Web Appendix for "Convergence Rate of Markov Chain Methods for Genomic Motif Discovery" by D. B. Woodard and J. S. Rosenthal

C. 1 List of Symbols

Here is a list of symbols used in the main manuscript and in this Web Appendix.

- w : fixed motif length.
- L : length of the observed nucleotide sequence \mathbf{S}.
- M : known number of nucleotide types (typically $=4$ in practice).
- $J:$ number of motifs in the generative model (defined in Assumption 3.2)
- p_{0} : fixed motif frequency in the inference model (defined Section 2.1).
- $\mathbf{S}=\left(S_{1}, \ldots, S_{L}\right)$: observed sequence of nucleotides (defined Sec. 2.1).
- $\mathbf{A}=\left(A_{1}, \ldots, A_{L / w}\right)$: unknown vector of motif indicators (defined Sec. 2.1).
- $\mathcal{X}=\{0,1\}^{L / w}$: space of possible values for \mathbf{A} (defined in Sec. 2.1.
- $\boldsymbol{\theta}_{0}$: unknown length- M vector of background nucleotide frequencies (defined Sec. 2.1).
- $\boldsymbol{\theta}_{1: w}=\left(\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{w}\right)$: unknown matrix of position-specific nucleotide frequencies within the motif, where $\boldsymbol{\theta}_{k}$ has length M (defined Sec. 2.1).
- $\mathbf{N}\left(\mathbf{A}^{c}\right) ; \mathbf{N}\left(\mathbf{A}^{(k)}\right) ; \mathbf{N}(\mathbf{S})$: length- M nucleotide count vectors defined in 2.1).
- $\mathbf{A}_{[-i]}$: vector \mathbf{A} with i th element removed; $\mathbf{A}_{[i, 0]}, \mathbf{A}_{[i, 1]}$: vector \mathbf{A} with i th element replaced by 0 or 1 , respectively.
- $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{w}$: fixed length- M vectors of constants (hyperparameters) used in the prior distribution of $\boldsymbol{\theta}_{0: w}$ (defined Sec. 2.1).
- p_{1}, \ldots, p_{J} : as part of the generative model, the frequencies of the different "true" motifs (defined in Assumption 3.2).
- $\boldsymbol{\theta}_{0}^{*}$: as a part of the generative model, the true value of $\boldsymbol{\theta}_{0}$ (defined in Assumption 3.2).
- $\boldsymbol{\theta}_{1: w}^{j *}: j \in\{1, \ldots, J\}$: as a part of the generative model, the multiple "true" values of the matrix $\boldsymbol{\theta}_{1: w}$ (defined in Assumption 3.2).
- $\operatorname{Gap}(T)$: the spectral gap of a transition matrix T (defined in Section 2.3).
- $\pi(\ldots)$: the likelihood, the prior, or the full, marginal, or conditional posterior distributions of the parameters, as distinguished by the arguments.
- $\mathbf{C}(\mathbf{A}) ; \mathbf{C}(\mathbf{S})$: length-2 ${ }^{w}$ vectors of counts (defined in (5.3) and (5.4)).
- $\overline{\mathcal{X}}$: space of possible values for $\mathbf{C}(\mathbf{A})$ (defined in (5.5)).
- $\bar{\pi}(\mathbf{c} \mid \mathbf{S})$: the marginal posterior distribution of $\mathbf{C}(\mathbf{A})$, sometimes written with the dependence on \mathbf{S} suppressed (defined in (5.7)).
- T : the Markov transition matrix (2.6) associated with the Gibbs sampler; \bar{T} : the projection matrix (5.9) associated with the summary vector $\mathbf{C}(\mathbf{A})$.

C. 2 Proof of Lemma 3.1

For notational simplicity we give the proof for the case $M=2$. With this choice, recall from (5.24) that the free parameters in $\boldsymbol{\theta}_{0: w}$ are $\theta_{k, 1} \in[0,1]$ for $k \in\{0, \ldots, w\}$, so we can write $\boldsymbol{\theta}_{0: w} \in[0,1]^{w+1}$ and $\boldsymbol{\theta}_{1: w} \in[0,1]^{w}$.

Let $\sum p_{j}$ be shorthand for $\sum_{j=1}^{J} p_{j}$. Define

$$
\begin{equation*}
\phi \triangleq \min \left\{\frac{\left(1-\sum p_{j}\right) \theta_{0,1}^{*}}{1-p_{1}}, 1-\left[\frac{\left(1-\sum p_{j}\right) \theta_{0,1}^{*}+\sum_{j=2}^{J} p_{j}}{1-p_{1}}\right]\right\} . \tag{C.1}
\end{equation*}
$$

By Assumption $3.2 \theta_{0,1}^{*} \in(0,1), p_{j}>0$, and $\sum p_{j}<1$, so

$$
\begin{equation*}
\phi \in\left(0, \min \left\{\theta_{0,1}^{*}, 1-\theta_{0,1}^{*}\right\}\right) . \tag{C.2}
\end{equation*}
$$

Using (3.4), define

$$
\begin{equation*}
\zeta \triangleq(\phi / 4)^{\max \{4 / \phi, 2 / a\}}<\phi / 4<1 / 4 \tag{C.3}
\end{equation*}
$$

The constants $\phi, \zeta \in(0,1)$ do not depend on w. Then, for any $w \in\{1,2, \ldots\}$ and $j \in$ $\{1, \ldots, J\}$ define

$$
\begin{align*}
& H_{w}^{j} \triangleq\left\{\boldsymbol{\theta}_{1: w} \in[0,1]^{w}:\left|\theta_{k, 1}-\theta_{k, 1}^{j *}\right| \leq \zeta \quad \forall k \in\{1, \ldots, w\}\right\} \tag{C.4}\\
& B_{w}^{j} \triangleq\left\{\boldsymbol{\theta}_{0: w} \in[0,1]^{w+1}: \boldsymbol{\theta}_{1: w} \in H_{w}^{1}, \theta_{0,1} \in[\phi-\zeta, 1-\phi+\zeta]\right\} . \tag{C.5}
\end{align*}
$$

Since $\phi-\zeta>0$, the interval $[\phi-\zeta, 1-\phi+\zeta]$ is bounded away from zero and one. By Assumption 3.3, for w large enough and all $j, j^{\prime} \in\{1, \ldots, J\}$ with $j \neq j^{\prime}$ there is some $k \in\{1, \ldots, w\}$ such that $t_{k}^{j} \neq t_{k}^{j^{\prime}}$. For this k we have $\theta_{k, 1}^{j *}=1-\theta_{k, 1}^{j^{\prime} *}$, so $\left|\theta_{k, 1}^{j *}-\theta_{k, 1}^{j^{\prime} *}\right|=1>2 \zeta$. So B_{w}^{j} and $B_{w}^{j^{\prime}}$ are disjoint.

Next we find a point $\boldsymbol{\theta}_{0: w}^{(1)} \in B_{w}^{1}$ such that $\sup _{\partial B_{w}^{1}} \eta<\eta\left(\boldsymbol{\theta}_{0: w}^{(1)}\right)$. Then for any $j \neq 1$, $\exists \boldsymbol{\theta}_{0: w}^{(j)} \in B_{w}^{j}$ with $\sup _{\partial B_{w}^{j}} \eta<\eta\left(\boldsymbol{\theta}_{0: w}^{(j)}\right)$ by symmetry, showing that 3.1 holds.

Also define

$$
\begin{align*}
h_{w}\left(\boldsymbol{\theta}_{0: w}\right) \triangleq & \sum_{\mathbf{s} \in\{1,2\}^{w}}\left[p_{1} \prod_{k=1}^{w} \theta_{k, s_{k}}^{1 *}\right] \log \left[p_{0} \prod_{k=1}^{w} \theta_{k, s_{k}}\right] \\
& +\sum_{\mathbf{s} \in\{1,2\}^{w}}\left[\sum_{j=2}^{J} p_{j} \prod_{k=1}^{w} \theta_{k, s_{k}}^{j *}+\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log \left[\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}\right] \tag{C.6}
\end{align*}
$$

and note that

$$
\begin{equation*}
\partial B_{w}^{1}=\operatorname{cl}\left(B_{w}^{1}\right) \cap \operatorname{cl}\left([0,1]^{w+1} \backslash B_{w}^{1}\right) \quad \subset B_{w}^{1} \tag{C.7}
\end{equation*}
$$

since B_{w}^{1} is closed. By (C.4)-(C.5),

$$
\begin{equation*}
\partial B_{w}^{1} \subset\left\{\boldsymbol{\theta}_{0: w}: \theta_{0,1} \in\{\phi-\zeta, 1-\phi+\zeta\}\right\} \cup\left\{\boldsymbol{\theta}_{0: w}: \exists k:\left|\theta_{k, 1}-\theta_{k, 1}^{1 *}\right|=\zeta\right\} . \tag{C.8}
\end{equation*}
$$

Lemma C. 1 below shows that $h_{w}\left(\boldsymbol{\theta}_{0: w}\right)$ is maximized at $\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right) \in B_{w}^{1}$ for some $\hat{\boldsymbol{\theta}}_{0}$. We will show that

$$
\begin{equation*}
\inf _{\boldsymbol{\theta}_{0: w} \in \partial B_{w}^{1}}\left[E \log f\left(\mathbf{s} \mid\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)\right)-E \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)\right] \quad>0 \tag{C.9}
\end{equation*}
$$

Lemma C. 1 shows that $\exists b>0$ such that for any w,

$$
\begin{equation*}
\inf _{\boldsymbol{\theta}_{0: w} \in \partial B_{w}^{1}}\left[h_{w}\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)-h_{w}\left(\boldsymbol{\theta}_{0: w}\right)\right] \quad>b>0 . \tag{C.10}
\end{equation*}
$$

For any constants $a_{1}, a_{2}, b_{1}, b_{2}$ we have that $a_{1}-a_{2} \geq b_{1}-b_{2}-\left|a_{1}-b_{1}\right|-\left|a_{2}-b_{2}\right|$. So for any $\boldsymbol{\theta}_{0: w} \in \partial B_{w}^{1}$,

$$
\begin{aligned}
& E \log f\left(\mathbf{s} \mid\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)\right)-E \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \\
& \geq h_{w}\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)-h_{w}\left(\boldsymbol{\theta}_{0: w}\right)-\left|E \log f\left(\mathbf{s} \mid\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)\right)-h_{w}\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)\right| \\
& \quad-\left|E \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)-h_{w}\left(\boldsymbol{\theta}_{0: w}\right)\right| .
\end{aligned}
$$

Combining this with C.7), C.10, and Lemma C. 2 below, for w large enough and any $\boldsymbol{\theta}_{0: w} \in \partial B_{w}^{1}$

$$
E \log f\left(\mathbf{s} \mid\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)\right)-E \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)>b-b / 4-b / 4 \quad=b / 2
$$

So (C.9) holds for w large enough, proving Lemma 3.1.

Finally, we give the results used in the proof of Lemma 3.1.

Lemma C.1. Under Assumptions 3.1 3.3, for any w the function $h_{w}\left(\boldsymbol{\theta}_{0: w}\right)$ defined in (C.6) is maximized at $\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)$ where

$$
\begin{align*}
\hat{\theta}_{0,1} & \triangleq \frac{w\left(1-\sum p_{j}\right) \theta_{0,1}^{*}+\sum_{j=2}^{J} p_{j} \sum_{k=1}^{w} \theta_{k, 1}^{j *}}{w\left(1-p_{1}\right)} \\
& \in[\phi, 1-\phi] . \tag{C.11}
\end{align*}
$$

Also, using the definitions (C.5) and (C.7), Equation (C.10) holds for some b that does not depend on w.

