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Woodard and J. S. Rosenthal

List of Symbols

Here is a list of symbols used in the main manuscript and in this Web Appendix.

w: fixed motif length.

L: length of the observed nucleotide sequence S.

M: known number of nucleotide types (typically =4 in practice).

J: number of motifs in the generative model (defined in Assumption

po: fixed motif frequency in the inference model (defined Section .

S = (S4,...,5L): observed sequence of nucleotides (defined Sec. [2.1)).

A = (Ay,..., Apj): unknown vector of motif indicators (defined Sec. 2.1)).

X = {0, 1}/*: space of possible values for A (defined in Sec. .

0o: unknown length-M vector of background nucleotide frequencies (defined Sec. [2.1]).

0., = (64,...,0,): unknown matrix of position-specific nucleotide frequencies within
the motif, where 8 has length M (defined Sec. [2.1)).

N(A°); N(A®); N(S): length-M nucleotide count vectors defined in (2.1]).

A_y: vector A with ith element removed; Ao, Ajq: vector A with ith element
replaced by 0 or 1, respectively.

Bo,B1,---, B, fixed length-M vectors of constants (hyperparameters) used in the
prior distribution of 8., (defined Sec. .

p1,--.,py: as part of the generative model, the frequencies of the different “true” motifs
(defined in Assumption [3.2)).

0;: as a part of the generative model, the true value of 8, (defined in Assumption [3.2).



e 6" :je{l,...,J}: as a part of the generative model, the multiple “true” values of
the matrix 6., (defined in Assumption .

e Gap(T): the spectral gap of a transition matrix T (defined in Section [2.3).

e 7(...): the likelihood, the prior, or the full, marginal, or conditional posterior distri-
butions of the parameters, as distinguished by the arguments.

e C(A); C(S): length-2" vectors of counts (defined in (5.3) and (5.4))).
e X: space of possible values for C(A) (defined in (5.5))).

e 7(c|S): the marginal posterior distribution of C(A), sometimes written with the de-
pendence on S suppressed (defined in (5.7))).

e T: the Markov transition matrix ([2.6) associated with the Gibbs sampler; T: the
projection matrix (|5.9)) associated with the summary vector C(A).

C.2 Proof of Lemma [3.1]
For notational simplicity we give the proof for the case M = 2. With this choice, recall from
that the free parameters in 6., are 6, € [0,1] for £ € {0,...,w}, so we can write
HO:w S [0, 1]w+1 and 01;w € [0, 1]111

Let ) p; be shorthand for Z}]:1 p;. Define

ST LR [ L |
By Assumption 051 € (0,1), pj >0,and Y p; <1, s0
¢ € (0, min{6,,1—6;,}). (C.2)
Using , define
¢ 2 (pfaymxtiioriel < 414 < 1/4, (C.3)

The constants ¢,( € (0,1) do not depend on w. Then, for any w € {1,2,...} and j €
{1,...,J} define

H), 2 {61, €0,1]V ¢ |04 — 017] < ¢ VEE{1,...,w}}. (C.4)
quu é {00:10 € [07 1]w+1 : elzw S Hq};a 00,1 € [gb - Cv 1— ¢ + C]} . (05)
Since ¢ — ¢ > 0, the interval [¢p — (,1 — ¢ + (] is bounded away from zero and one. By
Assumption for w large enough and all j,7" € {1,...,J} with j # j’ there is some

ke {l,...,w} such that £ # ¢/ . For this k we have Oy =1— Gi?{, SO |9ﬁ<1 — Hi/’ﬂ =1>2C.
So BJ and BJ are disjoint.



Next we find a point 9820 € B,, such that supyp 1 < n(@éll)u) Then for any j # 1,
308{30 € Bj, with sup,g n < n(@éjzu) by symmetry, showing that 1' holds.

Also define

hw<00:w) £ Z [pl H eli:ksk] log [po H ek,sk]
k=1 k=1

se{1,2}w
J w w w
T3 SR Dol | CARRIES w7} ) (N 14 [ER) 1 O
se{1,2}v Lj=2 k=1 k=1 k=1
(C.6)
and note that
OB, = cl(B,,) N cl([0,1]"*\B)) C B, (C.7)
since B. is closed. By (C.4)-(C.5),
OBy, C {00 1001 € {0 — ¢ 1 =0+ 3} U {00 Tk |0k — 0,5 =C} (C.8)

Lemma below shows that A, (0., is maximized at (8, 0%,) € Bl for some ;. We will
show that

inf | Elog f(s|(60,01%,)) — Elog f(sl60u)|  >0. (C.9)

00:w EBB}U

Lemma shows that 3b > 0 such that for any w,

inf [hw(éo, 9l ) — hw(OOZw)} >b>0. (C.10)
OO:weaBllu ’
For any constants ay, as, by, by we have that a; — as > by — by — |a; — by| — |as — bs|. So for

any 00:111 € 835),
Elog f(s|(0,01%,)) — Elog f(3]00.s)

> hw(ém gi*w) - hw(ao:w> - ‘Elog f(SKéO’ Hi*w)) - hw(é()? oi*w)|
— [ Elog £(s/00u) — huw (80|

Combining this with (C.7)), (C.10), and Lemma below, for w large enough and any
0¢.., € OB.

Elog f(s| (0o, 01,)) — Elog f(s]60p.) > b—b/4—b/4  =b/2.
So (IC.9) holds for w large enough, proving Lemma [

Finally, we give the results used in the proof of Lemma [3.1]
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Lemma C.1. Under Assumptions for any w the function h,(0¢.,) defined in
is mazimized at (8o, 0%,) where
w(l =3 pj) 05, + Z;-Izg Pi Yo 00
w(l—p1)
€ [p,1— 4] (C.11)

) A
001 =

Also, using the definitions and , Equation holds for some b that does not

depend on w.

Proof. For s € {1,2}* and m € {1,2} let #{sx = m} denote the number of indices k €
{1,...,w} for which s = m. Then

) l{s =1} ]-{s =2}
—hw 0 u) - 6 / b - k k € 1, <y
89k,1 ( 0: Z [pl H k sk/] [ Qk,l 1-— 01@1 { w}
_ plek,l B p1(1 - ellc:kl) (C.12)
Ok 1 — 0k

B " s =1 sk =2}
anIh 00w Z[;pﬂnngkJr 1—Zp] He[)sk] |: 90’1 B 1—(9071 :|

S

J
= bon <ZPJ >0+ w(i - Zm)%) (C.13)
j=2

e (Zm S o) + w1 =3 )1 - ez;,n) .

j=2 k=1

Setting this equal to zero and solving for 6y, and 6y, shows that h,(6o.,) has a stationary

point at (90,01* ). Using 1) 9071 € [p,1— ).

