
Fingerprinting the Datacenter:
Automated Classification of Performance Crises

Peter Bodı́k1, Moises Goldszmidt2, Armando Fox1, Dawn B. Woodard3, Hans Andersen4

1University of California, Berkeley
2Microsoft Research
3Cornell University

4Microsoft

Abstract
Contemporary datacenters comprise hundreds or thousands
of machines running applications requiring high availability
and responsiveness. Although a performance crisis is easily
detected by monitoring key end-to-end performance indica-
tors (KPIs) such as response latency or request throughput,
the variety of conditions that can lead to KPI degradation
makes it difficult to select appropriate recovery actions.

We propose and evaluate a methodology for automatic
classification and identification of crises, and in particular
for detecting whether a given crisis has been seen before, so
that a known solution may be immediately applied. Our ap-
proach is based on a new and efficient representation of the
datacenter’s state called a fingerprint, constructed by statis-
tical selection and summarization of the hundreds of perfor-
mance metrics typically collected on such systems. Our eval-
uation uses 4 months of trouble-ticket data from a produc-
tion datacenter with hundreds of machines running a 24x7
enterprise-class user-facing application. In experiments in a
realistic and rigorous operational setting, our approach pro-
vides operators the information necessary to initiate recov-
ery actions with 80% correctness in an average of 10 min-
utes, which is 50 minutes earlier than the deadline provided
to us by the operators. To the best of our knowledge this is
the first rigorous evaluation of any such approach on a large-
scale production installation.

1. Introduction
A datacenter performance crisis occurs when availability or
responsiveness goals are compromised by inevitable hard-

[Copyright notice will appear here once ’preprint’ option is removed.]

ware and software problems [16]. The application operators’
highest priority is to stabilize the system and avoid crisis es-
calation; they typically do this by inspecting collected sys-
tem metrics (telemetry), logs, and alarms. We aim to provide
tools to automate problem identification, thereby speeding
stabilization. In particular, performance crises may recur be-
cause the bug fix for the underlying problem has not yet been
deployed, because the fix is based on a misunderstanding
of the root cause [3, 10], or because of emergent misbehav-
iors due to large scale and high utilization1. If operators can
quickly determine whether an emerging crisis is similar to
a previously-seen crisis, a known remedy may avoid escala-
tion and allow root-cause analysis to proceed offline.

Automatic identification of performance crises requires
mechanisms to capture these patterns and match them against
previous patterns in a database, effectively reducing prob-
lem identification to information retrieval. Earlier work [7]
showed that while this is possible, crisis identification suf-
fers if either too few or too many metrics are used to distin-
guish crises, or if the wrong subset of metrics is analyzed;
and furthermore that the size and membership of this ideal
subset depends on which crises have already been seen. Al-
though the authors’ findings were encouraging, the method
was evaluated on modest workloads running on few servers
and using generous criteria for identification accuracy. In
reality, today’s applications run on hundreds up to tens of
thousands of machines in a datacenter, and since the goal
of problem identification is to provide actionable informa-
tion for initiating recovery, the evaluation criteria should be
stringent.

In this paper we present a methodology for automating
the identification of performance crises. By identification
we mean that if a crisis has been previously seen (using
operator-supplied labels as the initial ground truth) it is so
labeled; otherwise it is labeled as “new type of crisis.” Our
main contribution is a methodology for constructing a dat-
acenter fingerprint, a digest of the datacenter metrics that

1 Jeff Dean, Google Fellow, keynote at LADIS 2009 workshop

1 2009/10/22



summarizes datacenter state both across servers in the dat-
acenter and over time. We show that our fingerprints iden-
tify and distinguish performance crises with higher accuracy
than approaches using all available metrics, approaches us-
ing human-selected key performance indicators, and the ap-
proach taken by the most closely related work [7] using a
different statistical selection method. Our fingerprint repre-
sentation can be computed efficiently and scales to very large
clusters with hundreds of performance metrics per server.

We use a rigorous methodology and stringent accuracy
criteria to validate the approach on four months of data from
a production datacenter. Our results clearly establish that:

1. When used in a fully-operational setting, our approach
achieves identification accuracy of 80% and, on average,
identifies the crises ten minutes after they were detected.
In contrast, the operators of the datacenter have informed
us that automatic identification is still useful up to one
hour after a crisis begins, so in 80% of the cases our
approach could have reduced the crisis duration by as
much as 50 minutes.

2. The subset of metrics automatically selected and summa-
rized by our approach identifies crises better than com-
peting approaches representative of both current industry
practice and the most recent literature.

3. The discriminative power of our approach is nearly op-
timal, as demonstrated by experiments in which we re-
move the need to update various parameters in an online
fashion as each new crisis is seen. These experiments val-
idate that a fingerprint based on collected performance
metrics is an effective and compact representation of the
datacenter state.

4. Our approach clearly quantifies tradeoffs among false
positives, accuracy of identification, and time to identi-
fication.

To the best of our knowledge, this is the first time such
an approach has been applied to a large-scale production
installation with rigorous validation using hand-labeled data.

2. Related Work
In a typical datacenter today, when an application starts
experiencing a performance anomaly (e.g. high request la-
tency), an alarm automatically alerts the on-call operator [3].
The operator begins manual investigation using log files,
graphs, and other information. It is not unusual for prob-
lem identification to take an hour or more, after which the
operator can begin corrective action.

We envision that by the time the operator responds to the
alarm, she might already have a message in her inbox: “The
current crisis is similar to a crisis that occurred two weeks
ago. In the former crisis, redirecting traffic to a different
datacenter resolved the problem.” If the determination of
similarity were correct, the operator could avoid tens of
minutes of downtime by initiating the same recovery action.

As early as 2003, the authors of [18] proposed the use
of compute-intensive modeling techniques to perform such
automatic recognition. Since then, researchers have tried
to identify operational problems by analyzing performance
metrics using machine learning [4, 6, 7, 9, 17, 23, 25], by
identifying unusual or noteworthy sequences of events that
might be indicators of unexpected behavior [5, 19], and by
manually instrumenting the system [2] and creating libraries
of possible faults and their consequences [21]. Others have
laid out general methodological challenges in using comput-
ers to diagnose computer problems [8, 11].

By far the work closest in spirit to our own is the “sig-
natures” approach to identifying and retrieving the essen-
tial system state corresponding to previously-seen crises [7].
The authors propose a methodology for constructing “sig-
natures” of server performance problems by first using ma-
chine learning techniques to identify the performance met-
rics most relevant to a particular crisis; second, using the
induced models for online identification; and third, relying
on similarity search to recognize a previously recorded in-
stance of a particular incident. They showed their approach
to be successful in a small transactional system on a handful
of performance problems.