Proof. For $\mathbf{s} \in\{1,2\}^{w}$ and $m \in\{1,2\}$ let $\#\left\{s_{k}=m\right\}$ denote the number of indices $k \in$ $\{1, \ldots, w\}$ for which $s_{k}=m$. Then

$$
\begin{align*}
\frac{\partial}{\partial \theta_{k, 1}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)= & \sum_{\mathbf{s}}\left[p_{1} \prod_{k^{\prime}=1}^{w} \theta_{k^{\prime}, s_{k^{\prime}}}^{1 *}\right]\left[\frac{\mathbf{1}_{\left\{s_{k}=1\right\}}}{\theta_{k, 1}}-\frac{\mathbf{1}_{\left\{s_{k}=2\right\}}}{1-\theta_{k, 1}}\right] \quad k \in\{1, \ldots, w\} \\
= & \frac{p_{1} \theta_{k, 1}^{1 *}}{\theta_{k, 1}}-\frac{p_{1}\left(1-\theta_{k, 1}^{1 *}\right)}{1-\theta_{k, 1}} \tag{C.12}\\
\frac{\partial}{\partial \theta_{0,1}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)= & \sum_{\mathbf{s}}\left[\sum_{j=2}^{J} p_{j} \prod_{k=1}^{w} \theta_{k, s_{k}}^{j *}+\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right]\left[\frac{\#\left\{s_{k}=1\right\}}{\theta_{0,1}}-\frac{\#\left\{s_{k}=2\right\}}{1-\theta_{0,1}}\right] \\
= & \frac{1}{\theta_{0,1}}\left(\sum_{j=2}^{J} p_{j} \sum_{k=1}^{w} \theta_{k, 1}^{j *}+w\left(1-\sum p_{j}\right) \theta_{0,1}^{*}\right) \tag{C.13}\\
& \quad-\frac{1}{1-\theta_{0,1}}\left(\sum_{j=2}^{J} p_{j} \sum_{k=1}^{w}\left(1-\theta_{k, 1}^{j *}\right)+w\left(1-\sum p_{j}\right)\left(1-\theta_{0,1}^{*}\right)\right)
\end{align*}
$$

Setting this equal to zero and solving for $\theta_{0,1}$ and $\theta_{k, 1}$ shows that $h_{w}\left(\boldsymbol{\theta}_{0: w}\right)$ has a stationary point at $\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)$. Using (C.1), $\hat{\theta}_{0,1} \in[\phi, 1-\phi]$.

Note that $\frac{\partial^{2}}{\partial \theta_{k, 1} \partial \theta_{k^{\prime}, 1}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)=0$ for any $k \neq k^{\prime}$, that $\frac{\partial^{2}}{\partial \theta_{k, 1} \partial \theta_{0,1}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)=0$ for any k, and that

$$
\begin{align*}
\frac{\partial^{2}}{\partial \theta_{k, 1}^{2}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)= & -\frac{p_{1} \theta_{k, 1}^{1 *}}{\theta_{k, 1}^{2}}-\frac{p_{1}\left(1-\theta_{k, 1}^{1 *}\right)}{\left(1-\theta_{k, 1}\right)^{2}} \leq-p_{1} \theta_{k, 1}^{1 *}-p_{1}\left(1-\theta_{k, 1}^{1 *}\right)=-p_{1} \tag{C.14}\\
\frac{\partial^{2}}{\partial \theta_{0,1}^{2}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)= & -\frac{1}{\theta_{0,1}^{2}}\left(\sum_{j=2}^{J} p_{j} \sum_{k=1}^{w} \theta_{k, 1}^{j *}+w\left(1-\sum p_{j}\right) \theta_{0,1}^{*}\right) \\
& -\frac{1}{\left(1-\theta_{0,1}\right)^{2}}\left(\sum_{j=2}^{J} p_{j} \sum_{k=1}^{w}\left(1-\theta_{k, 1}^{j *}\right)+w\left(1-\sum p_{j}\right)\left(1-\theta_{0,1}^{*}\right)\right) \\
\leq & -w\left(1-p_{1}\right) \leq-\left(1-p_{1}\right) . \tag{C.15}
\end{align*}
$$

So $h_{w}\left(\boldsymbol{\theta}_{0: w}\right)$ is maximized at $\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)$.
To show the second part of Lemma C.1, recall (C.8). We first address $\boldsymbol{\theta}_{0: w}$ such that $\theta_{0,1}=1-\phi+\zeta$. Using C.13 we have $\left.\frac{\partial}{\partial \theta_{0,1}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)\right|_{\theta_{0,1}=\hat{\theta}_{0,1}}=0$. Applying C.15, for any $\boldsymbol{\theta}_{0: w}$ such that $\theta_{0,1}=1-\phi+\zeta$,

$$
\begin{align*}
h_{w}\left(\boldsymbol{\theta}_{0: w}\right)-h_{w}\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}\right) & =\left.\int_{\hat{\theta}_{0,1}}^{1-\phi+\zeta} \frac{\partial}{\partial \theta_{0,1}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)\right|_{\theta_{0,1}=z} d z \\
& =\left.\int_{\hat{\theta}_{0,1}}^{1-\phi+\zeta} \int_{\hat{\theta}_{0,1}}^{z} \frac{\partial^{2}}{\partial \theta_{0,1}^{2}} h_{w}\left(\boldsymbol{\theta}_{0: w}\right)\right|_{\theta_{0,1}=w} d w d z \\
& \leq-\left(1-p_{1}\right)\left(1-\phi+\zeta-\hat{\theta}_{0,1}\right)^{2} / 2 \leq-\left(1-p_{1}\right) \zeta^{2} / 2 \tag{C.16}
\end{align*}
$$

By C.12), for any fixed value of $\boldsymbol{\theta}_{0}$ the function $h_{w}\left(\boldsymbol{\theta}_{0: w}\right)$ is maximized at $\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)$. Combining with (C.16),

$$
\begin{align*}
\inf _{\boldsymbol{\theta}_{0: w}: \theta_{0,1}=1-\phi+\zeta}\left[h_{w}\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)-h_{w}\left(\boldsymbol{\theta}_{0: w}\right)\right] & \geq \inf _{\boldsymbol{\theta}_{0: w}: \theta_{0,1}=1-\phi+\zeta}\left[h_{w}\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)-h_{w}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)\right] \\
& \geq\left(1-p_{1}\right) \zeta^{2} / 2 \tag{C.17}
\end{align*}
$$

which is positive and does not depend on w.
Analogously, for $\boldsymbol{\theta}_{0: w}$ such that $\theta_{0,1}=\phi-\zeta$ we have

$$
\begin{equation*}
\inf _{\boldsymbol{\theta}_{0: w}: \theta_{0,1}=\phi-\zeta}\left[h_{w}\left(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{1 *}\right)-h_{w}\left(\boldsymbol{\theta}_{0: w}\right)\right] \geq\left(1-p_{1}\right) \zeta^{2} / 2 \tag{C.18}
\end{equation*}
$$

Using the analogous argument to handle the case where $\exists k:\left|\theta_{k, 1}-\theta_{k, 1}^{1 *}\right|=\zeta$, and combining with (C.8), (C.17) and (C.18) yields (C.10). This proves Lemma C.1.

Lemma C.2. Under Assumptions 3.1-3.3 and using the definitions (C.5) and (C.6),

$$
\begin{equation*}
\sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left|E \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)-h_{w}\left(\boldsymbol{\theta}_{0: w}\right)\right| \xrightarrow{w \rightarrow \infty} 0 . \tag{C.19}
\end{equation*}
$$

Proof. Using Assumption 3.3, $\prod_{k=1}^{w} \theta_{k, s_{k}}^{1 *}=1$ if $\mathbf{s}=\mathbf{t}_{1: w}^{1}$ and $\prod_{k=1}^{w} \theta_{k, s_{k}}^{1 *}=0$ for all other $\mathbf{s} \in$ $\{1,2\}^{w}$. Combining with (2.8) and (3.3), the first term of $E \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)=\sum_{\mathbf{s}} g_{\boldsymbol{\theta}^{*}}(\mathbf{s}) \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)$
is

$$
\begin{align*}
& \sum_{\mathbf{s}}\left[p_{1} \prod_{k=1}^{w} \theta_{k, s_{k}}^{1 *}\right] \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \tag{C.20}\\
& =p_{1} \log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{1}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{1}}\right] .
\end{align*}
$$

We have that

$$
\begin{equation*}
\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{1}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{1}}\right]-\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{1}}\right] \geq 0 . \tag{C.21}
\end{equation*}
$$

Also, using C.3)-C.5 and the fact that $\theta_{k, t_{k}^{1}}^{1 *}=1$ for all $k \in\{1, \ldots, w\}$,

$$
\sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}} \frac{\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{1}}}{p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{1}}} \leq \frac{\left(1-p_{0}\right)(1-\phi+\zeta)^{w}}{p_{0}(1-\zeta)^{w}} \stackrel{w \rightarrow \infty}{\longrightarrow} 0
$$

since $1-\phi+\zeta<1-\zeta$. So

$$
\begin{aligned}
& \sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left(\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{1}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{1}}\right]-\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{1}}\right]\right) \\
& \leq \log \left[1+\frac{\left(1-p_{0}\right)(1-\phi+\zeta)^{w}}{p_{0}(1-\zeta)^{w}}\right] \quad \xrightarrow{w \rightarrow \infty} 0 .
\end{aligned}
$$

Combining with (C.21),

$$
\sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left|\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{1}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{1}}\right]-\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{1}}\right]\right| \xrightarrow{w \rightarrow \infty} 0 .
$$

So, using (C.20),

$$
\begin{align*}
& \sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left|\sum_{\mathbf{s}}\left[p_{1} \prod_{k=1}^{w} \theta_{k, s_{k}}^{1 *}\right] \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)-\sum_{\mathbf{s}}\left[p_{1} \prod_{k=1}^{w} \theta_{k, s_{k}}^{1 *}\right] \log \left[p_{0} \prod_{k=1}^{w} \theta_{k, s_{k}}\right]\right| \\
& \xrightarrow{w \rightarrow \infty} 0 . \tag{C.22}
\end{align*}
$$

Next we approximate the middle terms of $\sum_{\mathbf{s}} g_{\boldsymbol{\theta}^{*}}(\mathbf{s}) \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)$. Using (2.8), (3.3), and Assumption 3.3 they are of the following form for $j \in\{2, \ldots, J\}$.

$$
\begin{align*}
& \sum_{\mathbf{s}}\left[p_{j} \prod_{k=1}^{w} \theta_{k, s_{k}}^{j *}\right] \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \tag{C.23}\\
& =p_{j} \log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{j}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}\right] .
\end{align*}
$$

We have that

$$
\begin{equation*}
\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{j}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}\right]-\log \left[\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}\right] \geq 0 \tag{C.24}
\end{equation*}
$$

Let $\#\left\{t_{k}^{j}=t_{k}^{1}\right\}$ indicate the number of indices $k \in\{1, \ldots, w\}$ for which $t_{k}^{j}=t_{k}^{1}$. Using (C.4)-C.5 and the fact that $\theta_{k, t_{k}^{j}}^{1 *}=0$ for all k such that $t_{k}^{j} \neq t_{k}^{1}$, we have that

$$
\sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}} \frac{p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{j}}}{\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}} \leq \frac{\left.p_{0} \zeta^{\#\left\{t_{k}^{j} \neq t_{k}^{1}\right.}\right\}}{\left(1-p_{0}\right)(\phi-\zeta)^{w}}
$$

Combining this with Assumption 3.3 and (C.3), for all w large enough

$$
\begin{aligned}
\sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}} \frac{p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{j}}}{\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}} & \leq \frac{p_{0} \zeta^{w a / 2}}{\left(1-p_{0}\right)(\phi-\zeta)^{w}} \\
& \leq \frac{p_{0}(\phi / 4)^{w}}{\left(1-p_{0}\right)(\phi-\zeta)^{w}} \quad \xrightarrow{w \rightarrow \infty} 0
\end{aligned}
$$

since $\phi / 4<\phi-\zeta$. So

$$
\begin{align*}
& \sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left(\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{j}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}\right]-\log \left[\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}\right]\right) \\
& \leq \log \left[\frac{p_{0}(\phi / 4)^{w}}{\left(1-p_{0}\right)(\phi-\zeta)^{w}}+1\right] \quad \xrightarrow{w \rightarrow \infty} 0 . \tag{C.25}
\end{align*}
$$

Using (C.24) and (C.25),

$$
\sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left|\log \left[p_{0} \prod_{k=1}^{w} \theta_{k, t_{k}^{j}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}\right]-\log \left[\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, t_{k}^{j}}\right]\right| \xrightarrow{w \rightarrow \infty} 0
$$

Combining with (C.23), for $j \in\{2, \ldots, J\}$

$$
\begin{align*}
& \sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}} \mid \sum_{\mathbf{s}}^{w \rightarrow \infty} \\
& \xrightarrow{w \rightarrow \infty} 0 \tag{C.26}
\end{align*}
$$

Finally we address the last term of term of $\sum_{\mathbf{s}} g_{\boldsymbol{\theta}^{*}}(\mathbf{s}) \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)$. Using (2.8) and (3.3) it is

$$
\begin{align*}
& \sum_{\mathbf{s}}\left[\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \\
& =\sum_{\mathbf{s}}\left[\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log \left[p_{0} \prod_{k=1}^{w} \theta_{k, s_{k}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}\right] \tag{C.27}
\end{align*}
$$