Note that Wh (0p.,) = 0 for any k # k', that ﬁgemhw(e&w) = 0 for any k, and
that
0? pifiy (1 —6:%) "
—89]% 1hw(001w) = — 9]%]?1 _ (1 — ek f)IQ < plek 1 pl(]- — 9]}:71) = —D1 (014)
82
nghw(‘%w = - ZP] 29 w(l =" p)bs,
1 R .
B (1—0p.1)2 (ij Z(l - 951) +w(l— ZPj)(l - 63,1))
0,1 =2 k=1
<-—w(l-p) <=1 —-p) (C.15)



S0 hy(Bo.) is maximized at (6, O1%).

To show the second part of Lemma , recall . We first address 6., such that
6p1 =1— ¢+ (. Using (C.13) we have %hw(e&w)
0., such that 6y =1— ¢+ (,

= 0. Applying (C.15)), for any

0o,1="00,1

0

g d
9001 N

0o,1=2

1—¢p+¢ z 82
- _hw 0 1w
/9:0’1 é071 69%,1 ( ° )

<—(1—p)A—9¢+C¢—01)%/2 < —(1—p)C%/2. (C.16)

) 1=6+¢
o (B0e) — Froo(B, O1.) = /

00,1

hw (00:111)

dwdz

0o,1=w

By (C.12), for any fixed value of 8, the function h,,(0y.,) is maximized at (8, 8}%,). Com-
bining with (C.16)),

[hlB0,6%,) = hu@0)| = inf [ h(80,61,) — hu(65,61,)]

60.:00,1=1—0+( 60..,:600,1=1—0+(C

> (1—-p1)¢*/2 (C.17)

which is positive and does not depend on w.

Analogously, for 8., such that 6,1 = ¢ — ¢ we have

podB [ 1(80.01) — hu(B0.0)] > (1= p)C/2. (C.18)

Using the analogous argument to handle the case where 3k : |61 — Qij‘l| = (, and combining

with (C.8)), (C.17)) and (C.18]) yields ((C.10|). This proves Lemma . O

Lemma C.2. Under Assumptions and using the definitions and ,

sup |E10g f(S|00:w) - hw(OO:w)| ’Uﬂo 0 (Clg)

BO:weB}U
Proof. Using Assumption , [Ty 045, = 1ifs =ty and [, 6;% =0 for all other s €
{1,2}*. Combining with (2.8 and (3.3)), the first term of E'log f(s|0o..,) = >, ge*(s) log f(s]|00:.)



is
Z [Pl 1T k] log f(s[00:w) (C.20)
= p1log [po H ek,t}c + (1 = po) H eo,ti] .

k=1 k=1

We have that

log [po H Or41 + (1 = po) H eo,ti] — log [po H 9,%16] > 0. (C.21)

k=1 k=1 k=1

Also, using (C.3))-(C.5|) and the fact that 6*

k,t}

=1foral ke{l,..., w},

1-— Y0 _ _ w
sup ( pO)wkal 0.th < (I=p)A =0+ w00
00weBl P01 Ort po(1 =)

sincel—¢o+(<1—-C(. So

sup <log [po H O + (1 — po) H QO,ti] — log [po H Qk,tk] )

GO:weB}U

k=1 k=1 k=1
(1—po)(I =0 +)" ] woo
<log [1 + — 0.
po(l Q)
Combining with (C.21)),
sup  |log [poHQk i+ (1= po Heo t1] — log [ponek,ti] =0,
Oo:wEBy, k=1 k=1 k=1

So, using ((C.20)),

sup
90:w eBllu

> [pl 11 9,1;] log f(s]60:w) = Y _ [m 11 e,ij;k] log [po 11 ek]
s s k=1 k=1

k=1

=0. (C.22)

Next we approximate the middle terms of ) ge+(s) log f(s|0¢..,). Using (2.8), (3.3), and
Assumption they are of the following form for j € {2,...,J}.

> [pj 11 Qf:sk] log f(s[60..) (C.23)

s k=1

= p;log [po Heki?; + (1 —po) H 6’0’%

k=1 k=1



We have that
log | po H Gk,ti + (1 — po) H 907%] — log [ (1 —po HHO t]] (C.24)
k=1 k=1 k=1
Let #{t] = t.} indicate the number of indices k € {1,...,w} for which # = ti. Using
C.4)-(C.5) and the fact that ¢,*, = 0 for all k such that t] # ti, we have that
g

pollies ek,ti po¢H Al
sup ™ < =
60.wE€B), (1 —po) Hk:l eo,ti (1 —=po)(¢—¢)
Combining this with Assumption and ((C.3), for all w large enough

“up Po I Tz O < po¢/?
00 EBL, (1 = po) HZ}:1 eo,ti ~ (1 =po)(g— Q)
po(p/4)* w00
~ (1 =po)(¢— Q)

since ¢/4 < ¢ — (. So

6Sug91 (log [pOHQk:,ti H OtJ] —log [ (1 _pO)HHO,ti])
0:w w k=1

k=1 k=1

po(¢/4)" w—00
<tor | S | ! 2

Using ((C.24)) and ((C.25)),

log [po H ek tJ H 90 t]] log [ (1 —po) H eo,t{;]

k=1

w—00

sup — 0.