We view our methodology as a direct descendant of the
“signatures” approach but with several important improve-
ments. First, our fingerprint representation size scales lin-
early, rather than exponentially, with the number of metrics
considered. Second, the representation size is independent of
the number of machines and thus can be used with very large
deployments. Third, the signatures approach maintains mul-
tiple models (one per crisis seen), computes a fitness score to
decide which of the existing models are likely to provide the
best identification of the current crisis, and then uses these
to construct the signature of (and thereby identify) the crisis.
In contrast, we only use our models to determine which met-
rics are relevant for modeling the crises and not for “match-
ing” them. This simplification allows our approach to avoid
two related sources of potential error and their correspond-
ing free parameters. First, we need no policies to maintain
and ensure the validity of multiple models. Second, since
we don’t maintain multiple models, we need neither a fit-
ness score to determine which models to apply nor a method
to combine the output of multiple models.

HiLighter [4] showed that the use of regularized logistic
regression [22] as a classifier results in a metric selection
process that is more robust to noise than the naı̈ve Bayes
classifier used in the signatures approach. In particular, Hi-
Lighter avoids the wrap-around search for the relevant fea-
tures for each model as was done in the signatures work.
However, like signatures, HiLighter must deal with the prob-
lems of model management and online selection, and pro-
poses a representation of performance state that can grow
exponentially with the number of metrics being recorded.

2 2009/10/22



3. Problem and Approach
A typical datacenter-scale user-facing application runs si-
multaneously on hundreds or thousands of machines. In or-
der to detect performance problems and perform postmortem
analysis after such problems, several performance metrics
are usually collected on each machine and logged to online
or nearline storage. Since large collections of servers execute
the same code, under normal load balancing conditions the
values of these metrics should come from the same distri-
bution; as we will show, we use this intuition to capture the
state of each metric and identify unusual behavior.

Each metric is usually sampled once per aggregation
epoch—typically a few minutes—and the sampled values
may represent a simple aggregate over the aggregation
epoch, e.g. the mean. The metrics correspond to hardware,
OS, application, or runtime-level measurements, such as the
size of the object heap or number of threads waiting in the
run queue. Wide variation exists in what is collected and at
what granularity; packages such as HP OpenView [1], Gan-
glia [15], and others provide off-the-shelf starting points.

A small subset of the collected metrics may be key perfor-
mance indicators (KPI’s) whose values form part of the defi-
nition of a contractual service-level agreement (SLA) for the
application. An SLA typically specifies a threshold value for
each KPI and the minimum fraction of machines that have
to satisfy the requirement over a particular time interval. For
example, an SLA might require that the end-to-end inter-
active response time be below a certain threshold value for
99.9% of all requests in any 15-minute interval.

A performance crisis is defined as a prolonged violation
of one or more specified SLA’s. Recovery from the crisis
involves taking the necessary actions to return the system
to an SLA-compliant state. If the operators can recognize
that the crisis is of a previously-seen type, a known remedy
can be applied, reducing overall recovery time. Conversely,
if the operators can quickly determine that the crisis does
not correspond to any previously seen incident, they can
immediately focus on diagnosis and resolution steps, and
record the result in case a similar crisis recurs.

Our goal is to automate the crisis identification process by
capturing and concisely summarizing the subset of the col-
lected metrics that best discriminate among different crises.
We next describe our process for doing this, called finger-
printing the datacenter, and how we define a similarity met-
ric between two fingerprints to identify recurring problems.

3.1 Fingerprint-based recognition
A fingerprint is a vector representing the performance state
of a datacenter application that uniquely identifies a perfor-
mance crisis. It is based on values of performance metrics
and, intuitively, it characterizes which metrics’ values have
significantly increased or decreased on a large fraction of the
application servers. There are four steps to our fingerprint-
based recognition and identification technique.

1. We summarize the values of each performance metric in
a particular epoch across all the application servers by
computing the quantiles of the measured values (such
as the median of CPU utilization on all servers). Unlike
statistics such as the mean, quantiles are more robust to
outliers in the distribution of the metric values. As we
discuss in Section 3.2, this summarization scales well
with the number of servers.

2. Based on the past values of each metric quantile, we
characterize its current value as hot, cold, or normal,
representing abnormally high, abnormally low, or normal
value, respectively. We discuss this step and the choice
of hot and cold thresholds in Section 3.2. This gives us
a summary vector containing one element per quantile
per tracked metric, indicating whether the value of that
quantile is cold, normal, or hot during that epoch.

3. We identify the relevant metrics whose quantile behavior
distinguishes normal performance from the performance
crises defined by the SLA’s. The metric selection process
is described in Section 3.3. This subset of the summary
vector for a given epoch is the epoch fingerprint.

4. Since most crises span multiple epochs, we show how
to combine consecutive epoch fingerprints into a crisis
fingerprint. We define a similarity metric for determining
whether two crisis fingerprints correspond to the same
underlying problem. These two steps are described in
Section 3.4.

5. Finally, we observe that in a real operational setting,
crises appear sequentially and identification of a crisis
can be based only on information obtained from the pre-
vious crises. We hypothesize that crisis identification will
be improved through adaptation — updating identifica-
tion parameters each time a correctly-labeled crisis is
added to the dataset. The adaptation procedure is de-
scribed in section 3.5.

3.2 Hot and Cold Metric Quantiles
In the first step, we compactly represent the values of each
metric on all servers during a particular epoch. Because
servers of the same application typically run the same code,
we can view the measured values of the same metric as sam-
ples of a random variable whose distribution is unknown.
We thus summarize the metric values across all servers us-
ing several quantiles of the observed empirical cumulative
distribution over an epoch (see an illustration in Figure 1 on
using the median of the metrics). In this paper we refer to
these quantiles as metric quantiles.

We use quantiles instead of other statistics such as mean
and variance because quantiles are less susceptible to out-
liers. This summarization of the state of the metrics does
not grow as the number of machines increases, so the size
of the fingerprint is only proportional to the number of met-
rics being collected. In addition, there are well known al-

3 2009/10/22



!
"

!"
metric 1 on all servers!

!"
metric N on all servers!

raw metrics on all servers! median!

!
"

!
"

median!

+ hot/cold thresholds!

1!

0!

!
"

summary vector!

!"
metric 2 on all servers!

-1!

metric 1!

metric 2!

metric N!

