Web Appendix for "Convergence Rate of Markov Chain Methods for Genomic Motif Discovery" by D. B. Woodard and J. S. Rosenthal

C.1 List of Symbols

Here is a list of symbols used in the main manuscript and in this Web Appendix.

- w: fixed motif length.
- L: length of the observed nucleotide sequence **S**.
- M: known number of nucleotide types (typically =4 in practice).
- J: number of motifs in the generative model (defined in Assumption 3.2)
- p_0 : fixed motif frequency in the inference model (defined Section 2.1).
- $\mathbf{S} = (S_1, \ldots, S_L)$: observed sequence of nucleotides (defined Sec. 2.1).
- $\mathbf{A} = (A_1, \ldots, A_{L/w})$: unknown vector of motif indicators (defined Sec. 2.1).
- $\mathcal{X} = \{0, 1\}^{L/w}$: space of possible values for **A** (defined in Sec. 2.1).
- $\boldsymbol{\theta}_0$: unknown length-*M* vector of background nucleotide frequencies (defined Sec. 2.1).
- $\boldsymbol{\theta}_{1:w} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_w)$: unknown matrix of position-specific nucleotide frequencies within the motif, where $\boldsymbol{\theta}_k$ has length M (defined Sec. 2.1).
- $\mathbf{N}(\mathbf{A}^c)$; $\mathbf{N}(\mathbf{A}^{(k)})$; $\mathbf{N}(\mathbf{S})$: length-*M* nucleotide count vectors defined in (2.1).
- $\mathbf{A}_{[-i]}$: vector \mathbf{A} with *i*th element removed; $\mathbf{A}_{[i,0]}, \mathbf{A}_{[i,1]}$: vector \mathbf{A} with *i*th element replaced by 0 or 1, respectively.
- $\beta_0, \beta_1, \ldots, \beta_w$: fixed length-*M* vectors of constants (hyperparameters) used in the prior distribution of $\theta_{0:w}$ (defined Sec. 2.1).
- p_1, \ldots, p_J : as part of the generative model, the frequencies of the different "true" motifs (defined in Assumption 3.2).
- $\boldsymbol{\theta}_0^*$: as a part of the generative model, the true value of $\boldsymbol{\theta}_0$ (defined in Assumption 3.2).

- $\boldsymbol{\theta}_{1:w}^{j*}: j \in \{1, \ldots, J\}$: as a part of the generative model, the multiple "true" values of the matrix $\boldsymbol{\theta}_{1:w}$ (defined in Assumption 3.2).
- $\operatorname{Gap}(T)$: the spectral gap of a transition matrix T (defined in Section 2.3).
- $\pi(\ldots)$: the likelihood, the prior, or the full, marginal, or conditional posterior distributions of the parameters, as distinguished by the arguments.
- C(A); C(S): length-2^w vectors of counts (defined in (5.3) and (5.4)).
- $\bar{\mathcal{X}}$: space of possible values for $\mathbf{C}(\mathbf{A})$ (defined in (5.5)).
- $\bar{\pi}(\mathbf{c}|\mathbf{S})$: the marginal posterior distribution of $\mathbf{C}(\mathbf{A})$, sometimes written with the dependence on **S** suppressed (defined in (5.7)).
- T: the Markov transition matrix (2.6) associated with the Gibbs sampler; T: the projection matrix (5.9) associated with the summary vector $\mathbf{C}(\mathbf{A})$.

C.2Proof of Lemma 3.1

For notational simplicity we give the proof for the case M = 2. With this choice, recall from (5.24) that the free parameters in $\boldsymbol{\theta}_{0:w}$ are $\theta_{k,1} \in [0,1]$ for $k \in \{0,\ldots,w\}$, so we can write $\boldsymbol{\theta}_{0:w} \in [0,1]^{w+1} \text{ and } \boldsymbol{\theta}_{1:w} \in [0,1]^w.$ Let $\sum p_j$ be shorthand for $\sum_{j=1}^J p_j$. Define

$$\phi \triangleq \min\left\{\frac{(1-\sum p_j)\,\theta_{0,1}^*}{1-p_1}, \ 1-\left[\frac{(1-\sum p_j)\,\theta_{0,1}^*+\sum_{j=2}^J p_j}{1-p_1}\right]\right\}.$$
 (C.1)

By Assumption 3.2 $\theta_{0,1}^* \in (0,1), p_j > 0$, and $\sum p_j < 1$, so

$$\phi \in \left(0, \, \min\{\theta_{0,1}^*, 1 - \theta_{0,1}^*\}\right). \tag{C.2}$$

Using (3.4), define

$$\zeta \triangleq (\phi/4)^{\max\{4/\phi, 2/a\}} < \phi/4 < 1/4.$$
(C.3)

The constants $\phi, \zeta \in (0,1)$ do not depend on w. Then, for any $w \in \{1,2,\ldots\}$ and $j \in \{1,2,\ldots\}$ $\{1,\ldots,J\}$ define

$$H_w^j \triangleq \left\{ \boldsymbol{\theta}_{1:w} \in [0,1]^w : |\theta_{k,1} - \theta_{k,1}^{j*}| \le \zeta \; \forall k \in \{1,\dots,w\} \right\}.$$
(C.4)

$$B_w^j \triangleq \left\{ \boldsymbol{\theta}_{0:w} \in [0,1]^{w+1} : \boldsymbol{\theta}_{1:w} \in H_w^1, \ \theta_{0,1} \in [\phi - \zeta, 1 - \phi + \zeta] \right\}.$$
(C.5)

