,ε to be the set of a such that a is less than Euclidean distance ε

from at least one of the global maxima of fα. Then Pr(a(z) ∈ Cc
α,ε) is exponentially

decreasing in M . The probability that a(z) is within distance ε of a particular global

maximum of fα decreases at most polynomially in M .

Proof. This is stated in Gore and Jerrum (1999) for α = αc; however, their argument

extends to any α as follows. Let a∗ be any global maximum of fα. They observe that

since fα is continuous,

sup
a∈Cc

α,ε

fα(a) < fα(a∗). (6.8)

Note that for any fixed a such that ak > 0 for all k, adding or subtracting at most

1/M from ak for each k changes exp{fα(a)M} by a factor that is bounded in M .
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Recall that any global maximum a∗ of fα(a) satisfies a∗k > 0 for all k. For every M

there is some valid σ-vector σ∗ such that σ∗
k/M is in the interval [a∗k − 1

M
, a∗k + 1

M
]

for each k. For this σ∗, exp{fα(σ∗

M
)M} and exp{fα(a∗)M} differ by a factor that is

bounded in M . Using (6.8), ρ(σ∗) is exponentially larger than maxσ:σ/M∈Cc
α,ε
ρ(σ).

Since there are a polynomial (< M q−1) number of valid σ-vectors, Pr(a(z) ∈ Cc
α,ε) is

exponentially decreasing. Using the same facts, the probability that a(z) is less than

distance ε from a particular global maximum of fα decreases at most polynomially

in M , proving Proposition 6.2.2.

As in Bhatnagar (2007), define A = {z : σ1(z) >
M
2
}. Note that both A and Ac

are nonempty. Then we have the following result.

Proposition 6.2.3. For any fixed q ≥ 3 and α ≥ αc, π[A] and π[Ac] decrease at most

polynomially in M . For any q ≥ 3 and α < αc, π[A] is exponentially decreasing in

M . Furthermore, for any τ ∈ (0, αc), supα<αc−τ π[A] is also exponentially decreasing.

Proof. First consider the case where α ≥ αc. By Proposition 6.2.1, there is a

global maximum of fα at (x, 1−x
q−1

, . . . , 1−x
q−1

) for some x ∈ [ q−1
q
, 1), and another at

(1−x
q−1

, x, 1−x
q−1

, . . . , 1−x
q−1

). Since q ≥ 3, if a(z) is within distance 1/12 of the first global

maximum then z ∈ A, and if a(z) is within distance 1/12 of the second global maxi-

mum, then z ∈ Ac. By Proposition 6.2.2, π[A] and π[Ac] are therefore decreasing at

most polynomially in M .
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Now consider α < αc. Then Propositions 6.2.1 and 6.2.2 imply that π[A] is

exponentially decreasing, since {a : a1 > 1
2
} ⊂ Cc

α,1/12. Recall from the proof of

Proposition 6.2.1 that for any a, the derivative of fα(a) with respect to α is
∑

k a
2
k/2,

which has a unique global minimum at m1. Now take any τ ∈ (0, αc). Note that

sup
α<αc−τ

sup
a:a1> 1

2

[fα(a) − fα(m1)] = sup
a:a1> 1

2

[fαc−τ (a) − fαc−τ (m1)]

≤ sup
a∈Cc

αc−τ,1/12

[fαc−τ (a) − fαc−τ (m1)] < 0

where the last inequality uses (6.8). By the same argument as for Proposition 6.2.2,

supα<αc−τ π[A] is exponentially decreasing.

We also have the following result:

Proposition 6.2.4. Recall the proposal kernel S, which changes the color of a single

site. For q ≥ 3 there exists some τ ∈ (0, αc) such that the supremum over α ≥ αc − τ

of the conductance of A under Metropolis-Hastings for S with respect to π is expo-

nentially decreasing.