Figure 1. The summary vector of a particular epoch is created in
two steps. First, the values of each metric are summarized using one
or more quantiles (here we use the median). Second, each metric
quantile is discretized into a hot, normal, or cold state based on its
hot/cold thresholds (represented by the arrows). Each square in the
summary vector represents the state of a particular metric quantile,
with −1, 0, 1 corresponding to cold, normal, hot respectively.

0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 ‐1 ‐1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 ‐1 ‐1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 ‐1 ‐1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 0 1 ‐1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 0 1 ‐1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 0 1 ‐1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 ‐1 ‐1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 ‐1 ‐1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 ‐1 ‐1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 0 1 ‐1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 0 1 ‐1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 ‐1 0 1 ‐1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0

1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 0 ‐1 ‐1 0 ‐1 ‐1 0 0 0 0 0 0 ‐1 0 0 0 0 0 0 0 0 0

Figure 2. Counterclockwise from top left, fingerprints of crises
B, B, D and C from Table 1. Each row is an epoch and each column
represents the state of a particular metric quantile, with white, gray,
black corresponding to cold, normal, hot (−1, 0, +1) respectively
in the fingerprint.

gorithms for estimating quantiles with bounded error using
online sampling [12], which guarantee that the entries in the
fingerprints can be computed efficiently. In our case study,
which involved several hundred machines, we computed the
values of the quantiles exactly.

We observe that the main factor that differentiates be-
tween different types of crises are the different metrics that
take extreme values during the crisis. Our objective is to cap-
ture this fact in the fingerprint, that is, to encode which met-
rics increased or decreased significantly on a large number
of servers during the crisis. We achieve this by discretizing
the value of each metric quantile to one of three states: ex-
tremely high (hot), extremely low (cold), or normal relative
to its past values. For example, if the median of a metric
is hot, the most recent value for that quantile is higher than
normal.

The computation of hot and cold thresholds is parame-
terized by hyperparameter p – percentage of past values of
a metric quantile that are considered extremely low or high
during normal system operation. The cold threshold of a par-
ticular metric quantile m (such as median of CPU utiliza-
tion) is computed as the p/2th percentile of values of m in
the past W days that exclude epochs with SLA violations.

The hot threshold of m is computed as (100 − p/2)th per-
centile over the same period. For example, for p = 4% we
would use the 2nd and 98th percentiles. In Sections 5 and 6.1
we discuss the choice of quantiles, hyperparameters p andW
and examine the sensitivity of our approach to their values.

We can now build a summary vector for one epoch: it is a
vector ofQ×M elements, whereM is the number of metrics
and each group of Q elements corresponds to the metric
quantiles of individual metrics. An element’s value is −1
if the quantile’s value is below the cold threshold during the
epoch, +1 if the quantile’s value is above the hot threshold,
and 0 otherwise (see Figure 1).

3.3 Selecting the Relevant Metrics
As we will show in our experiments (Section 5.1), achieving
robust discrimination and high identification accuracy re-
quires selecting a subset of the metrics, namely the relevant
metrics for building the fingerprints. We determine which
metrics are relevant in two steps. We first select metrics that
correlate well with the occurrence of each individual crisis
by borrowing techniques from machine learning, specifically
feature selection and classification on data surrounding each
crisis. Second, we use metrics most frequently selected in
the previous step as the relevant metrics used for building all
fingerprints. The summary vector is converted into an epoch
fingerprint by selecting only the relevant metrics.

Feature selection and classification is a technique from
statistical machine learning that first induces a function be-
tween a set of features (the metrics in our case) and a class
(crisis or no crisis) and tries to find a small subset of the
available features that yields an accurate function. Let Xm,t

be the vector of metrics collected on machine m at time t
and Ym,t be 1 ifm violated an SLA at time t, or 0 otherwise.
A classifier is a function that predicts the performance state
of a machine, Y , given the collected metricsX as input. The
feature selection component picks a subset of X that still
renders this prediction accurate. In our approach we use lo-
gistic regression with L1 regularization [22] as the statistical
machine learning method. The idea behind regularized lo-
gistic regression is to augment the model fitting to minimize
both the prediction error and the sum of the model coeffi-
cients. This in turn forces irrelevant parameters to go to zero,
effectively performing feature selection. It has been (empiri-
cally) shown in various settings that this method is effective
even in cases where the number of samples is comparable to
the number of parameters in the original model [13], as is the
case in our scenario in which the number of possible features
(over 100 per server for several hundred servers) exceeds the
number of classification samples. Note that the crises do not
need to be labeled when performing the metric selection, so
there is no burden on the operator; this step is completely
automated.

4 2009/10/22



3.4 Matching Similar Crises
In the final step we summarize epoch fingerprints during a
single crisis into a crisis fingerprint and compare crisis fin-
gerprints using a distance metric. First, because crises usu-
ally last for more than one epoch, we create a crisis finger-
print by averaging the corresponding epoch fingerprints, thus
summarizing them across time. For example, Figure 2 shows
epoch fingerprints of four crises. Each row represents an
epoch, each column represents a metric quantile, and white,
gray, and black represent the values −1, 0, and 1, respec-
tively of the cold, normal, and hot state respectively. The
three left-most columns of the top-right crisis in the figure
would be summarized as {−7

12 ,
−4
12 ,

6
12}; there are 12 epochs

in the crisis and the column sums are −7, −4, and 6. Notice
that the quantiles often don’t move in the same direction—
for example, see the left-most three columns in the top-right
crisis—which is important for identification.

If the Euclidean distance between the fingerprints of a
pair of crises is less than the identification threshold T , the
crises are considered identical, otherwise they are different.
Intuitively, if T is too low, some identical crises would be
classified as different (false negative), while if T is too high,
different crises would be classified as identical (false pos-
itive/false alarm). We define the false alarm rate α as the
number of pairs of different crises that are incorrectly classi-
fied as identical divided by the number of pairs of crises that
are different. We ask the operator to specify an acceptable
bound on α, and we set T to the maximum identification
threshold that respects that bound. A ROC (receiver oper-
ating characteristic) curve, such as the one in Figure 5, is
particularly useful for visualizing this. In our experiments,
we set α close to zero, essentially guaranteeing no false pos-
itives in practice. We illustrate the effects of increasing α on
the identification process in Figure 6.

In the methodology above we assume that the operator
is able to correctly label a crisis sometime after resolution,
as the threshold T may then need to be adjusted to main-
tain the desired rate of false positives. If a significant num-
ber of past crises cannot be reliably labeled, we instead pose
crisis matching as an unsupervised online clustering prob-
lem. Such an approach requires more sophisticated proba-
bilistic models and computational statistical inference; we
report some early results on this aspect of the problem in
Section 6.2.