We will show that a subset of sequences \mathbf{s} can be omitted when considering (C.27). Denote by $F(x ; n, q)$ the cumulative distribution function of a $\operatorname{Binomial}(n, q)$ random variable, evaluated at $x \in \mathbb{R}$. For $\mathbf{s} \in\{1,2\}^{w}$ recall that $\#\left\{s_{k} \neq t_{k}^{1}\right\}$ denotes the number of indices $k \in\{1, \ldots, w\}$ for which $s_{k} \neq t_{k}^{1}$. Define

$$
\begin{equation*}
D_{w} \triangleq\left\{\mathrm{~s}: \#\left\{s_{k} \neq t_{k}^{1}\right\}>w \phi / 4\right\} . \tag{C.28}
\end{equation*}
$$

Then

$$
\begin{align*}
& \sum_{\mathbf{s} \in D_{w}}\left[\prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \\
& \geq \max \left\{\sum_{\mathrm{s}: \#\left\{s_{k} \neq t_{k}^{1}, t_{k}^{1}=1\right\}>w \phi / 4}\left[\prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right], \sum_{\mathrm{s}: \#\left\{s_{k} \neq t_{k}^{\prime}, t_{k}^{1}=2\right\}>w \phi / 4}\left[\prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right]\right\} \\
& =\max \left\{\begin{array}{l}
\sum_{\mathrm{s}: \#\left\{s_{k}=2, t_{k}^{1}=1\right\}>w \phi / 4}\left[\prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right], \\
\left.=\sum_{\mathrm{s}: \#\left\{s_{k}=1, t_{k}^{1}=2\right\}>w \phi / 4}\left[\prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right]\right\} \\
=\max \left\{1-F\left(w \phi / 4 ; \#\left\{t_{k}^{1}=1\right\}, 1-\theta_{0,1}^{*}\right), \quad 1-F\left(w \phi / 4 ; \#\left\{t_{k}^{1}=2\right\}, \theta_{0,1}^{*}\right)\right\}
\end{array}\right.
\end{align*}
$$

For fixed $x, F(x ; n, q)$ is monotonic nonincreasing in n and q. Using (C.2) and (C.29), since $\phi<\min \left\{\theta_{0,1}^{*}, 1-\theta_{0,1}^{*}\right\}$ and $w / 2 \leq \max \left\{\#\left\{t_{k}^{1}=1\right\}, \#\left\{t_{k}^{1}=2\right\}\right\}$, we have the following.

$$
\begin{align*}
\sum_{\mathbf{s} \in D_{w}}\left[\prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] & \geq \max \left\{1-F\left(w \phi / 4 ; \#\left\{t_{k}^{1}=1\right\}, \phi\right), 1-F\left(w \phi / 4 ; \#\left\{t_{k}^{1}=2\right\}, \phi\right)\right\} \\
& =1-F\left(w \phi / 4 ; \max \left\{\#\left\{t_{k}^{1}=1\right\}, \#\left\{t_{k}^{1}=2\right\}\right\}, \phi\right) \\
& \geq 1-F(w \phi / 4 ; w / 2, \phi) \tag{C.30}
\end{align*}
$$

Using the normal approximation to the binomial distribution, the quantity $F(w \phi / 4 ; w / 2, \phi)$ decays exponentially in w. So by (C.30), the sum

$$
\begin{equation*}
\sum_{\mathbf{s} \notin D_{w}}\left[\prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right]=1-\sum_{\mathbf{s} \in D_{w}}\left[\prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \tag{C.31}
\end{equation*}
$$

decays exponentially in w. Using this fact and (C.5),

$$
\begin{align*}
& \sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left|\sum_{\mathbf{s} \notin D_{w}}\left[\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log \left[p_{0} \prod_{k=1}^{w} \theta_{k, s_{k}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}\right]\right| \\
& \leq \sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left[\sum_{\mathbf{s} \notin D_{w}}\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right]\left|\min _{\mathbf{s}} \log \left[\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}\right]\right| \\
& \leq\left[\left(1-\sum p_{j}\right) \sum_{\mathbf{s} \notin D_{w}} \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right]\left|\log \left[\left(1-p_{0}\right)(\phi-\zeta)^{w}\right]\right| \\
& \xrightarrow[w \rightarrow \infty]{\longrightarrow} 0 . \tag{С.32}
\end{align*}
$$

Using (C.3)-(C.5) and (C.28), for $\boldsymbol{\theta}_{0: w} \in B_{w}^{1}$ and $\mathbf{s} \in D_{w}$,

$$
\begin{aligned}
\frac{p_{0} \prod_{k=1}^{w} \theta_{k, s_{k}}}{\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}} & \leq \frac{p_{0} \zeta^{\#\left\{s_{k} \neq t_{k}^{1}\right\}}}{\left(1-p_{0}\right)(\phi-\zeta)^{w}} \\
& <\frac{p_{0} \zeta^{w \phi / 4}}{\left(1-p_{0}\right)(\phi-\zeta)^{w}} \\
& \leq \frac{p_{0}(\phi / 4)^{w}}{\left(1-p_{0}\right)(\phi-\zeta)^{w}} \quad \xrightarrow{w \rightarrow \infty} 0
\end{aligned}
$$

uniformly over $\boldsymbol{\theta}_{0: w} \in B_{w}^{1}$ and $\mathbf{s} \in D_{w}$, since $\phi / 4<\phi-\zeta$. So

$$
\begin{align*}
\sum_{\mathbf{s} \in D_{w}} & {\left[\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log \left[p_{0} \prod_{k=1}^{w} \theta_{k, s_{k}}+\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}\right] } \\
& -\sum_{\mathbf{s} \in D_{w}}\left[\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log \left[\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}\right] \quad \xrightarrow{w \rightarrow \infty} 0 \tag{C.33}
\end{align*}
$$

uniformly over $\boldsymbol{\theta}_{0: w} \in B_{w}^{1}$. Also, using an analogous argument to C.32,

$$
\begin{equation*}
\sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}}\left|\sum_{\mathbf{s} \notin D_{w}}\left[\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log \left[\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}\right]\right| \xrightarrow{w \rightarrow \infty} 0 \tag{C.34}
\end{equation*}
$$

Combining (C.32-(C.34),

$$
\begin{align*}
& \sup _{\boldsymbol{\theta}_{0: w} \in B_{w}^{1}} \mid \sum_{\mathbf{s}}\left[\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \\
& \quad-\sum_{\mathbf{s}}\left[\left(1-\sum p_{j}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}^{*}\right] \log \left[\left(1-p_{0}\right) \prod_{k=1}^{w} \theta_{0, s_{k}}\right] \mid \xrightarrow{w \rightarrow \infty} 0 . \tag{C.35}
\end{align*}
$$

Putting together the results (C.22, C.26), and C.35 for the various terms, we have that $\sum_{\mathbf{s}} g_{\boldsymbol{\theta}^{*}}(\mathbf{s}) \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)$ converges to $h_{w}\left(\boldsymbol{\theta}_{0: w}\right)$, uniformly over $\boldsymbol{\theta}_{0: w} \in B_{w}^{1}$.

C. 3 Proof of Theorem 3.3

For simplicity of notation we state the proof for the case $M=2$ and $\beta_{k, m}=1$ for all k, m, although the proof is analogous for any other choices of these constants. Recall the definitions of $\mathbf{C}(\mathbf{A}), \overline{\mathcal{X}}, \bar{\pi}, D_{\mathbf{c}}$, and \bar{T} from Equations (5.3), (5.5), and (5.7)-5.9). In the case $w=1$ and $M=2$ the vector $\mathbf{C}(\mathbf{A}) \in \overline{\mathcal{X}}$ only has two elements, $n \triangleq C(\mathbf{A})_{1}$ and $r \triangleq C(\mathbf{A})_{2}$. So we write $\bar{\pi}(n, r)$, suppressing the dependence of $\bar{\pi}$ on \mathbf{S}. Using 5.7$), \bar{\pi}(n, r)=\sum_{\mathbf{A}: \mathbf{C}(\mathbf{A})=(n, r)} \pi(\mathbf{A} \mid \mathbf{S})$. Since $D_{(n, r)}=\{\mathbf{A} \in \mathcal{X}: \mathbf{C}(\mathbf{A})=(n, r)\}$, let $\left|D_{(n, r)}\right|$ be the cardinality of $D_{(n, r)}$ and note that $\left|D_{(n, r)}\right|=\binom{N(\mathbf{S})_{1}}{n}\left(\underset{r}{N(\mathbf{S})_{2}}\right)$. Using (5.6) we have $|\mathbf{A}|=n+r, N\left(\mathbf{A}^{(1)}\right)_{1}=n, N\left(\mathbf{A}^{(1)}\right)_{2}=r$, $N\left(\mathbf{A}^{c}\right)_{1}=N(\mathbf{S})_{1}-n$, and $N\left(\mathbf{A}^{c}\right)_{2}=N(\mathbf{S})_{2}-r$. Then $\bar{\pi}$ simplifies as follows, using (2.5):

$$
\begin{align*}
\bar{\pi}(n, r) \propto & \left|D_{(n, r)}\right| p_{0}^{n+r}\left(1-p_{0}\right)^{L-n-r} \frac{\Gamma\left(N(\mathbf{S})_{1}-n+\beta_{0,1}\right) \Gamma\left(N(\mathbf{S})_{2}-r+\beta_{0,2}\right)}{\Gamma\left(L-n-r+\left|\boldsymbol{\beta}_{0}\right|\right)} \frac{\Gamma\left(n+\beta_{1,1}\right) \Gamma\left(r+\beta_{1,2}\right)}{\Gamma\left(n+r+\left|\boldsymbol{\beta}_{1}\right|\right)} \\
= & \left|D_{(n, r)}\right| p_{0}^{n+r}\left(1-p_{0}\right)^{L-n-r} \frac{\Gamma\left(N(\mathbf{S})_{1}-n+1\right) \Gamma\left(N(\mathbf{S})_{2}-r+1\right)}{\Gamma(L-n-r+2)} \frac{\Gamma(n+1) \Gamma(r+1)}{\Gamma(n+r+2)} \\
= & \frac{N(\mathbf{S})_{1}!}{n!\left(N(\mathbf{S})_{1}-n\right)!}\left(\frac{N(\mathbf{S})_{2}!}{r!\left(N(\mathbf{S})_{2}-r\right)!}\right) p_{0}^{n+r}\left(1-p_{0}\right)^{L-n-r} \times \\
& \frac{\left(N(\mathbf{S})_{1}-n\right)!\left(N(\mathbf{S})_{2}-r\right)!}{(L-n-r+1)!} \frac{n!r!}{(n+r+1)!} \\
\propto & \frac{p_{0}^{n+r}\left(1-p_{0}\right)^{L-n-r}}{(L-n-r+1)!(n+r+1)!} . \tag{С.36}
\end{align*}
$$

This is a function of $(n+r)$ only; $\bar{\pi}(n, r)$ is also unimodal in $(n+r)$, shown as follows. The ratio

$$
\begin{equation*}
\frac{\bar{\pi}(n+1, r)}{\bar{\pi}(n, r)}=\frac{\bar{\pi}(n, r+1)}{\bar{\pi}(n, r)}=\frac{p_{0}}{1-p_{0}}\left(\frac{L-n-r+1}{n+r+2}\right) \tag{C.37}
\end{equation*}
$$

is >1 iff $n+r<p_{0} L+3 p_{0}-2$, showing that $\bar{\pi}(n, r)$ is unimodal in $(n+r)$.
Using (2.6) and (5.9), in each iteration of \bar{T} the quantity $(n+r)$ can only be incremented or decremented by one. Using (C.37) we have that incrementing or decrementing $(n+r)$ by one changes $\bar{\pi}(n, r)$ by no more than a factor of

$$
\begin{equation*}
d_{2} \triangleq \max \left\{\frac{L-n-r+1}{\left(1-p_{0}\right)}, \frac{n+r+2}{p_{0}}\right\}=\mathcal{O}(L) \tag{C.38}
\end{equation*}
$$

We will find a lower bound for the quantity d defined in (5.11), by defining a path $\gamma_{\mathbf{c}_{1}, \mathbf{c}_{2}}$ in the graph of \bar{T} for every pair of states $\mathbf{c}_{1}, \mathbf{c}_{2} \in \overline{\mathcal{X}}$. We will construct the paths in such a way that for any state $\mathbf{c} \in \gamma_{\mathbf{c}_{1}, \mathbf{c}_{2}}$ we have $\bar{\pi}(\mathbf{c}) \geq \min \left\{\bar{\pi}\left(\mathbf{c}_{1}\right), \bar{\pi}\left(\mathbf{c}_{2}\right)\right\} / d_{2}$. Denote $\mathbf{c}_{1}=\left(n_{1}, r_{1}\right)$ and $\mathbf{c}_{2}=\left(n_{2}, r_{2}\right)$. If $n_{1} \leq n_{2}$ and $r_{1} \leq r_{2}$, then construct the path by first increasing the first coordinate n from n_{1} to n_{2}, then by increasing the second coordinate r from r_{1} to r_{2}.