Proof. Since q ≥ 3, {a : a1 ∈ ( 5
12
, 1

2
]} ⊂ Cc

αc,1/12. Using (6.8),

sup
a:a1∈( 5

12
, 1
2
]

[fαc(a) − fαc(m2)] ≤ sup
a∈Cc

αc,1/12

[fαc(a) − fαc(m2)] < 0.

Since fα is a continuous function of α and of a, there exists some τ > 0 such that

c
def
= sup

a:a1∈( 5
12

, 1
2
]

[fαc−τ (a) − fαc−τ (m2)] < 0.
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Recall that for any a, the derivative of fα(a) with respect to α is
∑

k a
2
k/2. Note

that for all a such that a1 ∈ ( 5
12
, 1

2
], we have

∑

k a
2
k ≤ 2(1

2
)2 ≤ ( q−1

q
)2 + (q −

1)( 1
q(q−1)

)2 =
∑

k m
2
2,k. Therefore for any such a, [fα(a) − fα(m2)] is a decreasing

function of α. As a result,

sup
α≥αc−τ

sup
a:a1∈( 5

12
, 1
2
]

[fα(a) − fα(m2)] = c < 0. (6.9)

Consider the boundary of Ac with respect to the Metropolis-Hastings kernel,

meaning the set of z ∈ Ac such that it is possible to move to A in one step via the

Metropolis-Hastings kernel. This boundary is B = {z : σ1(z) ∈
{

M−1
2
, M

2

}

}. Note

that for M large enough, z ∈ B ⇒ a1(z) ∈ ( 5
12
, 1

2
]. There is some valid σ-vector σ∗

such that
σ∗

k

M
∈ [m2,k − 1

M
, m2,k + 1

M
] for all k. For M large enough, if σ(z) = σ∗ then

z ∈ A. Using (6.9) and by the same argument as for Proposition 6.2.2,

sup
α≥αc−τ

π[B]/π[A]

is exponentially decreasing. Replacing m2 by m3 in (6.9) does not change the value

of the left hand side, so it is still strictly negative. There is some valid σ-vector σ∗

such that
σ∗

k

M
∈ [m3,k − 1

M
, m3,k + 1

M
] for all k. For M large enough, if σ(z) = σ∗ then

z ∈ Ac. By the same argument as for Proposition 6.2.2,

sup
α≥αc−τ

π[B]/π[Ac]

is exponentially decreasing. Therefore the supremum over α ≥ αc − τ of the conduc-

tance of A is exponentially decreasing.
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Now consider any q ≥ 3 and α ≥ αc. Proposition 6.2.4 implies that Metropolis-

Hastings with respect to π is torpidly mixing. Observe that for any β, the density

πβ is equal to the mean-field Potts density with parameter αβ. Recall that Hβ is the

Metropolis-Hastings kernel for S with respect to πβ. Take the value of τ from Propo-

sition 6.2.4. Define the inverse temperature βa = αc/α− τ/α. Propositions 6.2.3 and

6.2.4 imply that

sup
β∈[βa,1]

ΦHβ
(A)

and

sup
β∈[0,βa)

γ(A, β) ≤ sup
β∈[0,βa)

πβ[A]

π[A]

are exponentially decreasing. Therefore Theorem 5.1.1 implies that parallel and

simulated tempering are torpidly mixing.

6.3 Torpid Mixing on the Mean-Field Ising Model

using Fixed Temperatures

The mean-field Ising model is the mean-field Potts model with q = 2. Recall the

definitions from Section 6.2 for the mean-field Potts model. It is straightforward to

show that for q = 2 and α > αc, the conductance of A under Metropolis-Hastings for

S with respect to the mean-field Potts (Ising) density π is exponentially decreasing.