3.5 Adaptation
Once a new crisis is resolved and an operator correctly
labels it, we update the fingerprinting parameters: hot and
cold thresholds, set of relevant metrics, and identification
threshold T . First, we update the hot and cold thresholds
based on values of metric quantiles in the past W days
as described in Section 3.2. Second, we select the most
frequent metrics from the most recent C crises as described
in Section 3.3. Third, we update the identification threshold

front-end!

processing!

heavy!

processing!

post!

processing!

post!

processing!

post!

processing!

Figure 3. Processing on machines in the datacenter under study.

T based on all the past labeled crises to achieve expected
false alarm rate of α. Finally, fingerprints of the past crises
are recalculated based on the new fingerprinting parameters.

4. Evaluation
Using the ground truth labels provided by human opera-
tors of a production system described in Section 4.1, we
evaluate our approach and compare it to three alternatives:
a) one that relies only on the operator-identified Key Per-
formance Indicators (KPI’s) for crisis identification, b) one
that uses all available metrics for identification, and c) one
that models crises using the signatures approach described
in [7]. Our evaluation consists of three parts. First, we eval-
uate the discriminative power of our approach and compare
it to the other approaches, using the entire available dataset.
That is, we quantify how accurately each approach classi-
fies two crises as identical or not. This part of the evaluation,
described in Section 4.2, establishes an upper bound on iden-
tification accuracy for all approaches.

Next, we simulate the operational setting in which our
approach is designed to be used, in which crises appear se-
quentially and identification of a crisis is based only on in-
formation obtained from the previous crises. In these ex-
periments we use adaptation described in Section 3.5. Sec-
tion 4.3 describes how we evaluate the accuracy and time-
to-identification of our technique and quantify the loss of
accuracy resulting from the use of only partial information.

Finally, in Section 4.4 we compare our approach to the
others, again in an operational setting. However, since each
approach uses different techniques for adaptation, to make
the comparison meaningful we remove the need for adapta-
tion by providing access to the entire dataset for training. We
refer to this as operational setting with an oracle.

4.1 System Under Study
We evaluate our approach on data from a commercial dat-
acenter running a 24×7 enterprise-class user-facing appli-
cation. It is one of four datacenters worldwide running this
application, each containing hundreds of machines, serv-
ing several thousand enterprise customers, and processing
a few billion transactions per day.2 Most machines execute
the same application, as depicted in Figure 3. The incom-
ing workload is processed on the machine in three stages:

2 The exact numbers are considered confidential by the company that oper-
ates the datacenter.

5 2009/10/22



ID # of instances label
A 2 overloaded front-end
B 9 overloaded back-end
C 1 database configuration error
D 1 configuration error 1
E 1 configuration error 2
F 1 performance issue
G 1 middle-tier issue
H 1 request routing error
I 1 whole DC turned off and on
J 1 workload spike

Table 1. List of identified performance crises. Names are indica-
tive of the root cause. We stress that almost all these crises mani-
fested themselves through multiple metrics, and that there is over-
lap between the metrics of the different crises.

light processing in the front-end, core of the execution in the
second stage, followed by some back-end processing. The
requests are then distributed to the clients or to another dat-
acenter for archival and further processing. We have no vis-
ibility to the clients or to machines in the other datacenters.

For each server, we sample about 100 metrics each av-
eraged over a period of 15 minutes. The 15-minute averag-
ing window is established practice in this datacenter, and we
had no choice on this matter; similarly, we have no access
to any other performance counters or to information allow-
ing us to reconstruct the actual path of each job through
the server. The metrics include counts of alerts set up by
the operators, queue lengths, latencies on intermediate pro-
cessing steps, summaries of CPU utilization, and various
application-specific metrics.

The operators of the site designate three key performance
indicators (KPI’s) corresponding to the average processing
time in the front end, the second stage, and one of the
post-processing stages. Each KPI has an associated service-
level agreement (SLA) threshold determined as a matter of
business policy. A performance crisis is declared when 10%
of the machines violate any KPI SLA’s. This definition is set
by the operators and we did not tamper with it.

We use four months of production data from January
to April 2008. During this period, the datacenter operators
manually diagnosed and labeled 19 crises, ranging from con-
figuration problems to unexpected workloads to backlogs
caused by a connection to another datacenter. These crises
were labeled by the operators according to the determined
underlying cause. Descriptive labels of the crises, and the
number of times each type occurred, appear in Table 1. We
also had access to collected metrics and 20 unlabeled crises
that occurred between September and December 2007. We
use this additional data when simulating online deployment,
but we don’t use it to evaluate identification accuracy.

4.2 Evaluating Discrimination
Discrimination measures how accurately a particular crisis
representation classifies two crises as the same or distinct.
We compare our method to three other approaches, in each
case using the entire dataset so as to give each method the
maximum information possible. This establishes the base-
line ability to capture the differences between different crises
for each method. As is standard, we compare the different
approaches using ROC curves [14] that represent the trade-
off between the false alarm rate (incorrectly classifying two
different crises as identical) and recall (correctly classifying
two identical crises) over the whole range of the identifica-
tion threshold T . It is standard practice to represent this com-
parison numerically by computing the area under the curve
(AUC). The optimal approach will have an AUC of 1, indi-
cating that there is no tradeoff between detection and false
positives. By using an ROC curve for comparison, we take
into account all possible cost-based scenarios in terms of the
tradeoff between missing identical crises versus considering
different crises to be identical.

4.3 Evaluating Identification Accuracy and Stability
Identification accuracy measures how accurately our ap-
proach labels the crises. A human operator has hand-labeled
each crisis in our dataset, but in an operational setting the
crises are observed sequentially. Each crisis is labeled un-
known if the distance between its fingerprint and all finger-
prints of past crises is greater than the identification thresh-
old T ; otherwise it is labeled as being identical to the closest
crisis. Since many crises (indeed, all those in our dataset)
last longer than a single 15-minute epoch, we must also de-
fine identification stability—the likelihood that once our ap-
proach has labeled a crisis as known, it will not change the
label later while the crisis is still in progress. In each epoch,
the identification algorithm emits either the label of a known
crisis, or the label x for unknown. A sequence of K iden-
tifications is stable if it consists of n ≥ 0 consecutive x’s
followed K−n consecutive identical labels. Since the oper-
ators of this application informed us that identification infor-
mation is useful up to one hour into a crisis, we use K = 5.
For example, if A and B are labels of known crises, the se-
quences xxAAA, BBBBB, and xxxxx are all stable, whereas
xxAxA. xxAAB, AAAAB are all unstable. Given this stability
criterion, a sequence is accurate if it is stable and the la-
beling is correct; that is, either all labels are x’s and the cri-
sis is indeed new, or the unique non-x label matches that of
a previously-seen crisis that is identical to the current cri-
sis. Further, for a previously-seen crisis we can define time
to identification as the first epoch after crisis onset during
which the (correct) non-x label is emitted.