Along this path, $n+r$ increases at every step. Since $\bar{\pi}(n, r)$ is a function only of $n+r$ and is unimodal in $n+r$, we have that for states (n, r) along the path,

$$
\bar{\pi}(n, r) \geq \min \left\{\bar{\pi}\left(n_{1}, r_{1}\right), \bar{\pi}\left(n_{2}, r_{2}\right)\right\} \geq \min \left\{\bar{\pi}\left(n_{1}, r_{1}\right), \bar{\pi}\left(n_{2}, r_{2}\right)\right\} / d_{2}
$$

The case where $n_{1} \geq n_{2}$ and $r_{1} \geq r_{2}$ is analogous, since we can construct a path in the opposite direction as above. Now consider the case where $n_{1} \leq n_{2}$ and $r_{1}>r_{2}$ (the case $n_{1}>n_{2}, r_{1} \leq r_{2}$ is equivalent). Starting at $\left(n_{1}, r_{1}\right)$, first decrement r by one, then increment n by one, and repeat until either $r=r_{2}$ or $n=n_{2}$. Notice that so far $n+r$ has changed by at most one, so that $\bar{\pi}(n, r)$ has changed by at most a factor of d_{2}. At this point, if $r=r_{2}$ then increase n until $n=n_{2}$, or if $n=n_{2}$ then decrease r until $r=r_{2}$. Any state (n, r) along this path satisfies $\bar{\pi}(n, r) \geq \min \left\{\bar{\pi}\left(n_{1}, r_{1}\right), \bar{\pi}\left(n_{2}, r_{2}\right)\right\} / d_{2}$ as desired. Using (C.38), the quantity d defined in (5.11) satisfies $d^{-1}=\mathcal{O}(L)$. Combined with 5.13) and Proposition 5.2 this proves Theorem 3.3 .

C. 4 Verifying the Assumptions of Theorem A. 1

By (5.29) Λ is a Borel set, and $\operatorname{Int}\left(B_{j}\right)$ is a Borel set for $j \in\{1,2\}$ because it is open. So the spaces Λ_{j} for $j \in\{1,2\}$ are Borel subsets of the complete, separable metric space \mathbb{R}^{w+1} as required. Also, $f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)$ is measurable jointly in \mathbf{s} and $\boldsymbol{\theta}_{0: w}$ since it is a continuous function of $\boldsymbol{\theta}_{0: w}$ and since \mathbf{s} takes a finite set of values. Of course, Λ_{j} might not be connected, in which case $f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)$ being continuous simply means that it is continuous on each connected component of Λ_{j}. Assumption 4 of Theorem A.1 is satisfied since $\eta\left(\boldsymbol{\theta}_{0: w}\right)=E \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)$ is continuous. To show Assumption 2, observe that for all $\boldsymbol{\theta}_{0: w} \in \Lambda_{j}$ where $j \in\{1,2\}$, $f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)>0$ for any $\mathbf{s} \in\{1,2\}^{w}$, so $G\left\{\mathbf{s} \in\{1,2\}^{w}: f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)>0\right\}=1$ as desired.

To show Assumption 3 for Λ_{1}, take any compact $F \subset \Lambda_{1}$. We claim that there is some $\zeta \in\left(0, \frac{1}{2}\right)$ such that

$$
\begin{equation*}
F \subset\left([\zeta, 1-\zeta] \times[0,1]^{w}\right) \cup\left([0,1] \times[\zeta, 1-\zeta]^{w}\right) \backslash \operatorname{Int}\left(B_{2}\right) . \tag{С.39}
\end{equation*}
$$

Otherwise, there is some sequence $\left\{\boldsymbol{\theta}_{0: w}^{(\ell)}: \ell \in \mathbb{N}\right\}$ such that $\lim _{\ell \rightarrow \infty} \theta_{0,1}^{(\ell)} \in\{0,1\}$ and $\exists k \in$ $\{1, \ldots, w\}$ such that $\lim _{\ell \rightarrow \infty} \theta_{k, 1}^{(\ell)} \in\{0,1\}$. Since F is compact these points must have a limit point $\tilde{\boldsymbol{\theta}}_{0: w} \in F \subset \Lambda_{1}$. Then $\tilde{\theta}_{0,1} \in\{0,1\}$ and $\tilde{\theta}_{k, 1} \in\{0,1\}$ which is a contradiction.

By (C.39), for any $\boldsymbol{\theta}_{0: w} \in F$ and any s we have $f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \geq \min \left\{p_{0}, 1-p_{0}\right\} \zeta^{w}$. Then

$$
\begin{aligned}
E \sup _{\boldsymbol{\theta}_{0: w} \in F}\left|\log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)\right| & \leq \sup _{\mathbf{s} \in\{1,2\}^{w}, \boldsymbol{\theta}_{0: w} \in F}\left|\log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right)\right| \\
& \leq-\log \left[\min \left\{p_{0}, 1-p_{0}\right\} \zeta^{w}\right]<\infty .
\end{aligned}
$$

To show that Assumption 5 is satisfied for Λ_{1}, it is sufficient to consider values of $r \in \mathbb{R}$ for which $r<\left(\log \frac{1}{2}\right)\left(\min _{\mathbf{s}} g(\mathbf{s})\right)$. Let $\psi=\exp \left\{\frac{r}{\min _{\mathbf{s}} g(\mathbf{s} \mathbf{s}}\right\}$, so that $\psi \in\left(0, \frac{1}{2}\right)$. Then define $D=\Lambda_{1} \backslash D^{c}$ by letting D^{c} be the compact subset

$$
D^{c}=\left([\psi, 1-\psi] \times[0,1]^{w}\right) \cup\left([0,1] \times[\psi, 1-\psi]^{w}\right) \backslash \operatorname{Int}\left(B_{2}\right) \quad \subset \Lambda_{1} .
$$

We will define a cover D_{1}, \ldots, D_{K} of D such that A.1 holds. Define

$$
\begin{aligned}
& D_{k 00}=\left\{\boldsymbol{\theta}_{0: w} \in[0,1]^{w+1}: \theta_{0,1} \in[0, \psi) \wedge \theta_{k, 1} \in[0, \psi)\right\} \quad k \in\{1, \ldots, w\} \\
& D_{k 10}=\left\{\boldsymbol{\theta}_{0: w} \in[0,1]^{w+1}: \theta_{0,1} \in(1-\psi, 1] \wedge \theta_{k, 1} \in[0, \psi)\right\} \\
& D_{k 01}=\left\{\boldsymbol{\theta}_{0: w} \in[0,1]^{w+1}: \theta_{0,1} \in[0, \psi) \wedge \theta_{k, 1} \in(1-\psi, 1]\right\} \\
& D_{k 11}=\left\{\boldsymbol{\theta}_{0: w} \in[0,1]^{w+1}: \theta_{0,1} \in(1-\psi, 1] \wedge \theta_{k, 1} \in(1-\psi, 1]\right\} .
\end{aligned}
$$

For all $\boldsymbol{\theta}_{0: w} \in D$ we have $\theta_{0,1} \in[0, \psi) \cup(1-\psi, 1]$ and $\exists k \in\{1, \ldots, w\}: \theta_{k, 1} \in[0, \psi) \cup(1-\psi, 1]$. So

$$
D \subset \cup_{k=1}^{w}\left(D_{k 00} \cup D_{k 10} \cup D_{k 01} \cup D_{k 11}\right) .
$$

Since $\log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \leq 0$, for any $k \in\{1, \ldots, w\}$

$$
\begin{aligned}
E \sup _{\boldsymbol{\theta}_{0: w} \in D_{k 00}} \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) & \leq g(\mathbf{t}) \sup _{\boldsymbol{\theta}_{0: w} \in D_{k 00}} \log f\left(\mathbf{t} \mid \boldsymbol{\theta}_{0: w}\right) \quad \text { where } \mathbf{t}=(1, \ldots, 1) \\
& \leq g(\mathbf{t}) \log \left[p_{0} \psi+\left(1-p_{0}\right) \psi\right] \leq\left[\min _{\mathbf{s}} g(\mathbf{s})\right] \log \psi \quad=r .
\end{aligned}
$$

Also,

$$
\begin{aligned}
E \sup _{\boldsymbol{\theta}_{0: w} \in D_{k 01}} \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) & \leq g(\mathbf{t}) \sup _{\boldsymbol{\theta}_{0: w} \in D_{k 01}} \log f\left(\mathbf{t} \mid \boldsymbol{\theta}_{0: w}\right) \quad \text { where } \mathbf{t}=(\underbrace{1, \ldots, 1}_{k-1 \text { ones }}, 2,1, \ldots, 1) \\
& \leq\left[\min _{\mathbf{s}} g(\mathbf{s})\right] \log \left[p_{0} \psi+\left(1-p_{0}\right) \psi\right] \quad=r .
\end{aligned}
$$

Analogously, $E \sup _{\boldsymbol{\theta}_{0: w} \in D_{k 10}} \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \leq r$ and $E \sup _{\boldsymbol{\theta}_{0: w} \in D_{k 11}} \log f\left(\mathbf{s} \mid \boldsymbol{\theta}_{0: w}\right) \leq r$, showing that Assumption 5 holds for Λ_{1}. Since Assumptions 3 and 5 hold for Λ_{1}, they hold for Λ_{2} by symmetry.

C. 5 Proof of Theorem 5.3

Assume that there exist $\epsilon>0$ and $B_{1}, B_{2} \subset[0,1]^{w+1}$ separated by distance ϵ such that the ratios in (5.25) decrease exponentially in L, and take F_{1}, F_{2} as in Proposition C. 1 below. Letting \mathbf{c}_{1} be a maximizer of $\bar{\pi}(\mathbf{c} \mid \mathbf{S})$ over $\mathbf{c} \in F_{1}$, and \mathbf{c}_{2} be a maximizer of $\bar{\pi}(\mathbf{c} \mid \mathbf{S})$ over $\mathbf{c} \in F_{2}$ and using Proposition C.1, for all L large enough

$$
\begin{align*}
\max \left\{\bar{\pi}\left(\mathbf{c}_{1} \mid \mathbf{S}\right), \bar{\pi}\left(\mathbf{c}_{2} \mid \mathbf{S}\right)\right\} & \geq \frac{1}{2}\left(\bar{\pi}\left(\mathbf{c}_{1} \mid \mathbf{S}\right)+\bar{\pi}\left(\mathbf{c}_{2} \mid \mathbf{S}\right)\right) \geq \frac{\bar{\pi}\left(F_{1} \mid \mathbf{S}\right)}{2\left|F_{1}\right|}+\frac{\bar{\pi}\left(F_{2} \mid \mathbf{S}\right)}{2\left|F_{2}\right|} \\
& \geq \frac{1}{2|\overline{\mathcal{X}}|}\left(\bar{\pi}\left(F_{1} \mid \mathbf{S}\right)+\bar{\pi}\left(F_{2} \mid \mathbf{S}\right)\right) \geq \frac{1}{4|\overline{\mathcal{X}}|} \tag{С.40}
\end{align*}
$$

Combining with the fact that any path from \mathbf{c}_{1} to \mathbf{c}_{2} must include a state in $\left(F_{1} \cup F_{2}\right)^{c}$,

$$
\begin{aligned}
\max _{\gamma \in \Gamma_{\mathbf{c}_{1}, \mathbf{c}_{2}}} \min _{\mathbf{c} \in \gamma} \frac{\bar{\pi}(\mathbf{c} \mid \mathbf{S})}{\bar{\pi}\left(\mathbf{c}_{1} \mid \mathbf{S}\right) \bar{\pi}\left(\mathbf{c}_{2} \mid \mathbf{S}\right)} & \leq \max _{\gamma \in \Gamma_{\mathbf{c}_{1}, \mathbf{c}_{2}}} \min _{\mathbf{c} \in \gamma} \frac{4|\overline{\mathcal{X}}| \bar{\pi}(\mathbf{c} \mid \mathbf{S})}{\min \left\{\bar{\pi}\left(\mathbf{c}_{1} \mid \mathbf{S}\right), \bar{\pi}\left(\mathbf{c}_{2} \mid \mathbf{S}\right)\right\}} \\
& \leq \max _{\mathbf{c} \in\left(F_{1} \cup F_{2}\right)^{c}} \frac{4|\overline{\mathcal{X}}| \bar{\pi}(\mathbf{c} \mid \mathbf{S})}{\min \left\{\bar{\pi}\left(\mathbf{c}_{1} \mid \mathbf{S}\right), \bar{\pi}\left(\mathbf{c}_{2} \mid \mathbf{S}\right)\right\}} \\
& \leq \frac{4|\overline{\mathcal{X}}| \bar{\pi}\left(\left(F_{1} \cup F_{2}\right)^{c} \mid \mathbf{S}\right)}{\min \left\{\bar{\pi}\left(\mathbf{c}_{1} \mid \mathbf{S}\right), \bar{\pi}\left(\mathbf{c}_{2} \mid \mathbf{S}\right)\right\}} \leq \frac{4|\overline{\mathcal{X}}|^{2} \bar{\pi}\left(\left(F_{1} \cup F_{2}\right)^{c} \mid \mathbf{S}\right)}{\min \left\{\bar{\pi}\left(F_{1} \mid \mathbf{S}\right), \bar{\pi}\left(F_{2} \mid \mathbf{S}\right)\right\}} .
\end{aligned}
$$

Since $|\overline{\mathcal{X}}|$ grows polynomially in L (using (5.10), and using Proposition C.1, the quantity d decreases exponentially in L.