Bo. wEBl

Combining with (C.23)), for j € {2,...,J}

Z [pj I1er, ] log f(s160.0) — [pj He;’j;k] log [(1 — o) Heo,sk]
s k=1 k=1

=200. (C.26)

sup
60w EB}U

Finally we address the last term of term of Y__ ge-(s) log f(s]60..,). Using (2.8) and (3.3)

it is
[ (1- ZPJ Heﬂsk] log f(s]@o.w)
Z [ 1=> ]l 93,4 log [po [T0ks + (1 =po) [T 005, ]| - (C.27)
k=1

k=1 k=1



We will show that a subset of sequences s can be omitted when considering . Denote by
F(z;n,q) the cumulative distribution function of a Binomial(n, ¢) random variable, evaluated
at z € R. Fors € {1,2}" recall that #{s;, # t}} denotes the number of indices k¥ € {1,...,w}
for which sj, # t;. Define

Dy 2 {s: #{sk # t;} > wp/4}. (C.28)
Then

> [ﬁ@ask]

s€D,, Lk=1

> max 3 [f[ Hé,sk] , > [f[ QS,sk]

si#{sp#tL, ti=1>we/4 Lk=1 si#{sp AL, th =2} >we/4 Lk=1

- 3 [ﬂ egﬁsk] , 3 [fw[ eg,sk]

sif{sp=2,t1 =1}>wep/4 Lk=1 sif{sp=1,t1 =2} >wep/4 Lk=1

— max {1 — F(wg/d; #{th = 11,1 —65,), 1— F(wo/4; #{th = 2},6;) } (C.29)

For fixed x, F'(x;n,q) is monotonic nonincreasing in n and ¢. Using (C.2)) and (C.29)), since

¢ <min{f,,1—0;,} and w/2 < max{#{t; = 1}, #{t;, = 2}}, we have the following.

> [H ea,sk] > max {1 - F(wo/4 #{th = 1},0), 1 F(wo/4 #{t} =2},0) }

— 1 F (wo/4; max {#{t} = 1}, #{t} =2} }.0)
>1—F(wp/4; w/2,¢). (C.30)

Using the normal approximation to the binomial distribution, the quantity F' (w¢/4; w/2, )
decays exponentially in w. So by ((C.30)), the sum

> [ﬁ 937%] =1-> [ﬁ 93,%] (C.31)

s¢Dy Lk=1 s€D, Lk=1



decays exponentially in w. Using this fact and (C.5)),

w

sup
BO;U,EB}U SQDM k=1
< sup [Z (1-— Zp] HQSSk] ‘minlog [(1 —pO)H907sk]
90:11)63111; @Dy, k=1 k=1
ll—ij Z HQOSk] | log [(1 = po)(¢ — ¢)"] |
s¢ Dy, k=1
0.

Using (C.3)-(C.5) and (C.28)), for 8., € B} and s € D,,,

Po [T s poCHinFti}
(1= po) [T=1 o5 — (L —=po)(¢ —()*
- poCe/t
(1 =po)(e— Q)"
p0(¢/4)w w00

~ (1 —=po)(¢— Q)

uniformly over 6y.,, € Bl and s € D,,, since ¢/4 < ¢ — (. So

s€Dy, k=1 k=1 ) k=1
-y [(1 ) H Osk] log | (1 —pg)Hﬁoysk] ey
L k=1

SEDy,

uniformly over 6y.,, € BL. Also, using an analogous argument to ((C.32)),

Sup Z 1 o Zpﬂ HGO Sk log [(1 —po) HQO’Sk] — 0.
eo;wGB}U sZD., _
Combining (C.32))-(C.34),
sSup Z [ 1 - ij HQO sk] lng |00:w>
BO:weB'Llu
-y [(1 -> ) Heask] log [(1 — Po) Heo,sk] 0.
s k=1 =

Z [(1 - ZPJ H Osk] log [po Hek,sk + (1= po) Heﬂ,sk]

(C.32)

(C.33)

(C.34)

(C.35)

Putting together the results (C.22)), (C.26]), and (C.35) for the various terms, we have

that > ge~(s)log f(s|@¢.,) converges to hy,(0o.,), uniformly over 0., € Bj,.

O



C.3 Proof of Theorem 3.3

For simplicity of notation we state the proof for the case M = 2 and (,, = 1 for all k,m,
although the proof is analogous for any other choices of these constants. Recall the definitions

of C(A), X, 7, D, and T from Equations (5.3), (5.5), and (5.7)-(5.9). In the case w = 1 and

M = 2 the vector C(A) € X only has two elements, n = C(A); and r = C(A),. So we write
7(n,r), suppressing the dependence of 7 on S. Using , T(n, 1) = X a.c(a)=(nr) T(A[S).
Since D,y = {A € X : C(A) = (n,7)}, let |D(,,y| be the cardinality of Dy, ,) and note
that | D, | = (N(ns)l) (N(TS)Q). Using we have |A| =n+7, N(AW), =n, N(AW)y =1,
N(A°); = N(S); — n, and N(A®)y = N(S); — r. Then 7 simplifies as follows, using (2.5)):

Lon—r LN (S)1 =1+ Bo )T (N(S)2 — 7 + Bo2) T(n + S1)T(r + fra)

(n, 1) o< [ Dy g™ (1

— Do)

(L —n—r+[B) L(n+r+1[84])
_ . o 2D(N(S) =+ DT(N(S)y — 7+ 1) T(n + DI(r + 1)
Deanlps™ (1= o) T(L—n—r+2) T(n+r+2)
B N(S),! N(S),! ety Iner
= A(V(S), )] <r!(N(S)2 = r)!) po (1= po)
(N(S); —n)(N(S)y —7)!  nlr!
(L—n—r+1)! (n+r+1)!
ISl b 1) i (C.36)

(L—n—r+1)! (n~|—r+1)

This is a function of (n + r) only; 7(n,r) is also unimodal in (n 4 r), shown as follows. The
ratio

(C.37)

- n—+r-+2

an+1,7) @(n,r+1)  po L—n—r+1
a(n,r) @) 1-po

is > 1iff n+r < poL + 3py — 2, showing that 7(n,r) is unimodal in (n + r).

Using and , in each iteration of T' the quantity (n+r) can only be incremented
or decremented by one. Using we have that incrementing or decrementing (n + ) by
one changes 7(n,r) by no more than a factor of

dgémax{L_n_r+1 n+r+2}

TR = O(L). (C.38)

We will find a lower bound for the quantity d defined in - by defining a path 7e, c,
in the graph of T for every pair of states c;,cy € X. We will construct the paths in such a
way that for any state ¢ € 7¢, ¢, we have 7(c) > min{7(cy), 7(cz)}/ds. Denote ¢y = (ny,r1)
and ¢y = (ng,r2). If ny < ny and r; < ry, then construct the path by first increasing the
first coordinate n from n; to ng, then by increasing the second coordinate r from ry to rs.
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Along this path, n + r increases at every step. Since 7(n,r) is a function only of n + r and
is unimodal in n + r, we have that for states (n,r) along the path,

7(n,r) > min{7(ny, ), 7T(ne, r2)} > min{7(ny, 1), 7(ne,re)}/ds.