Therefore Metropolis-Hastings for S with respect to π is torpidly mixing. Madras

and Zheng (2003) show that parallel and simulated tempering with N = M and

βk = k/N are rapidly mixing for the mean-field Ising model. We will show that if N
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and {βk : k = 0, . . . , N} are fixed in M then parallel and simulated tempering are

torpidly mixing for α > αc. We will need the following result:

Proposition 6.3.1. For α ≤ αc, fα has a unique global maximum at a = ( 1
2
, 1

2
). For

α > αc the global maxima occur at (x, 1 − x) and (1 − x, x) for some x > 1
2

that is

strictly increasing with α.

Proof. Recall from Section 6.2 that any local maximum a∗ of the function fα takes

the form a∗ = (x, 1 − x) or a∗ = (1 − x, x) for some x ∈ [ 1
2
, 1) that satisfies g′α(x) =

g′α(1 − x). This is trivially the case for x = 1
2
. Restricting to x > 1

2
and rearranging

we obtain that if g′α(x) = g′α(1 − x), then

α =
ln(x) − ln(1 − x)

2x− 1
(6.10)

The right hand side of (6.10) is a strictly increasing function of x. It approaches

αc = 2 as x → 1
2

+
and approaches infinity as x → 1−. Therefore for α ≤ αc, there

is no x > 1
2

that satisfies (6.10), so a = ( 1
2
, 1

2
) is the unique maximum of fα. For

α > αc there is exactly one value of x > 1
2

that satisfies (6.10), and that value is

strictly increasing in α. Recall the definition of f̂α from the proof of Theorem 6.2.1.

It is straightforward to verify that for α > αc, f̂α is convex at x = 1
2
. Therefore the

global maxima of fα occur at (x, 1− x) and (1− x, x) for some x > 1
2

that is strictly

increasing in α.
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Now consider any α1, α2 such that αc < α2 and α1 < α2. If α1 ≤ αc, let x1 = 1
2
;

otherwise, let x1 be the value of x in Proposition 6.3.1 for α1. Let x2 be the value

of x in Proposition 6.3.1 for α2, so that x1 < x2. Let ε = |x2 − x1|/2. Recalling

the definition of Cα,ε from Proposition 6.2.2, Cα1,ε ∩ Cα2,ε = ∅. Letting π and π′

be the mean-field Ising density at α1 and α2 respectively, Proposition 6.2.2 implies

that π[{z : a(z) ∈ Cc
α1,ε}] and π′[{z : a(z) ∈ Cc

α2,ε}] are exponentially decreasing.

Therefore
∑

z min{π(z), π′(z)} is exponentially decreasing.

Parallel and simulated tempering with N = 0 are equivalent to Metropolis-

Hastings with respect to π, so they are torpidly mixing for α > αc. Now consider the

case where N > 0. Note that for l ∈ {0, . . . , N −1}, πβl
is the mean field Ising model

with parameter αβl and that πβN
= π is the mean-field Ising model with parameter

α. Therefore with βl fixed in M ,
∑

z min{πβl
(z), πβN

(z)} is exponentially decreasing.

Note that π[A] ∈ [ 1
4
, 3

4
] for all M . Therefore δ(A,N, l) and δ(Ac, N, l) are exponen-

tially decreasing. By Theorem 5.1.2 with k∗ = N , parallel and simulated tempering

are torpidly mixing.
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Chapter 7

Conclusions

We have given lower and upper bounds on the spectral gaps of parallel and simulated

tempering. These imply lower and upper bounds on the rate of convergence to

stationarity of these algorithms. We have used these bounds to obtain conditions

for rapid and torpid mixing of parallel and simulated tempering. We have then

given a number of distributions for which these conditions imply rapid or torpid

mixing. These distributions include mixtures of normal distributions, approximations

of which commonly occur in statistical inference, and the Potts model, which is used

in statistical physics, in statistical image analysis, and for modeling of spatial random

effects.

The lower and the upper bounds on the spectral gaps use closely related quantities.