Proposition C.1. If there exist $\epsilon>0$ and two sets $B_{1}, B_{2} \subset[0,1]^{w+1}$ separated by Euclidean distance ϵ such that the ratios in (5.25) decrease exponentially in L, then there are two sets $F_{1}, F_{2} \subset \overline{\mathcal{X}}$ such that:

1. For any $\mathbf{c}_{1} \in F_{1}$ and $\mathbf{c}_{2} \in F_{2}$, any path from \mathbf{c}_{1} to \mathbf{c}_{2} must include a state $\mathbf{c} \notin\left(F_{1} \cup F_{2}\right)$.
2. The quantities

$$
\begin{equation*}
\frac{\bar{\pi}\left(\left(F_{1} \cup F_{2}\right)^{c} \mid \mathbf{S}\right)}{\bar{\pi}\left(F_{1} \mid \mathbf{S}\right)} \quad \text { and } \quad \frac{\bar{\pi}\left(\left(F_{1} \cup F_{2}\right)^{c} \mid \mathbf{S}\right)}{\bar{\pi}\left(F_{2} \mid \mathbf{S}\right)} \tag{C.41}
\end{equation*}
$$

decrease exponentially in L.
Before proving Proposition C. 1 we need a few preliminary results. The notation $\stackrel{\text { ind. }}{\sim}$ means independently distributed as.

Lemma C.3. For any measure $\nu(d z)$ and nonnegative functions $a(z)$ and $b(z)$ on a space $z \in \mathcal{Z}$,

$$
\frac{\int a(z) \nu(d z)}{\int b(z) \nu(d z)} \geq \inf _{z \in \mathcal{Z}} \frac{a(z)}{b(z)} .
$$

where the ratio inside the infimum is taken to be $=\infty$ whenever $b(z)=0$.
Proof. We have

$$
\frac{\int a(z) \nu(d z)}{\int b(z) \nu(d z)} \geq \frac{\int\left(\inf _{w} \frac{a(w)}{b(w)}\right) b(z) \nu(d z)}{\int b(z) \nu(d z)}=\inf _{w} \frac{a(w)}{b(w)}
$$

Lemma C.4. Regarding the density of the $\operatorname{Beta}(a, b)$ distribution, where $a, b \geq 1$:

1. The density is unimodal if $a+b>2$ and constant on $[0,1]$ if $a+b=2$.
2. A global maximum of the density occurs at

$$
x^{*}= \begin{cases}\frac{a-1}{a+b-2} & a+b>2 \\ 0 & a+b=2\end{cases}
$$

3. For $X \sim \operatorname{Beta}(a, b)$ and any $\zeta>0, \operatorname{Pr}\left(X \in\left[x^{*}-\zeta, x^{*}+\zeta\right]\right) \geq \min \{\zeta, 1\}$.

Proof. The first two statements are well-known. To show the last, assume WLOG that $x^{*} \leq 1-x^{*}$. We handle three cases separately: $\zeta \leq x^{*}, \zeta \in\left(x^{*}, 1-x^{*}\right]$, and $\zeta>1-x^{*}$. For $\zeta>1-x^{*}, \operatorname{Pr}\left(X \in\left[x^{*}-\zeta, x^{*}+\zeta\right]\right)=1$ so the result holds trivially.

For $\zeta \leq x^{*}$, letting $f(x)$ indicate the $\operatorname{Beta}(a, b)$ density and using Lemma C. 3 and the fact that $f(x)$ is monotonically nondecreasing for $x<x^{*}$ and monotonically nonincreasing for $x>x^{*}$,

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(X \in\left[x^{*}-\zeta, x^{*}+\zeta\right]\right)}{\operatorname{Pr}\left(X \notin\left[x^{*}-\zeta, x^{*}+\zeta\right]\right)} & =\frac{\int_{x^{*}-\zeta}^{x^{*}} f(x) d x+\int_{x^{*}}^{x^{*}+\zeta} f(x) d x}{\int_{0}^{x^{*}-\zeta} f(x) d x+\int_{x^{*}+\zeta}^{1} f(x) d x} \\
& \geq \frac{f\left(x^{*}-\zeta\right) \zeta+f\left(x^{*}+\zeta\right) \zeta}{f\left(x^{*}-\zeta\right)\left(x^{*}-\zeta\right)+f\left(x^{*}+\zeta\right)\left(1-x^{*}-\zeta\right)} \\
& \geq \min \left\{\frac{\zeta}{x^{*}-\zeta}, \frac{\zeta}{1-x^{*}-\zeta}\right\} \geq \frac{\zeta}{1-\zeta}
\end{aligned}
$$

So $\operatorname{Pr}\left(X \in\left[x^{*}-\zeta, x^{*}+\zeta\right]\right) \geq \zeta$.
Finally we address $\zeta \in\left(x^{*}, 1-x^{*}\right]$. Then

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(X \in\left[x^{*}-\zeta, x^{*}+\zeta\right]\right)}{\operatorname{Pr}\left(X \notin\left[x^{*}-\zeta, x^{*}+\zeta\right]\right)} & \geq \frac{\int_{x^{*}}^{x^{*}+\zeta} f(x) d x}{\int_{x^{*}+\zeta}^{1} f(x) d x} \\
& \geq \frac{f\left(x^{*}+\zeta\right) \zeta}{f\left(x^{*}+\zeta\right)\left(1-x^{*}-\zeta\right)} \geq \frac{\zeta}{1-\zeta}
\end{aligned}
$$

as desired.
Lemma C.5. For any $\zeta>0$ and any $K \in \mathbb{N}$ the following holds for any $D_{1}, D_{2} \subset[0,1]^{K}$ that are separated by Euclidean distance $\geq \zeta$. Let $X_{k} \stackrel{i n d .}{\sim} \operatorname{Beta}\left(a_{k}, b_{k}\right)$ for $k \in\{1, \ldots, K\}$, where $a_{k}, b_{k} \geq 1$. Assume that the mode $\mathbf{x}^{*}=\left(x_{1}^{*}, \ldots, x_{K}^{*}\right)$ of the probability density function $f(\mathbf{x})$ of $\mathbf{X}=\left(X_{1}, \ldots, X_{K}\right)$ satisfies $\mathbf{x}^{*} \in D_{1}$, where x_{k}^{*} for $k \in\{1, \ldots, K\}$ are the modes of the univariate Beta densities as defined in Lemma C.4. Then $\frac{\operatorname{Pr}\left(\mathbf{X} \notin D_{1} \cup D_{2}\right)}{\operatorname{Pr}\left(\mathbf{X} \in D_{2}\right)} \geq\left(\frac{\zeta}{2 \sqrt{K}}\right)^{K+1}$.

Proof. Consider the pdf $f(\mathbf{x})$ along any line segment originating at \mathbf{x}^{*}. This density is monotonically nonincreasing with distance from \mathbf{x}^{*}. For any set $D \subset[0,1]^{K}$ one can calculate the integral $\int_{D} f(\mathbf{x}) d \mathbf{x}$ by first transforming to spherical coordinates, where the origin of the coordinate system is taken to be \mathbf{x}^{*}. In this coordinate system let $\boldsymbol{\phi}$ denote the $(K-1)$ dimensional vector of angular coordinates, and $\rho \geq 0$ denote the radius, i.e. the distance
from \mathbf{x}^{*}. Let $h(\rho, \boldsymbol{\phi})$ be the (invertible) function that maps from the spherical coordinates to the Euclidean coordinates. The Jacobian of the transformation h takes the form $\rho^{K} g(\boldsymbol{\phi})$ for some function g. So for any $D \subset[0,1]^{K}$ we can write

$$
\int_{D} f(\mathbf{x}) d \mathbf{x}=\int_{h^{-1}(D)} f(h(\rho, \boldsymbol{\phi})) \rho^{K} g(\boldsymbol{\phi}) d \rho d \boldsymbol{\phi} .
$$

In particular (using Lemma C.3),

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(\mathbf{X} \notin D_{1} \cup D_{2}\right)}{\operatorname{Pr}\left(\mathbf{X} \in D_{2}\right)} & =\frac{\int_{h^{-1}\left(\left(D_{1} \cup D_{2}\right)^{c}\right)} f(h(\rho, \boldsymbol{\phi})) \rho^{K} g(\boldsymbol{\phi}) d \rho d \boldsymbol{\phi}}{\int_{h^{-1}\left(D_{2}\right)} f(h(\rho, \boldsymbol{\phi})) \rho^{K} g(\boldsymbol{\phi}) d \rho d \boldsymbol{\phi}} \\
& =\frac{\int\left[\int \mathbf{1}_{h(\rho, \boldsymbol{\phi}) \in\left(D_{1} \cup D_{2}\right)^{c}} f(h(\rho, \boldsymbol{\phi})) \rho^{K} d \rho\right] g(\boldsymbol{\phi}) d \boldsymbol{\phi}}{\int\left[\int \mathbf{1}_{h(\rho, \boldsymbol{\phi}) \in D_{2}} f(h(\rho, \boldsymbol{\phi})) \rho^{K} d \rho\right] g(\boldsymbol{\phi}) d \boldsymbol{\phi}} \\
& \geq \inf _{\boldsymbol{\phi}} \frac{\int \mathbf{1}_{h(\rho, \boldsymbol{\phi}) \in\left(D_{1} \cup D_{2}\right)^{c}} f(h(\rho, \boldsymbol{\phi})) \rho^{K} d \rho}{\int \mathbf{1}_{h(\rho, \boldsymbol{\phi}) \in D_{2}} f(h(\rho, \boldsymbol{\phi})) \rho^{K} d \rho}
\end{aligned}
$$

where we consider the ratio inside the infimum to be $=\infty$ if the denominator is zero. Then

$$
\begin{align*}
\frac{\operatorname{Pr}\left(\mathbf{X} \notin D_{1} \cup D_{2}\right)}{\operatorname{Pr}\left(\mathbf{X} \in D_{2}\right)} & \geq \inf _{\boldsymbol{\phi}} \frac{\int_{\zeta / 2}^{\infty} \mathbf{1}_{h(\rho, \phi) \in\left(D_{1} \cup D_{2}\right)^{c}} f(h(\rho, \boldsymbol{\phi})) \rho^{K} d \rho}{\int \mathbf{1}_{h(\rho, \phi) \in D_{2}} f(h(\rho, \boldsymbol{\phi})) \rho^{K} d \rho} \\
& =\inf _{\boldsymbol{\phi}} \frac{\int_{\zeta / 2}^{\sqrt{K}} \mathbf{1}_{h(\rho, \phi) \in\left(D_{1} \cup D_{2}\right)^{c}} f(h(\rho, \boldsymbol{\phi})) \rho^{K} d \rho}{\int_{0}^{\sqrt{K}} \mathbf{1}_{h(\rho, \phi) \in D_{2}} f(h(\rho, \boldsymbol{\phi})) \rho^{K} d \rho} \\
& \geq\left(\frac{\zeta}{2 \sqrt{K}}\right)^{K} \inf _{\phi} \frac{\int_{\zeta / 2}^{\sqrt{K}} \mathbf{1}_{h(\rho, \phi) \in\left(D_{1} \cup D_{2}\right)^{c}} f(h(\rho, \boldsymbol{\phi})) d \rho}{\int_{0}^{\sqrt{K}} \mathbf{1}_{h(\rho, \phi) \in D_{2}} f(h(\rho, \boldsymbol{\phi})) d \rho} . \tag{C.42}
\end{align*}
$$