The case where ny > no and r; > ry is analogous, since we can construct a path in the
opposite direction as above. Now consider the case where n; < ny and r > 7o (the case
ny > ng, r1 < 1o is equivalent). Starting at (ny,71), first decrement r by one, then increment
n by one, and repeat until either » = r5 or n = ny. Notice that so far n + r has changed by
at most one, so that 7(n,r) has changed by at most a factor of dy. At this point, if r = 7y
then increase n until n = ny, or if n = ny then decrease r until » = ry. Any state (n,r)
along this path satisfies 7(n,r) > min{@(ny,r1), T(ns,r2)}/d> as desired. Using (C.38), the

quantity d defined in (5.11)) satisfies d~! = O(L). Combined with (5.13)) and Proposition
this proves Theorem O

C.4 Verifying the Assumptions of Theorem
By A is a Borel set, and Int(B;) is a Borel set for j € {1,2} because it is open. So the
spaces A; for j € {1,2} are Borel subsets of the complete, separable metric space R**! as
required. Also, f(s|0.,) is measurable jointly in s and 8., since it is a continuous function
of 6., and since s takes a finite set of values. Of course, A; might not be connected, in
which case f(s]6y.,) being continuous simply means that it is continuous on each connected
component of A;. Assumption 4 of Theorem is satisfied since 7(0¢.,) = E'log f(s]|0¢..)
is continuous. To show Assumption 2, observe that for all 8y, € A; where j € {1,2},
f(8]60.) > 0 for any s € {1,2}", so G{s € {1,2}" : f(s]|0p.,) > 0} = 1 as desired.

To show Assumption 3 for A;, take any compact F' C A;. We claim that there is some
¢ € (0,1) such that

Foc ([61=¢>[0,1]") U ([0,1] x [(, 1 =¢]*) \ Int(Bs). (C.39)

Otherwise, there is some sequence {Hézq)v : ¢ € N} such that lim,_ 6(()2 € {0,1} and 3k €
{1,...,w} such that lim,_, 9,201 € {0,1}. Since F'is compact these points must have a limit
point 0y, € F C A;. Then §071 € {0,1} and 9~k71 € {0,1} which is a contradiction.

By (C.39), for any 8., € F and any s we have f(s]6¢.,) > min{po, 1 — po}¢*. Then

E sup |log f(s|60.)] < sup |log f(s]00.w)]
60.wEF s€{1,2}%,0¢..,EF
< —log [min{pg, 1 — po}¢*] < 0.

To show that Assumption 5 is satisfied for Ay, it is sufficient to consider values of r € R
for which r < (log 3)(ming g(s)). Let ¢ = exp{ i@}y so that ¥ € (0, 3). Then define

D = A\D¢ by letting D° be the compact subset

D¢ = ([,1 — ] x [0,1]*) U ([0,1] x [, 1 —¢]*) \Int(By)  C Ay,
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We will define a cover Dy, ..., Dk of D such that (A.1]) holds. Define

Dioo = {000 € [0, 1] : 051 € 10,9) A Op1 €[0,7)} ke{l,...,w}
Di1o = {00. € [0, 1] 1091 € (1 =9, 1] A O)1 €[0,9)}

Dior = {00. € [0, 1] 1 051 € [0,9) A Oy € (1 — 2, 1]}

D11 = {000 € [0, 1] g1 € (1 —4p, 1] A Oy € (1 — 2, 1]}

For all 8., € D we have 6y € [0,9)U(1—1,1] and 3k € {1,...,w} : 61 € [0,9)U(1—1, 1].
So

D C Uy (Droo U Diio U Doy U Dyan) -
Since log f(s|6@o.,) < 0, for any k € {1,...,w}
E sup log f(s|€0o.w) < g(t) sup log f(t|600.) where t = (1,...,1)

00:wEDkoo 600.wEDioo
< g(6)log [pow: + (1~ po)¢] < [ming(s)| logw =,
Also,
E sup log f(s|€@o.w) < g(t) sup log f(t|60.w) where t = (1,...,1,2,1,...,1)
60:wE€Dio1 00:wEDyo1 1:611_6/8
< [ming(s)| log [pow + (1 = po)v] =7

Analogously, Esupg,  cp,,, 102 f(s|00.w) < 7 and Esupg,  cp,,, l0g f(s|0o.w) < 7, showing
that Assumption 5 holds for A;. Since Assumptions 3 and 5 hold for A;, they hold for A,
by symmetry.

C.5 Proof of Theorem [5.3

Assume that there exist € > 0 and By, By C [0, 1]*™! separated by distance € such that the
ratios in decrease exponentially in L, and take F, F5 as in Proposition below.
Letting c¢; be a maximizer of 7(c|S) over ¢ € Fj, and ¢y be a maximizer of 7(c|S) over
¢ € F and using Proposition [C.I], for all L large enough

T(£[S) | m(F3[S)

max{7(c[S), 7(c2/8)) > 1 (<(@r]$) + 7(cs/8)) >

2| Fi| 2| Fy|
1 1
> —— (7(Fy|S T(F3|S C.40
Combining with the fact that any path from c; to ¢ must include a state in (F} U F)€,
max min 7(C|S) < max min 4|£| ﬁ( |S)
v€le; ey €7 T(C1]|S)T(C|S) ~ v€ley.e; c€v min{7(cy|S), 7(c2|S)}
_ L AXA(ls)

ce(Fl_UFz)C min{7(c;|S), 7_T(02|S)}_
4X| 7 ((Fy U Fy)©|S) 41X)? 7 ((Fy U F»)°|S)
~ min{7 (¢1|S),7 (c2|S)} ~ min{7 (F1|S),7 (FL|S)}

<
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Since |X| grows polynomially in L (using (5.10))), and using Proposition the quantity d
decreases exponentially in L. [J

Proposition C.1. If there exist € > 0 and two sets By, By C [0, 1] separated by Euclidean
distance € such that the ratios in decrease exponentially in L, then there are two sets
F\,F, C X such that:

1. For any c; € Fy and co € Fy, any path from c; to co must include a state ¢ & (F1UF3).

2. The quantities

7 ((F1U Fy)°[S) wnd T ((F1U F)°lS)
7 (F1|S) 7 (F3|S)

(C.41)

decrease exponentially in L.

Before proving Proposition we need a few preliminary results. The notation 9 means
independently distributed as.

Lemma C.3. For any measure v(dz) and nonnegative functions a(z) and b(z) on a space
z € Z,

Ja(z)

Jalvldz) g az)

[o(z)ldz) = 2= b(z)

where the ratio inside the infimum is taken to be = oo whenever b(z) = 0.