We emphasize that from the point of view of Recovery-
Oriented Computing [16], stability is essential because the
system operator’s goal is to initiate appropriate recovery ac-
tions as soon as possible once the crisis has been identified.

6 2009/10/22



Problem identification workflow
When a crisis is detected based on KPIs:

update hot/cold thresholds (Section 3.2)
update past crises’ fingerprint entries (3.1)

During first K epochs of crisis (we use K = 5, see Sec. 4.3):
update crisis fingerprint with new data (3.1)
find most similar past crisis P (3.4)
if similarity within identification threshold (3.5)

emit label P , else emit label X
When crisis is over:

operators verify label of crisis
update set of relevant metrics (3.3)
update identification threshold T (3.5)

Figure 4. Problem identification workflow. Each line refers
to a section that describes that step in detail.

Unstable identification could lead the operator to initiate
one set of actions only to have the identification procedure
“change its mind” later and apply a different label to the cri-
sis, which would have implied different recovery operations.
There is an inherent tradeoff between time to identification
and stability of identification; we quantify this tradeoff in
Section 5 and show how a system operator can control the
tradeoff by setting a single parameter in our algorithm.

4.4 Comparing to Other Approaches
When comparing our identification accuracy to that of other
approaches, to make the comparison meaningful we elimi-
nate the adaptation described in Section 3.5 from both our
approach and those we compare against. With adaptation in
place, any comparison would also have to compare the rel-
ative loss of accuracy of each method when only partial in-
formation is used to make decisions. Instead of adaptation,
we use an oracle to set the best parameters for each method,
allowing us to show each approach at its best.

To remove adaptation from the fingerprinting approach,
we compute the identification threshold T based on an ROC
curve over all labeled data, we select a single set of relevant
metrics using models induced on the labelled crises, and we
compute hot and cold thresholds based on the whole dataset.
We use this set of parameters throughout the experiment.

To explain how we remove adaptation from the signa-
tures approach in [7], we first briefly review the adaptation it
usually performs. The signatures approach builds a classifier
for each crisis that tries to predict whether the current sys-
tem state will result in an SLA violation on the KPIs. The
SLA state serves as ground truth for the classifier, and the
signature captures the subset of metrics that form the fea-
tures used by the classifier that achieves the highest accu-
racy. Crisis recognition consists of first selecting a subset of
the models with highest prediction accuracy on the current
crisis, and then building a signature based on the most rel-
evant metrics. This entire procedure requires setting many

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

false alarm rate

re
ca

ll

fingerprints
signatures
fingerprints (all metrics)
KPIs

type of fingerprint AUC
fingerprints 0.994
fingerprints with all metrics 0.873
KPIs 0.854
signatures 0.876

Figure 5. ROC curves for crisis discrimination and the area under
the curves (AUC) for the fingerprinting and alternative approaches.

parameters, including the number of epochs on which the
model is evaluated and the number of models being selected
(or a threshold on the Brier score for selection). Adaptation
consists of periodically merging similar models and deleting
inactive/obsolete models [25]; these processes depend on ad-
ditional free parameters.

To remove adaptation from the signatures approach, we
allow it to always select the optimal model for each crisis.
This gives the signatures approach a model management
technique that is omniscient, clairvoyant, and optimal. In
addition, since our system consists of hundreds of servers
rather than the handful of servers used for evaluation in [7],
rather than assigning a model to each server we assign a
model to the datacenter and summarize the metrics using
quantiles. Finally, in place of the naive Bayes models used
in [7], we use logistic regression with L1 regularization for
feature selection; since the logistic regression models were
more accurate in our setting than those using naive Bayes,
this gives the signatures approach another advantage.

We point out that our criteria for accuracy are much more
stringent and more realistic than those used in [7]. In that
work, an identification was considered successful as long as
the actual crisis was among the k most similar crises selected
by the algorithm, according to a distance metric. In contrast,
our identification is successful if the single correct label is
produced, and in case the crisis is a previously-unseen crisis,
identification is successful only if it reports “unknown” and
does not assign the label of any known crisis. Furthermore,
the stability criterion, which is a prerequisite to accuracy in
our approach, has no analogue in [7].

7 2009/10/22



4.5 Experimental Setup and Procedure
As the approach is intended to be used in an “online” op-
erational setting in which crises occur sequentially and they
must be identified as soon as possible, we simulate this set-
ting in our experiments. That is to say, at the point the cri-
sis is detected through an SLA violation, the system exe-
cutes the operations indicated in Figure 4 in order to decide
whether the crisis has occurred before. After each crisis, var-
ious parameters are automatically updated as described in
previous sections. We note that the final verification of the
crisis label is performed offline and may require several it-
erations and different tier level operators, all of which are
outside the scope of this paper.

5. Results
The main results reported in this section used the following
settings. The fingerprints where built using three quantiles
for each metrics; in addition to the median, we added the
25th and 95th percentiles to capture the variance. In the se-
lection of the relevant metrics we used classifier models con-
taining ten metrics (the balanced accuracy was high enough
and the standard deviation in the cross-validation was low),
and we used the most frequent 30 metrics over the past 20
crises as the relevant metrics for the fingerprints. Finally we
used a moving window of 240 days to set the hot/cold thresh-
olds using p = 4%. Section 6.1 describes the sensitivity
analysis and how to set these parameters in a realistic set-
ting.

5.1 Discriminative Power
As discussed in Section 4.2, we start our evaluation of the
fingerprint approach by examining its basic capabilities in
classifying two crises as the same or distinct, and compar-
ing this ability to alternative approaches. The graph in Fig-
ure 5 shows the ROC curves and AUC for each approach.
The fingerprint approach exhibits an AUC of 0.994, which
means that in terms of discrimination, this approach is able
to maximize the detection rate with extremely few false pos-
itives. Comparing to the alternative approaches, using the
KPI’s alone gets an AUC of 0.854 and the approach using
all the metrics gets 0.874. Furthermore looking at the shape
of the curves it is clear that neither is able to discriminate
at the same level as the fingerprints. Using the KPIs simply
does not provide enough power to discriminate between the
different types, and using all the metrics simply obfuscates
the discriminative signal by introducing noise.3 Finally, the
signatures approach performs better than both these two ap-
proaches but still well bellow the fingerprinting approach
proposed in this paper.