For any fixed $\boldsymbol{\phi}$ for which $0 \neq \int_{0}^{\sqrt{K}} \mathbf{1}_{h(\rho, \phi) \in D_{2}} f(h(\rho, \phi)) d \rho$, there is some $\tilde{\rho}$ such that $h(\tilde{\rho}, \boldsymbol{\phi}) \in$ D_{2}. Since $\mathbf{x}^{*}=h(0, \phi) \in D_{1}$ and since D_{1} and D_{2} are separated by distance ζ, there must be an interval $\left[\rho_{1}(\boldsymbol{\phi}), \rho_{2}(\boldsymbol{\phi})\right] \subset[0, \tilde{\rho}]$ of width at least ζ such that any $\rho \in\left[0, \rho_{1}(\boldsymbol{\phi})\right]$ satisfies $h(\rho, \boldsymbol{\phi}) \notin D_{2}$ and any $\rho \in\left(\rho_{1}(\boldsymbol{\phi}), \rho_{2}(\boldsymbol{\phi})\right)$ satisfies $h(\rho, \boldsymbol{\phi}) \in\left(D_{1} \cup D_{2}\right)^{c}$. Using (C.42) and since $f(h(\rho, \phi))$ is monotonically nonincreasing in ρ,

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(\mathbf{X} \notin D_{1} \cup D_{2}\right)}{\operatorname{Pr}\left(\mathbf{X} \in D_{2}\right)} & \geq\left(\frac{\zeta}{2 \sqrt{K}}\right)^{K} \inf _{\boldsymbol{\phi}}^{K} \frac{\int_{\max \left\{\zeta / 2, \rho_{1}(\boldsymbol{\phi})\right\}}^{\rho_{2}(\boldsymbol{\phi})} f(h(\rho, \boldsymbol{\phi})) d \rho}{\int_{\rho_{2}(\boldsymbol{\phi})}^{\sqrt{K}} f(h(\rho, \boldsymbol{\phi})) d \rho} \\
& \geq\left(\frac{\zeta}{2 \sqrt{K}}\right)^{K} \inf _{\boldsymbol{\phi}}^{K} \frac{\int_{\max \left\{\zeta / 2, \rho_{1}(\boldsymbol{\phi})\right\}}^{\rho_{2}(\boldsymbol{x}} f\left(h\left(\rho_{2}(\boldsymbol{\phi}), \boldsymbol{\phi}\right)\right) d \rho}{\int_{\rho_{2}(\boldsymbol{\phi})}^{\sqrt{K}} f\left(h\left(\rho_{2}(\boldsymbol{\phi}), \boldsymbol{\phi}\right)\right) d \rho} \\
& \geq\left(\frac{\zeta}{2 \sqrt{K}}\right)^{K+1} .
\end{aligned}
$$

Lemma C.6. For $k \in\{1, \ldots, K\}$ let $X_{k} \stackrel{\text { ind. }}{\sim} \operatorname{Beta}\left(a_{k}, b_{k}\right)$ where $a_{k}, b_{k} \geq 1$. Then for any set $D \subset[0,1]^{K}$ with positive Lebesgue measure $(\lambda(D)>0)$ and any $d_{3}>1$,

$$
\inf _{a_{1}, b_{1}, \ldots, a_{K}, b_{K} \in\left[1, d_{3}\right]} \operatorname{Pr}(\mathbf{X} \in D)>0
$$

where $\mathbf{X}=\left(X_{1}, \ldots, X_{K}\right)$.
Proof. Since $\lambda(D)>0$, there is some $\zeta \in(0,1 / 2)$ such that the set $\tilde{D}=D \cap[\zeta, 1-\zeta]^{K}$ satisfies $\lambda(\tilde{D})>0$. Letting $f(x)$ indicate the density of any $\operatorname{Beta}(a, b)$ distribution where $a, b \in\left[1, d_{3}\right]$, and using Lemma C.4,

$$
\begin{aligned}
\frac{\inf _{x \in[\zeta, 1-\zeta]} f(x)}{\sup _{x} f(x)} & =\frac{\min \{f(\zeta), f(1-\zeta)\}}{f\left(\frac{a-1}{a+b-2}\right)} \\
& \geq \frac{\zeta^{a+b-2}(a+b-2)^{a+b-2}}{(a-1)^{a-1}(b-1)^{b-1}} \\
& \geq \zeta^{a+b-2} \geq \zeta^{2 d_{3}-2}
\end{aligned}
$$

Now letting $f(\mathbf{x})$ indicate the function on $\mathbf{x} \in[0,1]^{K}$ that is the product of $\operatorname{Beta}\left(a_{k}, b_{k}\right)$ densities where $a_{k}, b_{k} \in\left[1, d_{3}\right]$,

$$
\frac{\inf _{\mathbf{x} \in[\zeta, 1-\zeta]^{K}} f(\mathbf{x})}{\sup _{\mathbf{x}} f(\mathbf{x})} \geq \zeta^{K\left(2 d_{3}-2\right)}
$$

So

$$
\begin{equation*}
\frac{\operatorname{Pr}(\mathbf{X} \in D)}{\operatorname{Pr}\left(\mathbf{X} \in D^{c}\right)} \geq \frac{\operatorname{Pr}(\mathbf{X} \in \tilde{D})}{\operatorname{Pr}\left(\mathbf{X} \in \tilde{D}^{c}\right)} \geq \frac{\lambda(\tilde{D}) \inf _{\mathbf{x} \in[\zeta, 1-\zeta]^{K}} f(\mathbf{x})}{(1-\lambda(\tilde{D})) \sup _{\mathbf{x}} f(\mathbf{x})} \geq \frac{\lambda(\tilde{D}) \zeta^{K\left(2 d_{3}-2\right)}}{(1-\lambda(\tilde{D}))} \tag{C.43}
\end{equation*}
$$

which is strictly positive and does not depend on $\left\{a_{k}, b_{k}\right\}_{k=1}^{K}$.
Lemma C.7. Let $X_{k} \stackrel{\text { ind. }}{\sim} \operatorname{Beta}\left(a_{k}, b_{k}\right)$ for $k \in\{1, \ldots, Q\}$ where $Q \in \mathbb{N}$ and $a_{k}, b_{k} \geq 1$. Also let x_{k}^{*} be the global mode of the density of $\operatorname{Beta}\left(a_{k}, b_{k}\right)$ as defined in Lemma C.4. Let $B(\mathbf{x}, \delta)$ indicate the ball of radius $\delta>0$ centered at a point $\mathbf{x} \in[0,1]^{Q}$. Then for any fixed $\delta>0$, $d_{3} \geq 1$, and $K \in\{1, \ldots, Q\}$,

$$
\inf _{a_{k}, b_{k} \in\left[1, d_{3}\right]: k=1, \ldots, K} \inf _{a_{k}, b_{k} \geq 1: k=K+1, \ldots, Q} \inf _{\mathbf{x} \in[0,1]]^{Q}: x_{k}=x_{k}^{*}, k=K+1, \ldots, Q} \operatorname{Pr}(\mathbf{X} \in B(\mathbf{x}, \delta))>0 .
$$

Proof. Take a hypercube $H(\mathbf{x}, \delta)$ centered at \mathbf{x} and with some fixed side length $2 \delta_{1} \in(0,1]$ for which $H(\mathbf{x}, \delta) \subset B(\mathbf{x}, \delta)$. Then

$$
\begin{align*}
& \inf _{a_{k}, b_{k} \in\left[1, d_{3}\right]: k=1, \ldots, K} \inf _{a_{k}, b_{k} \geq 1: k=K+1, \ldots, Q} \inf _{\mathbf{x} \in[0,1]]^{Q}: x_{k}=x_{k}^{*}, k=K+1, \ldots, Q} \operatorname{Pr}(\mathbf{X} \in B(\mathbf{x}, \delta)) \\
& \geq \inf _{a_{k}, b_{k} \in\left[1, d_{3}\right]: k=1, \ldots, K} \inf _{a_{k}, b_{k} \geq 1: k=K+1, \ldots, Q} \quad \inf _{\mathbf{x} \in[0,1]^{Q}: x_{k}=x_{k}^{*}, k=K+1, \ldots, Q} \operatorname{Pr}(\mathbf{X} \in H(\mathbf{x}, \delta)) \\
& =\left[\prod_{k=1}^{K} \inf _{a_{k}, b_{k} \in\left[1, d_{3}\right]} \inf _{x_{k} \in[0,1]} \operatorname{Pr}\left(X_{k} \in\left[x_{k}-\delta_{1}, x_{k}+\delta_{1}\right]\right)\right] \prod_{k=K+1}^{Q} \inf _{a_{k}, b_{k} \geq 1} \operatorname{Pr}\left(X_{k} \in\left[x_{k}^{*}-\delta_{1}, x_{k}^{*}+\delta_{1}\right]\right) . \tag{С.44}
\end{align*}
$$

By Lemma C.4, the second product in this expression is bounded below by δ_{1}^{Q-K}. To bound the first product in (C.44 we will use the explicit lower bound C.43) given in the proof of Lemma C. 6 , applied to the single variable X_{k} where $k \in\{1, \ldots, K\}$. Here we take the set $D=\left[x_{k}-\delta_{1}, x_{k}+\delta_{1}\right] \cap[0,1]$. Let $\zeta=\frac{\delta_{1}}{2}$ so that $\tilde{D}=D \cap\left[\frac{\delta_{1}}{2}, 1-\frac{\delta_{1}}{2}\right]$. Noticing that $\lambda(\tilde{D}) \geq \frac{\delta_{1}}{2}$, the bound C. 43 gives

$$
\frac{\operatorname{Pr}\left(X_{k} \in D\right)}{\operatorname{Pr}\left(X_{k} \in D^{c}\right)} \geq \frac{\left(\frac{\delta_{1}}{2}\right)^{1+\left(2 d_{3}-2\right)}}{1-\frac{\delta_{1}}{2}} \geq \frac{\left(\frac{\delta_{1}}{2}\right)^{\left(2 d_{3}-1\right)}}{1-\left(\frac{\delta_{1}}{2}\right)^{\left(2 d_{3}-1\right)}}
$$

So $\operatorname{Pr}\left(X_{k} \in D\right) \geq\left(\frac{\delta_{1}}{2}\right)^{\left(2 d_{3}-1\right)}$; applying this method for each $k=1, \ldots, K$ we have that

$$
\begin{aligned}
& \inf _{a_{k}, b_{k} \in\left[1, d_{3}\right]: k=1, \ldots, K} \inf _{a_{k}, b_{k} \geq 1: k=K+1, \ldots, Q} \inf _{\mathbf{x} \in[0,1]^{Q}: x_{k}=x_{k}^{*}, k=K+1, \ldots, Q} \operatorname{Pr}(\mathbf{X} \in B(\mathbf{x}, \delta)) \\
& \geq\left(\frac{\delta_{1}}{2}\right)^{K\left(2 d_{3}-1\right)} \delta_{1}^{Q-K}>0 .
\end{aligned}
$$

Proof of Proposition C.1. Recall the definition (Sec. 2.1) of $\boldsymbol{\beta}_{k}$; we will take $\beta_{k, m}=1$ for $k \in\{0, \ldots, w\}$ and $m \in\{1,2\}$ for simplicity of exposition, although the results do not depend on this choice. Then the prior for $\boldsymbol{\theta}_{0: w}$ is uniform: $\pi\left(\boldsymbol{\theta}_{0: w}\right) \propto \boldsymbol{1}_{\left\{\boldsymbol{\theta}_{0: w} \in[0,1] w+1\right\}}$.