Proof. We have

[ a(z)v(dz) - J(inf,, ‘;((Zj;)b(z)u(dz) _ . ca(w)
- Jb(z)v(dz) w b(w)’

Lemma C.4. Regarding the density of the Beta(a,b) distribution, where a,b > 1:
1. The density is unimodal if a +b > 2 and constant on [0,1] if a + b = 2.
2. A global maximum of the density occurs at

. ai;; a+b>2

0 a+b=2.

13



3. For X ~ Beta(a,b) and any ¢ > 0, Pr(X € [* — (,z* 4+ (]) > min{(, 1}.

Proof. The first two statements are well-known. To show the last, assume WLOG that
x* < 1—2a*. We handle three cases separately: ( < z*, ¢ € (z*,1 —2*], and {( > 1 —2*. For
¢(>1—2a% Pr(X € [z" — (,2* + (]) = 1 so the result holds trivially.

For ( < z*, letting f(z) indicate the Beta(a,b) density and using Lemma and the
fact that f(z) is monotonically nondecreasing for z < x* and monotonically nonincreasing

for x > x*,

Pr(X € [z* — (,2* + (]) faf—( f(z)dz + f;ﬂrg f(x)dz

PrX ¢ [vr = Car+ ) [ fla)da + [, f(2)da

N fa* = OC+ flat + )¢
S FE Q@ =+ f@ O -7 = Q)

: ¢ ¢ ¢
me{x*—c’l—x*—c}z ¢
So Pr(X € [z* — (,2* 4+ (]) > (.

Finally we address ¢ € (z*,1 — z*]. Then

Pr(X € [z* — (, 2"+ (]) > f;ﬂrc f(x)dx
Pr(X ¢ [vr =G+ () ™ [ f(z)do
fa O ¢
T @+l et —¢) T 1-¢
as desired. ]

Lemma C.5. For any ¢ > 0 and any K € N the following holds for any D1, Dy C [0, 1]%
that are separated by Euclidean distance > ¢. Let X; "o Beta(ag, b)) for k € {1,..., K},
where ay, by > 1. Assume that the mode x* = (x7,..., %) of the probability density function
f(x) of X = (Xy,...,Xk) satisfies x* € Dy, where x}, for k € {1,..., K} are the modes of

- iy . Pr(XgpuDs) ( ¢ )K“
the univariate Beta densities as defined in Lemma|C.4|. Then PrxeDs) > VT .

Proof. Consider the pdf f(x) along any line segment originating at x*. This density is
monotonically nonincreasing with distance from x*. For any set D C [0, 1] one can calculate
the integral [ p J(x)dx by first transforming to spherical coordinates, where the origin of the
coordinate system is taken to be x*. In this coordinate system let ¢ denote the (K — 1)-

dimensional vector of angular coordinates, and p > 0 denote the radius, i.e. the distance
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from x*. Let h(p, ¢) be the (invertible) function that maps from the spherical coordinates
to the Euclidean coordinates. The Jacobian of the transformation h takes the form pg(¢)

for some function g. So for any D C [0,1]% we can write

[ s = [ (0,900 o(8)dpies

In particular (using Lemma ,

Pr(X & Dy UD,y)  Juiqpwumay) [ (hlp, @)p™ g(d)dpdep
Pr(X € Dy) fh— (D) f (p, @)™ g(@)dpdg
_ S Wnppyemionaef (hp, #))p" dp] g(¢)dep
I L Ynippyens f(h(p, @) pXdp] g(p)dep
> inf f 1n(p,¢)e(D1UD)e < f(h(p, ¢))PKdP
¢ [ Lnppen.f(h(p, d))pKdp

where we consider the ratio inside the infimum to be = oo if the denominator is zero. Then

Pr(X ¢ DiUDy) . . J52 Lnogyemiopaye f(h(p, @))p™ dp
PI’(X S DQ) - f 1h(ﬂ¢ 6D2f(h(p7 d)))pde

f§/2 h(p,$)€(D1UD2)¢ <f(h(p, ¢>>pde
VK
v Jo " Vnio e, f(h(p, B))pdp
K VK
¢ . fg/Q 1h(p,¢)€(D1UD2)Cf(h(P> ¢))dp
i) W |
2 fO 1h(p,¢)€D2f(h(p7 ¢))dp
For any fixed ¢ for which 0 # fo ip.p)eDz f (R(p, @))dp, there is some p such that h(p, @) €
D,. Since x* = h(0,¢) € D, and since D; and D, are separated by distance (, there must

v

(C.42)

be an interval [p1(¢), p2(@)] C [0, p] of width at least ¢ such that any p € [0, p1(¢)] satisfies
h(p, @) & Dy and any p € (pi(9), p2(@)) satisfies h(p, @) € (D1 U Do)°. Using (C:42) and

since f(h(p, @)) is monotonically nonincreasing in p,

PXEDIUDY (S )Kinf estesznion (1. @))dp
X e D) TARS e 1o 9)dp

> (L>Kinf Iﬁzi{C/Qpl }f< (p2(9), @))dp
T\WE) e PR h(pa(@). 8))dp

i)™
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]

Lemma C.6. Fork e {1,..., K} let Xj " Beta(ay, by) where ag, b, > 1. Then for any set
D C [0, 1]% with positive Lebesque measure (A\(D) > 0) and any ds3 > 1,

inf Pr(Xe D) >0

a1,bi,....,ax,bx €[1,ds]

where X = (Xq,..., Xk).