3 Metrics that are not correlated with the crises may take extreme values
during both crises and “normal” intervals.

operational setting known acc. unknown acc.
oracle 98% 93%
adaptation, bootstrap w/ 10 77% 82%
adaptation, bootstrap w/ 5 76% 83%
adaptation, bootstrap w/ 2 78% 74%

Table 2. Summary of the results for different settings.

5.2 Fully operational setting
In the following experiments we simulate the conditions
under which the approach would be used for identification
of crises in an operational setting where crises arrive one
at a time and we update fingerprinting parameters as we
observe them. To remove dependencies on a particular order
we perform experiments using 20 random permutations of
the crises, one of which is the actual chronological order,
and report the average accuracy across all runs.

At the onset of a new crisis, we perform the following: a)
update relevant metrics, hot/cold thresholds, and identifica-
tion threshold T as described in Section 3.5, b) update fin-
gerprints of past crises, c) perform identification using the
distances between crises and the identification threshold.

Recall from Section 4.3 that a new crisis C is said to be
identified accurately if the identification is stable over five
epochs and if the label is correct. If C is previously known
(i.e. if the set of crises that occurred in the past contains
some crisis identical to C), the correct label would be that
of the previously seen crisis. If the past set of crises con-
tains no crisis identical to C, the correct label would be un-
known. We compute the known accuracy (fraction of correct
identifications for previously seen crises), the unknown ac-
curacy (fraction of correct identifications for previously un-
seen crises), and also the time to identification (the average
time between crisis detection and its correct identification).

To evaluate the performance of our method with adap-
tation, we run three sets of experiments, each time starting
with a different number of labeled crises. When starting with
two labeled crises, we achieve known and unknown accuracy
of 78% and 74%4. Starting with five and ten crises yields ac-
curacies of approximately 76% and 83% (see Table 2 and
Figure 6).

Besides accuracy, the time at which the method makes a
decision regarding the identity of the crisis is important to
the operator. The dependency among these three evaluation
metrics is made clear in Figure 6. We note that our method is
able to make the identification with 80% accuracy within ten
minutes of crisis detection, even in a fully operational set-
ting where the relevant metrics and identification threshold
are adapted in an online fashion. Operators of this web ap-
plication mentioned that correct identification is useful even
one hour after the crisis was detected.

4 We report accuracies for α = 0.001 – conservative value that guarantees
almost no false alarms

8 2009/10/22



● ● ●
●

● ● ●

●
●

0.001 0.005 0.020 0.050 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

30 metrics, 240 days, bootstrap with 10 crises

alpha (log scale)

ac
cu

ra
cy

/s
ta

bi
lit

y

● ● ●
●

●
●

●

●

●

●

●

known accuracy
unknown accuracy
average identification time

av
g.

 id
en

tif
ic

at
io

n 
tim

e 
[m

in
]

0
5

10
15

● ● ●
●

● ●

● ●
●

0.001 0.005 0.020 0.050 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

30 metrics, 240 days, bootstrap with 2 crises

alpha (log scale)

ac
cu

ra
cy

/s
ta

bi
lit

y ● ● ● ●

● ●

●

●

●

●

●

known accuracy
unknown accuracy
average identification time

av
g.

 id
en

tif
ic

at
io

n 
tim

e 
[m

in
]

0
5

10
15

Figure 6. Known accuracy, unknown accuracy, and time of identification results in full operational setting when using 30 metrics in
fingerprints, 240 days of moving window, and bootstrapping with ten and two labeled crises (top). X-axes represents different values of the
false alarm rate parameter specified by the operator.

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fingerprints with oracle

alpha (log scale)

ac
cu
ra
cy

known accuracy
unknown accuracy
average identification time

av
g.

 id
en

tif
ic

at
io

n 
tim

e 
[m

in
]

0
5

10
15

20
25

30

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

signatures

alpha (log scale)

ac
cu
ra
cy

known accuracy
unknown accuracy
average identification time

av
g.

 id
en

tif
ic

at
io

n 
tim

e 
[m

in
]

0
5

10
15

20
25

30

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fingerprints with oracle (all metrics)

alpha (log scale)

ac
cu
ra
cy

known accuracy
unknown accuracy
average identification time

av
g.

 id
en

tif
ic

at
io

n 
tim

e 
[m

in
]

0
5

10
15

20
25

30

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KPIs

alpha (log scale)

ac
cu
ra
cy

known accuracy
unknown accuracy
average identification time

av
g.

 id
en

tif
ic

at
io

n 
tim

e 
[m

in
]

0
5

10
15

20
25

30

Figure 7. Known accuracy, unknown accuracy, and time of identification for different crisis signatures when using an oracle: fingerprints
(top left), signatures [7] (top right), fingerprints using all the available metrics (bottom left), and KPIs (bottom right). X-axes represents
different values of the false alarm rate parameter specified by the operator.

5.3 Operational setting with an oracle
To compare our approach to the three alternative approaches,
we eliminate the adaptation as described in Section 4.4.
Instead, each method uses the best settings of its parameters
based on the whole dataset as if provided by an oracle. These
parameters are not updated as new crises arrive.

For each of the approaches we executed five runs with
different initial set of crises and performed identification
on the remaining 14 crises. The initial set of crises always
contained two crises of type “B”, one of type “A”, and two
other crises that varied between runs. We report the average
of all the evaluation metrics across the five runs in Figure 7.

9 2009/10/22



Fingerprinting achieves very high known and unknown
accuracies of 97.5% and 93.3%. The approaches based on
using all the metrics and the KPIs achieve accuracies of 50%
and 55% respectively. The signatures approach [7] performs
better than the baselines and achieves accuracies of 75% and
80%, but still worse than fingerprinting.

5.4 Summary of empirical results
From the discrimination and identification experiments, we
conclude that:
1. Maintaining only the relevant metrics for distinguishing

crises from normal operation allows the fingerprinting
approach to attain much higher identification accuracy.

2. The KPI’s alone provide insufficient information to dis-
tinguish or identify different types of crises.

3. The fingerprinting approach, based on keeping concise
representations of the datacenter state, performs signifi-
cantly better than the signatures approach of [7].

4. In the realistic, fully operational setting, we correctly
identify 80% of the crises with an average time between
crisis detection and its identification of ten minutes.

6. Fingerprinting in Practice
As with any approach based on collecting and analyzing
data, applying the approach in an operational setting requires
setting some parameters and understanding the sensitivity of
the technique to these parameters. Also, since crisis identifi-
cation is not 100% accurate, we need to establish an accept-
able level of uncertainty in production use based on both
technical and business reasons. In this section we address
each of these operational considerations.