The quantities $\mathbf{N}\left(\mathbf{A}^{(k)}\right)$ and $\mathbf{N}\left(\mathbf{A}^{c}\right)$ only depend on \mathbf{A} via $\mathbf{C}(\mathbf{A})$, due to 5.6). Consider
the conditional distribution $\pi\left(\boldsymbol{\theta}_{0: w} \mid \mathbf{C}(\mathbf{A}), \mathbf{S}\right)$, which can be written as follows, using (2.3):

$$
\begin{align*}
\pi\left(\boldsymbol{\theta}_{0: w} \mid \mathbf{C}(\mathbf{A}), \mathbf{S}\right) \propto & \pi\left(\boldsymbol{\theta}_{0: w}, \mathbf{C}(\mathbf{A}), \mathbf{S}\right) \propto \pi\left(\boldsymbol{\theta}_{0: w}\right) \pi(\mathbf{C}(\mathbf{A})) \pi\left(\mathbf{S} \mid \mathbf{C}(\mathbf{A}), \boldsymbol{\theta}_{0: w}\right) \\
\propto & {\left[\prod_{k=1}^{w} \prod_{m=1}^{2} \theta_{k, m}^{N\left(\mathbf{A}^{(k)}\right)_{m}}\right] \prod_{m=1}^{2} \theta_{0, m}^{N\left(\mathbf{A}^{c}\right)_{m}} } \\
\propto & {\left[\prod_{k=1}^{w} \operatorname{Beta}\left(\theta_{k, 1} ; N\left(\mathbf{A}^{(k)}\right)_{1}+1, N\left(\mathbf{A}^{(k)}\right)_{2}+1\right)\right] \times } \\
& \operatorname{Beta}\left(\theta_{0,1} ; N\left(\mathbf{A}^{c}\right)_{1}+1, N\left(\mathbf{A}^{c}\right)_{2}+1\right) . \tag{С.45}
\end{align*}
$$

where $\operatorname{Beta}(x ; a, b)$ indicates the Beta density with parameters a, b, evaluated at x. By Lemma C.4, $\pi\left(\boldsymbol{\theta}_{0: w} \mid \mathbf{C}(\mathbf{A}), \mathbf{S}\right)$ is a density with global maximum at $\tilde{\boldsymbol{\theta}}_{0: w}$ where

$$
\begin{align*}
& \tilde{\theta}_{k, 1}=\left\{\begin{array}{ll}
\frac{N\left(\mathbf{A}^{(k)}\right)_{1}}{\left|\mathbf{N}\left(\mathbf{A}^{(k)}\right)\right|} & \left|\mathbf{N}\left(\mathbf{A}^{(k)}\right)\right|>0 \\
0 & \text { else }
\end{array} \quad k \in\{1, \ldots, w\}\right. \tag{C.46}\\
& \tilde{\theta}_{0,1}= \begin{cases}\frac{\left.N\left(\mathbf{A}^{c}\right)\right)_{1}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|} & \left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|>0 \\
0 & \text { else. }\end{cases}
\end{align*}
$$

To complete the notation define $\tilde{\theta}_{k, 2}=1-\tilde{\theta}_{k, 1}$ for $k \in\{0, \ldots, w\}$.
By C. 45 and since $\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|=L-\sum_{k=1}^{w}\left|\mathbf{N}\left(\mathbf{A}^{(k)}\right)\right|$, we have that $\pi\left(\boldsymbol{\theta}_{0: w} \mid \mathbf{C}(\mathbf{A}), \mathbf{S}\right)$ only depends on $\mathbf{C}(\mathbf{A})$ via $\tilde{\boldsymbol{\theta}}_{0: w}$ and $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|=\left|\mathbf{N}\left(\mathbf{A}^{(2)}\right)\right|=\ldots=\left|\mathbf{N}\left(\mathbf{A}^{(w)}\right)\right|$. So

$$
\begin{align*}
& \pi\left(\boldsymbol{\theta}_{0: w}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right. \\
& =\left[\prod_{k=1}^{w} \operatorname{Beta}\left(\theta_{k, 1} ; \tilde{\theta}_{k, 1}\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|+1, \tilde{\theta}_{k, 2}\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|+1\right)\right] \times \\
& \quad \operatorname{Beta}\left(\theta_{0,1} ; \tilde{\theta}_{0,1}\left(L-w\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right)+1, \tilde{\theta}_{0,2}\left(L-w\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right)+1\right) \tag{C.47}
\end{align*}
$$

Using Lemma C.4 and regardless of the value of $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \pi\left(\boldsymbol{\theta}_{0: w}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.$ has a global maximum at $\tilde{\boldsymbol{\theta}}_{0: w}$.

For our analysis the only relevant quantities regarding $\mathbf{C}(\mathbf{A}) \in \overline{\mathcal{X}}$ will be $\tilde{\boldsymbol{\theta}}_{0: w}$ and $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|$, so we define $F_{1}, F_{2} \subset \overline{\mathcal{X}}$ more conveniently as sets of possible values of $\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right)$, i.e. values that arise from some state $\mathbf{C}(\mathbf{A}) \in \overline{\mathcal{X}}$. We will define F_{1} to be a particular set for which there is some constant $d_{4}>0$ satisfying

$$
\begin{equation*}
\min _{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right) \notin F_{1}} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \geq d_{4} . \tag{C.48}
\end{equation*}
$$

So $F_{1} \subset \overline{\mathcal{X}}$ is associated with $B_{1} \subset[0,1]^{w+1}$ in the sense that it (informally speaking) contains all the values of $\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right)$ for which $\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.$ is much larger

Figure 1: An illustration of the proof.
than $\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.$. The set F_{1} must have high probability (given \mathbf{S}) in order to explain the fact that the first quantity in (5.25) decreases exponentially in L.

To begin, recall the definition of $\epsilon>0$ from PropositionC.1. Let E_{1} be the set of all points $\mathbf{x} \in[0,1]^{w+1}$ that are within distance $\epsilon / 3$ of the set B_{1}, and let E_{2} be the set of all points that are within distance $\epsilon / 3$ of the set B_{2}. This is illustrated in Web Appendix Figure 1 . Then E_{1} and E_{2} are separated by distance $\epsilon_{1} \triangleq \epsilon / 3$. Let $d_{5} \triangleq \frac{w+1}{\epsilon_{1}}$; since $B_{1}, B_{2} \subset[0,1]^{w+1}$ are separated by distance ϵ, we have that $\epsilon \leq \sqrt{w+1}$ and so

$$
\begin{equation*}
d_{5}=\frac{w+1}{\epsilon / 3}>\frac{w+1}{\sqrt{w+1}}>1 \tag{C.49}
\end{equation*}
$$

Also define

$$
\begin{aligned}
V \triangleq & \left\{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right): \max \left\{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|,\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right| / w\right\}>d_{5}\right\} \\
& \cap\left\{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right): \text { if } \exists \boldsymbol{\theta}_{0} \in[0,1] \text { s.t. }\left(\boldsymbol{\theta}_{0}, \tilde{\boldsymbol{\theta}}_{1: w}\right) \in\left(E_{1} \cup E_{2}\right)^{c} \text { then }\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right| / w>d_{5}\right\} \\
& \cap\left\{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right): \text { if } \exists \boldsymbol{\theta}_{1: w} \in[0,1]^{w} \text { s.t. }\left(\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}\right) \in\left(E_{1} \cup E_{2}\right)^{c} \text { then }\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|>d_{5}\right\} \\
F_{j} \triangleq & \left\{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right) \in V: \tilde{\boldsymbol{\theta}}_{0: w} \in E_{j}\right\} \quad j \in\{1,2\} .
\end{aligned}
$$

First we show that it is not possible to move from any state $\left(\tilde{\boldsymbol{\theta}}_{0: w}^{1},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1}\right) \in F_{1}$ to any state $\left(\tilde{\boldsymbol{\theta}}_{0: w}^{2},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{2}\right) \in F_{2}$ in one iteration of \bar{T}. Since $\tilde{\boldsymbol{\theta}}_{0: w}^{1} \in E_{1}$ and $\tilde{\boldsymbol{\theta}}_{0: w}^{2} \in E_{2}$ satisfy $\left\|\tilde{\boldsymbol{\theta}}_{0: w}^{1}-\tilde{\boldsymbol{\theta}}_{0: w}^{2}\right\| \geq \epsilon_{1}$, we have that $\exists \tilde{k} \in\{0, \ldots, w\}$ such that $\left|\tilde{\theta}_{\tilde{k}, 1}^{1}-\tilde{\theta}_{\tilde{k}, 1}^{2}\right| \geq \frac{\epsilon_{1}}{w+1}=\frac{1}{d_{5}}$. We handle the four cases: 1. where $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1} \leq d_{5} ; 2$. where $\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1} / w \leq d_{5} ; 3$. where $\left|\mathbf{N}\left(\mathbf{A}_{\tilde{\sim}}^{(1)}\right)\right|^{1}>$ $d_{5},\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1} / w>d_{5}$ and $\tilde{k}>0 ; 4$. where $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1}>d_{5},\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1} / w>d_{5}$ and $\tilde{k}=0$. We assume that it is it is possible to move from $\left(\tilde{\boldsymbol{\theta}}_{0: w}^{1},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1}\right)$ to $\left(\tilde{\boldsymbol{\theta}}_{0: w}^{2},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{2}\right)$ in one iteration of \bar{T}, and find a contradiction. We use the fact that, by (2.6) and (5.9), in one iteration of \bar{T} the vector $\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)$ can only change by incrementing or decrementing a single element by one, and so $\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|=\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|$ can only increase or decrease by one. Also, the vector $\mathbf{N}\left(\mathbf{A}^{c}\right)$ can only change by either incrementing its elements by a total of w, which increases $\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|$ by w, or decrementing its elements by a total of w, which decreases $\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|$ by w.

First take the case where $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1}>d_{5},\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1} / w>d_{5}$ and $\tilde{k}>0$. By (C.49, $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1}>1$, so $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{2}>0$. By (C.46,

$$
\begin{equation*}
\left|\tilde{\theta}_{\tilde{k}, 1}^{1}-\tilde{\theta}_{\tilde{k}, 1}^{2}\right|=\left|\frac{N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}}-\frac{N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{2}}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{2}}\right| . \tag{C.51}
\end{equation*}
$$

Also, we claim that this is bounded above by $\frac{1}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}}$. In the case where $N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{2}=$ $N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{1}+\delta$ and $\delta \in\{-1,1\}$, we have $N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{2} \geq 0$ so $N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{1} \geq-\delta$ and thus

$$
\begin{aligned}
\left|\tilde{\theta}_{\tilde{k}, 1}^{1}-\tilde{\theta}_{\tilde{k}, 1}^{2}\right|=\left|\frac{N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}}-\frac{N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{1}+\delta}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}+\delta}\right| & =\left(\frac{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}-N\left(\mathbf{A}^{(\tilde{k})}\right)_{1}^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}+\delta}\right) \frac{|\delta|}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}} \\
& \leq \frac{|\delta|}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}}=\frac{1}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}} .
\end{aligned}
$$

In the case where $N\left(\mathbf{A}^{(\tilde{k})}\right)_{2}^{2}=N\left(\mathbf{A}^{(\tilde{k})}\right)_{2}^{1}+\delta$ and $\delta \in\{-1,1\}$, by using the fact that $\mid \tilde{\theta}_{\tilde{k}, 1}^{1}-$ $\tilde{\theta}_{\tilde{k}, 1}^{2}\left|=\left|\tilde{\theta}_{\tilde{k}, 2}^{1}-\tilde{\theta}_{\tilde{k}, 2}^{2}\right|\right.$ and applying the above argument we still obtain the upper bound $\frac{1}{\mid \mathbf{N}\left(\left.\mathbf{A}^{(\hat{k})}\right|^{1}\right.}$. Combining with (C.51) we have

$$
\begin{equation*}
\left|\tilde{\theta}_{\tilde{k}, 1}^{1}-\tilde{\theta}_{\tilde{k}, 1}^{2}\right| \leq \frac{1}{\left|\mathbf{N}\left(\mathbf{A}^{(\tilde{k})}\right)\right|^{1}}<\frac{1}{d_{5}} \tag{C.52}
\end{equation*}
$$

which is a contradiction (by the definition of \tilde{k}).
Now take the case where $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1} \leq d_{5}$. Then by $($ C. 50$)$ we must have $\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1} / w>d_{5}$. Also, $\tilde{\boldsymbol{\theta}}_{0: w}^{1} \in E_{1}$ and there is no $\boldsymbol{\theta}_{1: w}$ such that $\left(\tilde{\boldsymbol{\theta}}_{0}^{1}, \boldsymbol{\theta}_{1: w}\right) \in\left(E_{1} \cup E_{2}\right)^{c}$, so $\left(\tilde{\boldsymbol{\theta}}_{0}^{1}, \tilde{\boldsymbol{\theta}}_{1: w}^{2}\right) \in E_{1}$. Therefore the Euclidean distance between $\left(\tilde{\boldsymbol{\theta}}_{0}^{1}, \tilde{\boldsymbol{\theta}}_{1 \cdot w}^{2}\right) \in E_{1}$ and $\left(\tilde{\boldsymbol{\theta}}_{0}^{2}, \tilde{\boldsymbol{\theta}}_{1: w}^{2}\right) \in E_{2}$ is $\geq \epsilon_{1}$. This implies $\left|\tilde{\theta}_{0,1}^{1}-\tilde{\theta}_{0,1}^{2}\right| \geq \epsilon_{1}>\frac{1}{d_{5}}$. However, by $\left(\right.$ C.49,$\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}>d_{5} w>w$, so $\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{2}>0$. Then by (C.46),

$$
\left|\tilde{\theta}_{0,1}^{1}-\tilde{\theta}_{0,1}^{2}\right|=\left|\frac{N\left(\mathbf{A}^{c}\right)_{1}^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}}-\frac{N\left(\mathbf{A}^{c}\right)_{1}^{2}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{2}}\right|
$$