Proof. Since A\(D) > 0, there is some ¢ € (0,1/2) such that the set D=Dn [

satisfies A(D) > 0. Letting f(z) indicate the density of any Beta(a,b) distribution where
a,b € [1,ds], and using Lemma

infme[c,lfd f(l’) _ mln{f(()7 f(l - g)}
sup, f () fG55)
Ca+b_2(a +bh— 2)a+b—2

= (a— 1) (b— 1)1

Z <a+b72 Z C2d372

Now letting f(x) indicate the function on x € [0,1]% that is the product of Beta(ay, by)

densities where ay, by, € [1,d3],

infxe[Ql—C}K f(x) > CK(2d372)_

sup, f(x)
So
Pr(X € D) . Pr(X € 1:)) . A(D) infxeiga—gr f(X) . A(D)gmfs—% (C.43)
Pr(X € DY) ~ Pr(X e D7)~ (1-A(D))sup, f(x) ~ (1—A(D))
which is strictly positive and does not depend on {ay,, by }5_,. Il

Lemma C.7. Let X}, " Beta(ag, bg) for k € {1,...,Q} where Q € N and ag, by, > 1. Also
let 7 be the global mode of the density of Beta(ak,by) as defined in Lemma[C.4| Let B(x,0)
indicate the ball of radius § > 0 centered at a point x € [0,1]9. Then for any fived § > 0,
d3 > 1, and K € {1,...,Q},

inf inf inf Pr(X € B(x,9)) > 0.
ak,bke[l,dg]Zkzl ..... K ap,bp>1:k=K+1,..., Q XE[O,l]QIkIQTZ,k:K+1 77777 Q
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Proof. Take a hypercube H(x, ) centered at x and with some fixed side length 26; € (0, 1]
for which H(x,d) C B(x,0). Then

inf inf inf Pr(X € B(x,9))

1 1
ag,br€[l,d3]:k=1,... K apbp>L:k=K+1,..,Q x€[0,1]9:zp=x} k=K+1,...,.Q

> inf inf inf Pr(X € H(x,9))
ak,bke[l,dg]:k‘:1 ..... K ap,bp>1:k=K+1,..., Q x€[071}Q;mk:xz,k:K+1

K Q
=[] inf inf Pr(Xy € [wx — 6,2+ 01))| J[ inf Pr(Xy € [z} — 1, f +61)).

b 1,d: 0,1 ap,bp>1
p Ok k€[1,d3] zr€[0,1] R 1 PR

(C.44)

By Lemma , the second product in this expression is bounded below by 5?71{. To bound
the first product in ((C.44]) we will use the explicit lower bound given in the proof
of Lemma , applied to the single variable X; where k € {1,..., K}. Here we take the
set D = [z}, — 01,25 + 6] N[0,1]. Let ¢ = & so that D = DN [%,1 — %]. Noticing that

2 2
D) > %1, the bound {D gives

P D) | (90 ()
PG D) T 1-F T ()

So Pr(Xy € D) > (%)(2d3_1); applying this method for each k =1,..., K we have that

inf inf inf Pr(X € B(x,9))
ak,bk6[17d3]:k:1 ..... K ag,bp>1:k=K+1,...,Q x€[071]Q;xk:z”;7k:K+1 ,,,,, Q

5.\ K (2ds=1)
> (5) 59K 5 0,

Proof of Proposition Recall the definition (Sec. of B; we will take B, = 1
for k € {0,...,w} and m € {1,2} for simplicity of exposition, although the results do not
depend on this choice. Then the prior for 6., is uniform: m(6g.,) 110, €012 +1}-

The quantities N(A®) and N(A°) only depend on A via C(A), due to . Consider
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the conditional distribution m(0y.,|C(A),S), which can be written as follows, using ([2.3)):

T(60:|C(A), S) o< T(Bpw, C(A), 8) o 7(Bo.) 7(C(A)) (S|C(A), Op.un)

[ frae
m=1

Lk=1 m=1

o | [ [ Beta(6r1; N(AW), + 1, N(AW), + 1) | x
Lk=1
Beta(@o’l; N(Ac)l + ]_, N(Ac)g + ].) (045)

where Beta(x;a,b) indicates the Beta density with parameters a,b, evaluated at x. By
Lemma , 7(00.,|C(A),S) is a density with global maximum at 6., where

IN(A®R)]
0 else

N NA®) N AFY > 0
ek,lz{ IN(AT)] ke{l,... w) (C.46)

N(AS), c
6, — | Ao IN(A[>0
’ 0 else.
To complete the notation define 9~k72 =1- ék,l for k € {0,..., w}.
By (C.45) and since |N(A°)| = L — 3", IN(A®)| we have that m(6o.,|/C(A),S) only
depends on C(A) via 0, and [N(AW)| = IN(A@)| = ... = IN(A™)|. So

7r<00:w ‘ B, IN(AM)], s)

= [H Beta(Gk,l; ékyl‘N(A(l))‘ + 1, ék72’N(A(l))| + 1> X
k=1
Beta(eo,l; fo (L — w|N(AD)]) + 1, Gpo(L — wNAD)]) + 1). (C.47)

Using Lemma |C.4{ and regardless of the value of |[N(A®M)], W(BUM ‘ 0.0, IN(AM)], S) has a

global maximum at éO:w-

For our analysis the only relevant quantities regarding C(A) € X will be 0., and
IN(AM)], so we define F;, Fy C X more conveniently as sets of possible values of (..., IN(AM)]),
i.e. values that arise from some state C(A) € X. We will define F} to be a particular set for
which there is some constant d, > 0 satisfying

PI‘ <90:w € Bl U B2 ) éO:w; |N(A(1))|7 S)
éO:wv |N(A(1))|7 S)

> d,. (C.48)

i min
(60:w,IN(AMW) ) Fy Pr<00;w € B

So Fy C X is associated with By C [0, 1]“*! in the sense that it (informally speaking) contains
all the values of (8., IN(AM)|) for which Pr(6., € B | 0., IN(AD)[,S) is much larger
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Figure 1: An illustration of the proof.

than Pr(6o., & B1 U B, | 0., IN(AM)], S). The set F; must have high probability (given
S) in order to explain the fact that the first quantity in decreases exponentially in L.

To begin, recall the definition of € > 0 from Proposition[C.1]} Let E; be the set of all points
x € [0,1]**! that are within distance €/3 of the set By, and let E; be the set of all points
that are within distance €¢/3 of the set By. This is illustrated in Web Appendix Figure .
Then F; and F5 are separated by distance ¢; £ €/3. Let ds £ “)E—Jlrl; since By, By C [0, 1]*!
are separated by distance e, we have that ¢ < v/w + 1 and so

w+ 1 w+1

ds = > > 1. C.49
i €/3 w+1 ( )

Also define

V 2 (8.0, IN(AD))) : max{[N(AD)], [N(AY)|/w} > ds } (C:50)
N {(éozw, IN(AD)]) : if 30, € [0,1] s.t. (B0, B1.) € (Ey U Ey)° then [N(A%)|/w > d5}
N {(éozw, IN(AW)[) : if 301, € [0,1]" s.t. (80, 01.) € (E1 U Ep)* then IN(AW)[ > d5}

Fy 2 { (8o, NAD)) €V : B0, € B} j€{1,2).