6.1 Setting algorithm parameters
As described in Figure 4 and Section 3.5, we automatically
update fingerprinting parameters when a new crisis is de-
tected and after it is over. These updates are based on a set
of hyperparameters that may not require any changes, but
should be reviewed periodically or when a major change oc-
curs in the datacenter. These hyperparameters include the
number of metrics to be part of the fingerprint, number of
days W and percentage p of metric values considered ex-
treme when computing hot and cold thresholds, and α used
when computing identification threshold T .

The effects of the hyperparameters on the identification
accuracy and time to detection could be estimated offline by
running identification experiments using past labeled crises.
The operators would use ROC curves and graphs such as the
ones in Figure 6, to select a suitable operating point of dat-
acenter fingerprinting. Producing these graphs took on the
order of minutes for the 19 crises we used in our experi-
ments. After selecting the hyperparameters, the adaptation
of the fingerprinting parameters and the identification algo-
rithm proceed automatically with little intervention by the

operators. To illustrate the approach, we report on some of
the experiments we performed in order to set the hyperpa-
rameters and study their effect on the results.

In our reported results we use p = 4% as the percentage
of metric values considered extreme when computing the hot
and cold thresholds. When experimenting with values of 2%,
10% and 20% we observe that the area under the ROC curve
(as in Section 5.1) decreased from 0.99 to 0.96 – a small
change and still far better than the competing approaches.

Instead of using all three quantiles when summarizing
metrics, we also tried using just the median. This reduced
the identification accuracy for known crises by 5 points in
the oracle setting, and by 2–3 points in the fully-operational
setting; still better than competing approaches as reported
in Section 3.4 and illustrated in Figure 2. Our intuition is
that some pairs of crises are distinguished by three quantiles
that don’t all move in the same direction, and observing the
movement of only a single quantile would necessarily fail to
capture such differences.

In the experiments in Section 5 we used M = 30 metrics
for the fingerprint; in additional experiments we observed a
decrease in the accuracy of the identification as we tried fin-
gerprints of 20, 10, and 5 metrics, with the moving window
size of W = 240 days. As we changed W to 120, 30, and 7,
we observed that reducing the number of metrics in the fin-
gerprint actually compensates. This is not surprising: as the
size of the fingerprint decreases, the fingerprint adjusts more
nimbly to rapid changes in values, which comes as a con-
sequence of reducing W . But as W increases and a greater
variety of crises is seen, additional information is needed in
the fingerprint to capture the differences among them.

Also, as mentioned in Section 3.4, we update T to avoid
false positives (α set to 0.1%). In Figure 6 we show the
effects of increasing the false positive rate (which in turn will
affect T ). As expected, the known accuracy will increase
while the unknown accuracy will decrease. Although in our
datacenter the increase is marginal and the false positive rate
will start affecting the result when it is larger than 2%.

Finally, when comparing two crises, we first compute
the crisis fingerprints by averaging the corresponding epoch
fingerprints. In all the experiments in Section 5, we average
across epochs −30 minutes, . . . , 60 minutes, relative to the
start of the crisis (the limit of 60 minutes was set by the
datacenter operators). Figure 8 shows that ranges that start
at least 30 minutes before the beginning of the crisis quickly
achieve high levels of discrimination.

6.2 Crisis Labeling, Bootstrapping and Uncertainty
As described in Section 3.4 the automatic adaptation of the
threshold T depends on the selection of the actual false posi-
tive rate, which in turn needs the accurate (forensic) labeling
of a significant set of crises. In addition, the highest accu-
racy results in the full operational setting (Section 5.2) were
obtained when the identification process was bootstrapped
with 5 labeled crises. We remark that the labeling does not

10 2009/10/22



0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

end of fingerprint summary interval

ar
ea

 u
nd

er
 th

e 
R

O
C

 c
ur

ve

−30 0 30 60 90 120 150

●

●

●

●

●

● ● ●
●

●
● ●

●

●

●
●

● ● ●
●

● ● ●

●

●

summaries starting at −60 minutes
summaries starting at −45 minutes
summaries starting at −30 minutes
summaries starting at −15 minutes
summaries starting at 0 minutes

Figure 8. Area under the ROC curve (discriminative power) of
fingerprints when summarized over different ranges. Each line on
the graph represents ranges that start at the same epoch, while the
x-axis represents the end of the range. The arrow points to AUC
corresponding to the range 〈−30minutes, +60minutes〉 used in all
our experiments.

have to necessarily point to the root cause, but merely group
similar crises together, and it does not need to occur in real
time. Nevertheless, a natural question is what to do when
a new application is first deployed (or significantly modi-
fied) and no prior crisis data is available for bootstrapping, or
there is significant cost of the forensic analysis of the crises.
To this end we have recently proposed and evaluated an ap-
proach based on the same fingerprinting representation but
a different identification and pattern matching process that
is based on performing online clustering of the crises. No-
tice that this is non-trivial as we need to first decide on the
number of clusters, plus decide whether a new crisis merits
a new cluster. The approach we are pursuing is based on first
modeling the crises as a time series of fingerprints (instead
of collapsing them into a crisis fingerprint as in Section 3.4)
and then imposing a Dirichlet process mixture (DPM) for
grouping the crises online and deciding whether a new clus-
ter is needed. DPMs are well known constructs that have
been used successfully in online document clustering [24];
due to space limitations we omit details on the mathematics
of the model and the computational procedure, which are de-
scribed fully in [20].5 By virtue of being consistently defined
in terms of a probability distribution, the approach obviates
the need for a distance metric and a threshold for clustering.
In addition, in our initial experiments simulating the same
full operational environment, the approach achieves accura-
cies compared to those reported in Section 5.2, without the
need for bootstrapping or forensic crises labeling. Moreover,
this approach reports a full posterior probability on the clus-
tering, enabling optimal decision making by providing a real
uncertainty measure on the identification of the crisis.

5 A full account will be provided in the final version.

However, the computational process is more complicated
(in particular requiring a taxing offline component) and iden-
tification takes on average twice as long as the approach we
describe here (20 minutes vs. the 10 minutes we report in
Section 5.2). This observation suggests a possible hybrid ap-
proach: we can start the process with the more sophisticated
model based on DPMs [20], and once we have a sufficient
number of labeled crises, switch to our simpler matching ap-
proach (Section 3.4) to minimize time to identification. An-
other hybrid approach might use the simpler matching for
very fast identification, while using the DPM approach to
calculate an uncertainty on the identification. We are work-
ing on the details of these hybrid approaches as ongoing re-
search.