Also, we claim that this is bounded above by $\frac{w}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}}$. In the case where $N\left(\mathbf{A}^{c}\right)_{1}^{2}=N\left(\mathbf{A}^{c}\right)_{1}^{1}+\delta$ and $N\left(\mathbf{A}^{c}\right)_{2}^{2}=N\left(\mathbf{A}^{c}\right)_{2}^{1}+w-\delta$ for $\delta \in\{0, \ldots, w\}$,

$$
\begin{aligned}
\left|\tilde{\theta}_{0,1}^{1}-\tilde{\theta}_{0,1}^{2}\right| & =\left|\frac{N\left(\mathbf{A}^{c}\right)_{1}^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}}-\frac{N\left(\mathbf{A}^{c}\right)_{1}^{1}+\delta}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}+w}\right| \\
& =\left|\frac{w N\left(\mathbf{A}^{c}\right)_{1}^{1}-\delta\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}+w\right)}\right| \\
& \leq \frac{\max \left\{w\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}-N\left(\mathbf{A}^{c}\right)_{1}^{1}\right), w N\left(\mathbf{A}^{c}\right)_{1}^{1}\right\}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}+w\right)} \quad \leq \frac{w}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}} .
\end{aligned}
$$

In the case where $N\left(\mathbf{A}^{c}\right)_{1}^{2}=N\left(\mathbf{A}^{c}\right)_{1}^{1}-\delta$ and $N\left(\mathbf{A}^{c}\right)_{2}^{2}=N\left(\mathbf{A}^{c}\right)_{2}^{1}-w+\delta$ for $\delta \in\{0, \ldots, w\}$,

$$
\begin{align*}
\left|\tilde{\theta}_{0,1}^{1}-\tilde{\theta}_{0,1}^{2}\right| & =\left|\frac{N\left(\mathbf{A}^{c}\right)_{1}^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}}-\frac{N\left(\mathbf{A}^{c}\right)_{1}^{1}-\delta}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}-w}\right| \\
& =\left|\frac{-w N\left(\mathbf{A}^{c}\right)_{1}^{1}+\delta\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}-w\right)}\right| \tag{C.53}
\end{align*}
$$

This is largest when $\delta \in\{0, w\}$. Note that $N\left(\mathbf{A}^{c}\right)_{1}^{2} \geq 0$ and $N\left(\mathbf{A}^{c}\right)_{2}^{2} \geq 0$ so $N\left(\mathbf{A}^{c}\right)_{1}^{1} \geq \delta$ and $N\left(\mathbf{A}^{c}\right)_{2}^{1} \geq w-\delta$. Using (C.53), when $\delta=0$ we have $N\left(\mathbf{A}^{c}\right)_{2}^{1} \geq w$ and

$$
\begin{aligned}
\left|\tilde{\theta}_{0,1}^{1}-\tilde{\theta}_{0,1}^{2}\right| & =\frac{w N\left(\mathbf{A}^{c}\right)_{1}^{1}}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}-w\right)} \\
& =\frac{w\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}-N\left(\mathbf{A}^{c}\right)_{2}^{1}\right)}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}-w\right)} \leq \frac{w}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}} .
\end{aligned}
$$

When $\delta=w$ we have $N\left(\mathbf{A}^{c}\right)_{1}^{1} \geq w$ and (using (C.53))

$$
\left|\tilde{\theta}_{0,1}^{1}-\tilde{\theta}_{0,1}^{2}\right|=\frac{w\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}-N\left(\mathbf{A}^{c}\right)_{1}^{1}\right)}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}\left(\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}-w\right)} \leq \frac{w}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}}
$$

as claimed. So $\left|\tilde{\theta}_{0,1}^{1}-\tilde{\theta}_{0,1}^{2}\right| \leq \frac{w}{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1}}<\frac{1}{d_{5}}$, which is a contradiction. The case where $\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1}>d_{5},\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1} / w>d_{5}$ and $\tilde{k}=0$, and the case where $\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right|^{1} \leq d_{5} w$, lead to contradictions analogously to the two cases handled above. So it is not possible to move from $\left(\tilde{\boldsymbol{\theta}}_{0: w}^{1},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{1}\right)$ to $\left(\tilde{\boldsymbol{\theta}}_{0: w}^{2},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|^{2}\right)$ in one iteration of \bar{T}.

Next we show (C.48). By Lemma C.5, (C.47), (C.50), and $B_{2} \subset E_{2}$, there is some $d_{6}>0$ that depends only on w such that

$$
\begin{align*}
& \quad \min _{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right) \in F_{2}} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \\
& \geq \min _{\tilde{\boldsymbol{\theta}}_{0: w} \in E_{2}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \\
& \geq \min _{\tilde{\boldsymbol{\theta}}_{0: w} \in E_{2}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup E_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \geq d_{6} . \tag{C.54}
\end{align*}
$$

Also, by Lemma C. 5 and $E_{1} \backslash B_{1} \subset\left(B_{1} \cup B_{2}\right)^{c}$, there exists $d_{7}>0$ that depends only on w such that

$$
\begin{align*}
& \min _{\tilde{\boldsymbol{\theta}}_{0: w} \in\left(E_{1} \cup E_{2}\right)^{c}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \\
& \geq \min _{\tilde{\boldsymbol{\theta}}_{0: w} \in E_{1}^{c}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in E_{1} \backslash B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \geq d_{7} . \tag{C.55}
\end{align*}
$$

Additionally, by Lemma C.6, $\exists d_{8}>0$ such that

$$
\begin{align*}
& \min _{\tilde{\boldsymbol{\theta}}_{0: w}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|:\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|,\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right| / w \leq d_{5}} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \\
& \geq \min _{\tilde{\boldsymbol{\theta}}_{0: w}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|:\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|,\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right| / w \leq d_{5}} \operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)>d_{8} .\right. \tag{C.56}
\end{align*}
$$

Also, for any $\boldsymbol{\theta}_{1: w}$ such that $\left(\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}\right) \in\left(E_{1} \cup E_{2}\right)^{c}$, a ball of radius $\epsilon_{1} / 2=\epsilon / 6$ centered at $\left(\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}\right)$ is entirely contained in $\left(B_{1} \cup B_{2}\right)^{c}$. By Lemma C.7, $\exists d_{9}>0$

$$
\begin{align*}
& \min _{\tilde{\boldsymbol{\theta}}_{0: w}: \exists\left(\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{\prime}\right) \in\left(E_{1} \cup E_{2}\right)^{c}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right| \leq d_{5}} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \tag{C.57}\\
& \geq \min _{\tilde{\boldsymbol{\theta}}_{0: w}: \exists\left(\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{\prime}\right) \in\left(E_{1} \cup E_{2}\right)^{c}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right| \leq d_{5}} \operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B\left(\left(\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}^{\prime}\right), \epsilon_{1} / 2\right)\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right) \geq d_{9} .\right.
\end{align*}
$$

By the analogous argument, $\exists d_{10}>0$

$$
\begin{equation*}
\min _{\tilde{\boldsymbol{\theta}}_{0: w}: \exists\left(\boldsymbol{\theta}_{0}^{\prime}, \tilde{\boldsymbol{\theta}}_{1: w}\right) \in\left(E_{1} \cup E_{2}\right)^{c}} \min _{\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right| / w \leq d_{5}} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \geq d_{10} \tag{C.58}
\end{equation*}
$$

By (C.50),

$$
\begin{aligned}
\left(F_{1} \cup F_{2}\right)^{c}= & \left\{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right): \tilde{\boldsymbol{\theta}}_{0: w} \in\left(E_{1} \cup E_{2}\right)^{c} \vee \max \left\{\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|,\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right| / w\right\} \leq d_{5}\right\} \\
& \cup\left\{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right):\left|\mathbf{N}\left(\mathbf{A}^{c}\right)\right| / w \leq d_{5} \wedge \exists \boldsymbol{\theta}_{0} \text { s.t. }\left(\boldsymbol{\theta}_{0}, \tilde{\boldsymbol{\theta}}_{1: w}\right) \in\left(E_{1} \cup E_{2}\right)^{c}\right\} \\
& \cup\left\{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right):\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right| \leq d_{5} \wedge \exists \boldsymbol{\theta}_{1: w} \text { s.t. }\left(\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1: w}\right) \in\left(E_{1} \cup E_{2}\right)^{c}\right\}
\end{aligned}
$$

and due to C.55)-(C.58) we have

$$
\min _{\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right| \mid \in\left(F_{1} \cup F_{2}\right)^{c}\right.} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \geq \min \left\{d_{7}, d_{8}, d_{9}, d_{10}\right\}>0
$$

Combining this result with (C.54) yields (C.48).
Now we prove the second part of Proposition C.1. Using Lemma C. 3 and (C.48),

$$
\begin{align*}
& \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{2}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{2}\right)\right.} \\
& =\frac{\sum_{\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{2}\right.} \operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right) \pi\left(\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \tilde{\boldsymbol{\theta}}_{0: w} \mid \mathbf{S}\right)\right.}{\sum_{\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{2}\right.} \operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right) \pi\left(\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \tilde{\boldsymbol{\theta}}_{0: w} \mid \mathbf{S}\right)\right.} \\
& \geq \min _{\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{2}\right.} \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1}\left|\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|, \mathbf{S}\right)\right.} \geq d_{4} .
\end{align*}
$$

Analogously,

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right)\right.} \geq d_{4} . \tag{C.60}
\end{equation*}
$$

Then by symmetry we have

$$
\frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right)\right.} \geq d_{4}
$$

which combined with (C.60) yields

$$
\begin{equation*}
\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right) \geq \frac{d_{4}}{2+d_{4}}>0 .\right. \tag{C.61}
\end{equation*}
$$

Again using Lemma C.3.

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S}\right)}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S}\right)} \geq \min \left\{\frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{2}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{2}\right)\right.}\right. \\
&\left.\frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{2}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{2}\right)\right.}\right\}
\end{aligned}
$$

Using this fact and (C.59) and since the ratios in (5.25) are exponentially decreasing in L,

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{2}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{2}\right)\right.} \tag{C.62}
\end{equation*}
$$

is also exponentially decreasing in L. Also, using (C.60)-(C.61),

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{2}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{2}\right)\right.} \\
& =\frac{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1},\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{2}\right| \mathbf{S}\right)\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2},\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{2}\right| \mathbf{S}\right)\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\operatorname{Pr}\left(\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{1}\right| \mathbf{S}\right)+\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right) \operatorname{Pr}\left(\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right| \mathbf{S}\right)\right.\right.\right.}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mid \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right) \operatorname{Pr}\left(\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2} \mid \mathbf{S}\right)\right.\right.} \\
& =\frac{\frac{\left.\operatorname{Pr}\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right) \in F_{1} \mid \mathbf{S}\right)}{\operatorname{Pr}\left(\left(\boldsymbol{\theta}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right) \notin F_{1} \cup F_{2} \mid \mathbf{S}\right)}+\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \in B_{1} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0}: w,\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right) \notin F_{1} \cup F_{2}\right)}{\operatorname{Pr}\left(\boldsymbol{\theta}_{0: w} \notin B_{1} \cup B_{2} \mid \mathbf{S},\left(\tilde{\boldsymbol{\theta}}_{0, w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right| \mid \notin F_{1} \cup F_{2}\right)\right.} \\
& \leq\left(\frac{2+d_{4}}{d_{4}}\right) \frac{\operatorname{Pr}\left(\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mathbf{N}\left(\mathbf{A}^{(1)}\right) \mid\right) \in F_{1} \mid \mathbf{S}\right)}{\operatorname{Pr}\left(\left(\tilde{\boldsymbol{\theta}}_{0: w}, \mathbf{N}\left(\mathbf{A}^{(1)}\right) \mid\right) \notin F_{1} \cup F_{2} \mid \mathbf{S}\right)}+\frac{1}{d_{4}} .
\end{aligned}
$$

Combining with the fact that (C.62) is exponentially decreasing in L,
$\frac{\operatorname{Pr}\left(\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right) \notin F_{1} \cup F_{2} \mid \mathbf{s}\right)}{\left.\operatorname{Pr}\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)}\right)\right|\right) \in F_{1} \mid \mathbf{S}\right)}$ is also exponentially decreasing in L. By symmetry,
$\frac{\operatorname{Pr}\left(\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \notin F_{1} \cup F_{2}\right| \mathbf{s}\right)\right.}{\operatorname{Pr}\left(\left(\tilde{\boldsymbol{\theta}}_{0: w},\left|\mathbf{N}\left(\mathbf{A}^{(1)} \mid\right) \in F_{2}\right| \mathbf{s}\right)\right.}$ decreases exponentially in L, proving Proposition C.1.