0 INAD)[Y) € F to
0w [IN(AM)|2) € F; in one iteration of T'. Since él € E; and 00:w € B, satisfy
Hé(l):w— gsz > €1, we have that 3k € {0, ..., w} such that \91 —92 > o = 4. Wehandle
the four cases: 1. where [N(AM)|! < d5; 2. where [N(A°)|! /w < d5; 3. where [IN(AW)|! >
ds, IN(A°)|'/w > ds and k > 0; 4. where [IN(AM)|' > ds, |IN(A°)|! /w > ds and k = 0.
We assume that it is it is possible to move from (éé:w, IN(AM) ) to ( |N(A(1))| ) in
one iteration of T', and find a contradiction. We use the fact that, by (2.6) and -, in
one iteration of T the vector N(A(k)) can only change by incrementing or decrementing a

First we show that it is not possible to move from any state (

any state (

single element by one, and so [N(A®)| = |N(A®™)| can only increase or decrease by one.
Also, the vector N(A€) can only change by either incrementing its elements by a total of w,
which increases [N(A°)| by w, or decrementing its elements by a total of w, which decreases
IN(A)| by w.

19



IN(AO)[ > 1, s0 [IN(AD)2 > 0. By (C.46
NA®)L N(A®)?

IN(AB)[T - [N(AB)[2

First take the case where [N(AM)[! > d5, [N(A°)|'/w > d5 and k > 0. By (C.49),
|-D

08, — (C.51)

12,1| =

Also, we claim that this is bounded above by m. In the case where N(A®)2 =

N(AM)} +6 and § € {~1,1}, we have N(AF)? > 0 50 N(A®)} > —§ and thus

o | NAOE  N@AE) 4| (NAB) - NAB) ]
T INAD) T INAD) 0| T\ NAD s ) IN@A®)!
o

< = = = .
T IN(AB)[E IN(AR)[
In the case where N(A®)2 = N(A®)L 4§ and 6 € {—1,1}, by using the fact that |9~1 —
]91 —92 \ and applying the above argument we still obtain the upper bound
Comblmng Wlth - we have

A1
|91€,1 -

(k))|

— 92 ‘ < ;
IN(A®W)]!
which is a contradiction (by the definition of k).
Now take the case where [N(AM)|! < ds. Then by (C.50) we must have |N(AC)| Jw > ds.
Also, 00:w € E; and there is no 64.,, such that (00,01:“}) € (Ey U Ey)S, so (00,9 w) € E1.

Therefore the Euclidean distance between (él é? ,) € E1 and (93, éiw) € Ey is > €. This
implies |05, — 63, > € > i. However, by (C.49), |IN(A°)|' > dsw > w, so [N(A°)]? > 0.
Then by (C-10),

—_

10} | _— (C.52)

U
S

’ A)  N(AY)]
IN(A)[T [N(A)]?
Also, we claim that this is bounded above by rz=r. In the case where N(A€)f = N(A¢){+0
and N(A°)3 = N(A®)s+w— ¢ for 6 € {0,...,w},
G 32| = B N(AC)%JH;‘
oL ot |N Ac |1 IN(A)[* +w
_ | wN(A%); - SIN(A)[!
IN(A)[ (IN(A)[* + w)
max {w ([N(A°)|' = N(A)), wN(A)}  _  w
B IN(A)[ (IN(A)[" + w) — IN(A [T
In the case where N(A¢)? = N(A¢)] — § and N(Ac)g = N(A®)S —w+ 0 for 6 €{0,...,w},
6L, — 2| = A N(AC)%—5‘
R e e
| —wN (A% + §IN(A)|!
IN(A)[ (IN(A)[F — w)

|93,1 - 93,1’ =

(C.53)
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This is largest when § € {0,w}. Note that N(A¢)? > 0 and N(A)2 > 0so N(A°)] > ¢ and
N(A°)} > w —§. Using (C.53), when 6 = 0 we have N(A°)} > w and

wN(A);
IN(AS)[F(IN(A)[F = w)
_ w(N(A) = N(A)y) . w
IN(A)[T (IN(A)[F —w) — [N(A9)["

|§é,1 - 5(2),1| =

When § = w we have N(A°)] > w and (using (C.53)))

w(N(A)[' = NA)) _  w
IN(A)[T (IN(A)[F —w) — [N(A)[H

|95,1 - 9(2)71| =

as claimed. So |0, — 62| < NaaE < & which is a contradiction. The case where

IN(AM)|' > ds, N(A)['/w > ds and k = 0, and the case where [N(A¢)|! < dgw, lead to
contradictions analogously to the two cases handled above. So it is not possible to move
from (8, IN(AM)|!) to (., IN(AM)[2) in one iteration of T

Next we show (C.48)). By Lemma|[C.5] (C.47)), (C.50)), and By C E», there is some dg > 0

that depends only on w such that

Pr (00:1,) ¢ B, UB,

éO:wa ‘N<A(1))|7 S)
min

(éo:w,|N(A(1))|)EF2 Pr (00:11) € Bl

éO:wa ‘N(A(l))‘a S>
Pr(@o;w g B1 U BQ

é():un ’N(A(1)> |7 S)

>  min min

 foweB: INAD) Py (eo:w € B \ Oo.0., IN(AD)], S)

Pr(@o:w ¢ Bl U EQ

éO:wa ’N(A(l)”? S)

> dg. (C.54)

>  min min

B B0.w€E2 [N(AM)] Pr<00:w S Bl ‘ éOZwv |N(A(1))|7 S>

Also, by Lemma and F1\B; C (B U By)¢, there exists d; > 0 that depends only on w
such that
. . Pr(eﬂsw ¢ Bl U BQ ‘ éO:wa ’N(A(l))|7 S)
min min =
Bowe(E1UE)e IN(AD)| Pr(80.0 € By | O, IN(AD)], S)
. i PI’(OOzw S El\Bl | éO:wa |N(A(1))|7 S)
> min min =
BoweBs IN(AO) Pr(60g., € By |60, IN(AM)],S)

> dy. (C.55)

Additionally, by Lemma [C.6] 3ds > 0 such that

. . Pr(GO:w g Bl U B2 ‘ éO:UH |N(A(1))’ S)
min min ~
B0 INAD)LNAD) NS /wsds  Pr(6o. € By | 0., IN(AW)],S