7. Conclusions
We described a methodology for constructing datacenter
“fingerprints” using statistical techniques. The goal of these
fingerprints is to provide the basis for automatic classifica-
tion and identification of performance crises in a datacenter.
Different from root-cause diagnosis, identification facilitates
rapid online repair of service disruptions, allowing poten-
tially time-consuming diagnosis to occur offline later. The
goal of rapid recovery is consistent with statements by lead-
ing Web application operators that today’s 24x7 Web and
cloud computing services require total downtime to be lim-
ited to 50–56 minutes per year6.

Under realistic conditions and using real data and very
stringent accuracy criteria, our approach provides operators
the information necessary to initiate recovery actions with
80% correctness in an average of 10 minutes, which is 50
minutes earlier than the deadline provided to us by the op-
erators. Indeed, our criteria may be more stringent that re-
quired in practice, since operators may just want to see a list
of candidate crises most similar to the current one.

Furthermore, the visualizations of the fingerprints them-
selves are readily interpretable by human operators: when
we showed a few of these fingerprints to the application
operators, they very quickly recognized most of the corre-
sponding crises, even though they are not experts in machine
learning. Interpretability and gaining operator trust are im-
portant for any machine learning technique that will be used
in an advisory mode in a production installation; we are now
working with the operators on such a live deployment.

References
[1] HP OpenView, welcome.hp.com/country/us/en/ prod-

serv/software.html.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling. In
OSDI’04: Proceedings of the 6th conference on Symposium

6 Marvin Theimer, senior principal engineer, Amazon Web Services;
keynote at LADIS 2009 workshop.

11 2009/10/22



on Opearting Systems Design & Implementation, pages 18–
18, Berkeley, CA, USA, 2004. USENIX Association.

[3] P. Bodı́k, A. Fox, M. I. Jordan, D. Patterson, A. Banerjee,
R. Jagannathan, T. Su, S. Tenginakai, B. Turner, and J. Ingalls.
Advanced tools for operators at Amazon.com. In Hot Topics
in Autonomic Computing (HotAC), 2006.

[4] P. Bodı́k, M. Goldszmidt, and A. Fox. Hilighter: Automat-
ically building robust signatures of performance behavior for
small- and large-scale systems. In A. Fox and S. Basu, editors,
SysML. USENIX Association, 2008.

[5] M. Y. Chen, E. Kıcıman, A. Accardi, E. A. Brewer, D. Pat-
terson, and A. Fox. Path-based failure and evolution manage-
ment. In Proc. 1st USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI’04), San Fran-
cisco, CA, March 2004.

[6] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating instrumentation data to system states: A build-
ing block for automated diagnosis and control. In Proc. 6th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 2004), San Francisco, CA, Dec 2004.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox. Capturing, indexing, clustering, and retrieving system
history. In A. Herbert and K. P. Birman, editors, SOSP, pages
105–118. ACM, 2005.

[8] B. Cook, S. Babu, G. Candea, and S. Duan. Toward Self-
Healing Multitier Services. 2007.

[9] S. Duan and S. Babu. Guided problem diagnosis through ac-
tive learning. In ICAC ’08: Proceedings of the 2008 Inter-
national Conference on Autonomic Computing, pages 45–54,
Washington, DC, USA, 2008. IEEE Computer Society.

[10] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgo-
van, G. Nichols, D. Grant, G. Loihle, , and G. Hunt. De-
bugging in the (very) large: Ten years of implementation and
experience. In 22nd ACM Symposium on Operating Systems
Principles (SOSP 2009), Big Sky, Montana, Oct 2009.

[11] M. Goldszmidt, I. Cohen, S. Zhang, and A. Fox. Three
research challenges at the intersection of machine learning,
statistical inference, and systems. In Proc. Tenth Workshop on
Hot Topics in Operating Systems (HotOS-X), Santa Fe, NM,
June 2005.

[12] S. Guha and A. McGregor. Stream order and order statistics:
Quantile estimation in random-order streams. SIAM Journal
on Computing, 38(5):2044–2059, 2009.

[13] K. Koh, S.-J. Kim, and S. Boyd. An interior-point method
for large-scale L1-regularized logistic regression. Journal of
Machine Learning Research, 8:1519–1555, 2007.

[14] N. Lachiche and P. Flach. Improving accuracy and cost of
two-class and multi-class probabilistic classifiers using roc
curves. In 20th International Conference on Machine Learn-
ing (ICML03), 2003.

[15] M. Massie. The ganglia distributed monitoring system: de-
sign, implementation, and experience. Parallel Computing,
30(7):817–840, July 2004.

[16] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupamn, and

N. Treuhaft. Recovery oriented computing (roc): Motivation,
definition, techniques, and case studies. Technical report, UC
Berkeley, March 2002.

[17] S. Pertet, R. Gandhi, and P. Narasimhan. Fingerpointing cor-
related failures in replicated systems. In SYSML’07: Proceed-
ings of the 2nd USENIX workshop on Tackling computer sys-
tems problems with machine learning techniques, pages 1–6,
Berkeley, CA, USA, 2007. USENIX Association.

[18] J. A. Redstone, M. M. Swift, , and B. N. Bershad. Using
computers to diagnose computer problems. In 9th Workshop
on Hot Topics in Operating Systems (HotOS-IX), Elmau, Ger-
many, 2003.

[19] P. Reynolds, J. L. Wiener, J. C. Mogul, M. A. Shah, C. Killian,
and A. Vahdat. Experiences with pip: finding unexpected be-
havior in distributed systems. In SOSP ’05: Proceedings of
the twentieth ACM symposium on Operating systems princi-
ples, pages 1–2, New York, NY, USA, 2005. ACM.

[20] D. Woodard and M. Goldszmidt. Model-based clustering for
online crisis identification in distributed computing. Technical
report, Microsoft Research, 2009.

[21] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie.
High speed and robust event correlation. Communications
Magazine, IEEE, 34(5):82–90, 1996.

[22] M. Young and P. T. Hastie. L1 regularization path algorithm
for generalized linear models, 2006.

[23] C. Yuan, N. L. J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and
W.-Y. Ma. Automated known problem diagnosis with event
traces. In EuroSys 2006, Leuven, Belgium, April 2006.

[24] J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model
for online document clustering with application to novelty
detection. In L. K. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems 17, pages
1617–1624. MIT Press, Cambridge, MA, 2005.

[25] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.
Ensembles of models for automated diagnosis of system per-
formance problems. In 2005 Intl. Conf. on Dependable Sys-
tems and Networks (DSN 2005), Yokohama, Japan, June 2005.

12 2009/10/22