The overlap is common to both sets of bounds, and has been characterized previously
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in a slightly different form. The persistence occurs in the upper bound and a closely

related quantity occurs in the lower bound; these two quantities are equal in the

examples that we have analyzed here. The importance of the persistence for the

convergence of tempering algorithms has not previously been documented.

We have seen that parallel and simulated tempering are rapidly mixing on a

weighted mixture of normals with identity covariance matrices. However, they are

torpidly mixing on a mixture of normals where one covariance matrix is a multiple of

the other, so that one of the normal densities has an exponentially higher maximum

than the other. This suggests that if one mode is much narrower and higher than

the other modes of a target distribution, then parallel and simulated tempering are

slow to find this mode, and that if the modes are about equally narrow and high

then parallel and simulated tempering mix quickly among the modes. This intuition

holds for the mean-field Potts model as well; a disordered mode occurs for more

than two colors, but does not occur for two colors. If it occurs, the disordered mode

consists of many configurations of low probability, while an ordered mode consists

of a few configurations of high probability. In this case, the ordered mode is much

narrower and higher than the disordered mode, and parallel and simulated tempering

are torpidly mixing. When there are only two colors (the mean-field Ising model) the

disordered mode does not occur, and parallel and simulated tempering are rapidly

mixing. For both the mean-field Potts model with q ≥ 3 and the normal mixture

with unequal covariances, there is a set containing the taller and narrower mode
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that has exponentially decreasing persistence. We have shown that if the persistence

of some subset is exponentially decreasing, then parallel and simulated tempering

are torpidly mixing, and that if the persistence is monotonic and large enough at

the highest temperature for every subset, then parallel and simulated tempering

are rapidly mixing (assuming that the other conditions hold). We suspect that the

persistence of a subset containing a single mode is a measure of the “spikiness” of

the mode relative to the other modes, and that the above monotonicity condition is

unnecessary. If this is true, then parallel and simulated tempering are rapidly mixing

if and only if there is no mode that is exponentially “spikier” than another mode of

the distribution (assuming that the other conditions are satisfied).

We have also shown that for distributions for which Metropolis-Hastings is tor-

pidly mixing, the overlap of the parallel or simulated tempering chain must be poly-

nomially decreasing in the problem size in order to have rapid mixing. This reinforces

previous results on the importance of the overlap to the convergence of the parallel

or simulated tempering chain.

Exact values for the spectral gap, numeric approximations thereof, or even tight

bounds are very difficult to obtain for algorithms of interest and target distributions

that are more than a few states. It this thesis we obtain order-of-complexity bounds in

terms of relevant quantities. The relevant quantities can also be difficult to estimate

for complex target densities–possibly as difficult as the original sampling problem.

However, the bounds show what the relevant quantities are and how they affect the
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magnitude of the spectral gap. We use the bounds to obtain the order of complexity

of the spectral gap and of the relevant quantities as a function of the problem size

for a number of examples. We then categorize these examples into distributions for

which the spectral gap is exponentially decreasing (torpid mixing) and distributions

for which the spectral gap is polynomially decreasing (rapid mixing).

The example densities that we use are simplified approximations of densities of

interest. However, the normal examples may be able to be extended to create nec-

essary and sufficient conditions for rapid mixing on finite mixtures of normal distri-

butions. This would be very valuable since many target densities in statistics are

well-approximated by finite mixtures of normals. In this way, the examples here of

rapid and torpid mixing might be able to be extended to larger classes of distributions

for which rapid or torpid mixing is implied by our bounds.

We conjecture that the conditions in this thesis for rapid and torpid mixing hold

for any tempering-based sampling algorithm; that these properties are due to the use

of tempered versions of π rather than to the specific construction of the algorithm.

Tempering-based sampling algorithms include the “evolutionary Monte Carlo” algo-

rithm of Liang and Wong (2000) and the “equi-energy” sampler of Kou et al. (2006).

Supporting this hypothesis, we have been able to extend some of our torpid mixing

results to the equi-energy sampler, despite its non-Markovian construction.
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