)
> min min Pr (0. & B1 U By | 0p.0, IN(AM)[,S) > ds.  (C.56)
B0 IN(AM)EN(AD)||N(A®)|fwds
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Also, for any 6., such that (éo, 01.,) € (F1 U Ey)¢, a ball of radius €1/2 = ¢/6 centered at
(¢, 01.,,) is entirely contained in (B; U B,)°. By Lemma |C.7, 3dy > 0

PI’(O();w Q Bl U BZ | éO:wa ‘N(A(l))‘a S)

i ~ min min - (C.57)

00::3(80,07.,,)E(E1UE2)e IN(AM)|<ds5 Pr(OO:w € By | OO:wv |N(A(1))|7 S)

> min min Pr<90:w € B((8o,0,.,),61/2) ‘éO;W,]N(A(l))],S> > do.
00::3(80,07.,,)E(E1UE2)e IN(AM)|<ds

By the analogous argument, 3d;o > 0

. Pr<00:w ¢ Bl ) B2 ‘ éO:wv |N(A(1))|7 S)
min min =
éo;wla(eg,él:w)e(E1UE2)c IN(A<)|/w<ds Pl"(eg;w € Bl ‘ eo;w, |N(A(1))|, S)

By (C.50)),

(F, U Fy)° :{(éozw, IN(AD)]) : Bgy € (B U By)° v max{|N(AD)|, N(A%)|/w} < d5}

> dy. (C.58)

U {(éozw, IN(AD)]) « [N(A9)|/w < d5 A T s.t. (8, 01.) € (B U EQ)c}
U {(éozw, IN(AD)]) : [N(AD)| < d5 A 301, st (B9, 014,) € (Ey U Ez)c}

and due to (C.55)-(C.58)) we have

min PI"(GQ:U, ¢ Bl U B2 ‘ é():wa |N(A(1))|7 S)
(éo:wa\N(A(U)\)€(F1UF2)C Pr(e(]:w € Bl ‘ 90:107 |N(A(1)>|’ S)

Combining this result with (C.54]) yields (C.48]).
Now we prove the second part of Proposition . Using Lemma [C.3] and (C.45),

> min{d7, dg, dg, le} > 0.

Pr <00:w ¢ Bl U BQ

S, (8., IN(AW]) € Fg)

br (00:w S Bl ‘ S? (éO:wv |N(A(1)|) = F2>

Z(éo;w,|N(A(1)|)EF2 Pr <00:w ¢ B1U By ’ B, IN(AW)], S)W(|N(A(1))|, 60. | S)

Z(éo;w,|N(A<1)|)ng Pr <00:w € Bl ) éO:wy |N(A(1))|7 S)W(|N(A(1))|7 é():w | S)

éO:wa |N(A(1)) ‘7 S)

Pr <00:w ¢ Bl U BQ

> min
(B0:,|N(AMD e Fy Pr<00:w € B

> d,. (C.59)

éO:un |N(A(1))|7 S)
Analogously,

Pr(6p., € B1U B> | S, (000, IN(AV|) & Fy U F.
r(69.0 & B1U By | ~(o. IN(AW]) & Fy 2)2d4_ (C.60)
Pr(6o., € B1|S, (60.0, IN(AW|) € F U F)

22



Then by symmetry we have

PI'(OO:U) ¢ Bl U BQ | S, (éO:wa ‘N(A(I)D ¢ Fl U Fg)

— d
Pl‘(eozw - BQ | S7 (OO:w; |N(A(1)|) g F1 U Fg) !
which combined with (C.60)) yields
; 1) da
Pr(6o., & B1U B | S, (60.0, IN(AV|) & FLU F) > o 0. (C.61)
4

Again using Lemma [C.3]
PI'(OO:w ¢ Bl U BQlS) > m Pr<001w ¢ Bl U BQ ‘ 87 (éO:wa |N(A(1)|) € F2)
Pr(e():w S Bl|S) Pr(eo;w € Bl ‘ S, (ég;w, |N(A(1)|> € Fg)

PI(HO:UJ € Bl U BQ ‘ Sa (éO:un |N(A(1)|) g FQ)
Pr(0o. € B1|S, (o, IN(ADO|) ¢ F5) |

)

Using this fact and (C.59|) and since the ratios in ([5.25)) are exponentially decreasing in L,

Pr (600 & Bi1 U Bs | S, (0., IN(AD]) & F)
Pr(oo:w S Bl | S7 (éO:wa |N(A(1)|) g FQ)

is also exponentially decreasing in L. Also, using ((C.60))-(C.61]),

Pr(0o. € By | S, (000, IN(AD)) & F)
Pr(6o. & By U Bz | S, (B0, IN(AW]) & F)
_ Pr(6ow € Bi, (60, IN(AV]) & | S)
 Pr(0o. & BiU By, (8., IN(AD)) & F» | S)

Pr(0g.€B1 15,800, INAM N e F)PI (8.0 IN(AD) ey |9)+PT(00.05 €B1 18,000, NAD ) g Py UFy) PT (8.0, IN(AD g Fy UF, | 8)

(C.62)

Pr(6¢..#B1UBs | 8,(80:4,N(AM N e F)PT (8.0, IN(AD) e Fy |8)+PT (00,0 €B1UB3 | 8,(80:0, N(AM N gF UFy) PT (80,0, N(AMD g Fy UF; | 8)
Pr((60..,,N(AD ) ey | 8)+P1(60.00€B1 | S,(80:,|N(AD ) gFLUF) PT (0.0, N(AD )¢ FLUF | S)

Pr(60.,¢B1UBx | S.(80.0 IN(AD ) 2 F1UF2) PT (80,0, IN(AD g FLUF, | )
Pr((80.u,,IN(AM))eF |S)
_ Pr((60..,.,N(AM))gFUF; | S)

Pr6o..¢B1UB: | S,(00.w,|N(AMW)|)gFLUFy)
(2 + d4> Pr((80..,,[N(AM)eF: | 8) L4
dy ) Pr(@o..,NAM)grUR|S)  dy

+P1(60.0EB1 | S,(B0:0,N(AM) ) g FLUF)

Combining with the fact that is exponentially decreasing in L,
Pr((80.0.,[N(AM))gF1UF, | S)
Pr((80.u,IN(AM) e | 8)
Pr((80.0,IN(AD gFUR, | 5)
Pr ((80.0.. N(AD R | 5)

is also exponentially decreasing in L. By symmetry,

decreases exponentially in L, proving Proposition |C.1, O
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