Since $\phi - \zeta > 0$, the interval $[\phi - \zeta, 1 - \phi + \zeta]$ is bounded away from zero and one. By Assumption 3.3, for w large enough and all $j, j' \in \{1, \ldots, J\}$ with $j \neq j'$ there is some $k \in \{1, \dots, w\}$ such that $t_k^j \neq t_k^{j'}$. For this k we have $\theta_{k,1}^{j*} = 1 - \theta_{k,1}^{j'*}$, so $|\theta_{k,1}^{j*} - \theta_{k,1}^{j'*}| = 1 > 2\zeta$. So B_w^j and $B_w^{j'}$ are disjoint.

Next we find a point $\boldsymbol{\theta}_{0:w}^{(1)} \in B_w^1$ such that $\sup_{\partial B_w^1} \eta < \eta(\boldsymbol{\theta}_{0:w}^{(1)})$. Then for any $j \neq 1$, $\exists \boldsymbol{\theta}_{0:w}^{(j)} \in B_w^j$ with $\sup_{\partial B_w^j} \eta < \eta(\boldsymbol{\theta}_{0:w}^{(j)})$ by symmetry, showing that (3.1) holds. Also define

$$h_{w}(\boldsymbol{\theta}_{0:w}) \triangleq \sum_{s \in \{1,2\}^{w}} \left[p_{1} \prod_{k=1}^{w} \theta_{k,s_{k}}^{1*} \right] \log \left[p_{0} \prod_{k=1}^{w} \theta_{k,s_{k}} \right] \\ + \sum_{s \in \{1,2\}^{w}} \left[\sum_{j=2}^{J} p_{j} \prod_{k=1}^{w} \theta_{k,s_{k}}^{j*} + (1 - \sum p_{j}) \prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \log \left[(1 - p_{0}) \prod_{k=1}^{w} \theta_{0,s_{k}} \right]$$
(C.6)

and note that

$$\partial B_w^1 = \operatorname{cl}(B_w^1) \cap \operatorname{cl}([0,1]^{w+1} \backslash B_w^1) \qquad \subset B_w^1 \tag{C.7}$$

since B_w^1 is closed. By (C.4)-(C.5),

$$\partial B_w^1 \subset \{ \boldsymbol{\theta}_{0:w} : \theta_{0,1} \in \{ \phi - \zeta, 1 - \phi + \zeta \} \} \cup \{ \boldsymbol{\theta}_{0:w} : \exists k : |\theta_{k,1} - \theta_{k,1}^{1*}| = \zeta \}.$$
(C.8)

Lemma C.1 below shows that $h_w(\boldsymbol{\theta}_{0:w})$ is maximized at $(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*}) \in B_w^1$ for some $\hat{\boldsymbol{\theta}}_0$. We will show that

$$\inf_{\boldsymbol{\theta}_{0:w} \in \partial B_w^1} \left[E \log f(\mathbf{s} | (\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*})) - E \log f(\mathbf{s} | \boldsymbol{\theta}_{0:w}) \right] > 0.$$
(C.9)

Lemma C.1 shows that $\exists b > 0$ such that for any w,

$$\inf_{\boldsymbol{\theta}_{0:w} \in \partial B_w^1} \left[h_w(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*}) - h_w(\boldsymbol{\theta}_{0:w}) \right] > b > 0.$$
(C.10)

For any constants a_1, a_2, b_1, b_2 we have that $a_1 - a_2 \ge b_1 - b_2 - |a_1 - b_1| - |a_2 - b_2|$. So for any $\boldsymbol{\theta}_{0:w} \in \partial B_w^1$,

$$E \log f(\mathbf{s}|(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1:w}^{1*})) - E \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$$

$$\geq h_{w}(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1:w}^{1*}) - h_{w}(\boldsymbol{\theta}_{0:w}) - |E \log f(\mathbf{s}|(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1:w}^{1*})) - h_{w}(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1:w}^{1*})|$$

$$- |E \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) - h_{w}(\boldsymbol{\theta}_{0:w})|.$$

Combining this with (C.7), (C.10), and Lemma C.2 below, for w large enough and any $\theta_{0:w} \in \partial B^1_w$

$$E\log f(\mathbf{s}|(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*})) - E\log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) > b - b/4 - b/4 \qquad = b/2$$

So (C.9) holds for w large enough, proving Lemma 3.1.

Finally, we give the results used in the proof of Lemma 3.1.

Lemma C.1. Under Assumptions 3.1-3.3, for any w the function $h_w(\boldsymbol{\theta}_{0:w})$ defined in (C.6) is maximized at $(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*})$ where

$$\hat{\theta}_{0,1} \triangleq \frac{w \left(1 - \sum p_j\right) \theta_{0,1}^* + \sum_{j=2}^J p_j \sum_{k=1}^w \theta_{k,1}^{j*}}{w(1 - p_1)} \in [\phi, 1 - \phi].$$
(C.11)

Also, using the definitions (C.5) and (C.7), Equation (C.10) holds for some b that does not depend on w.

Proof. For $\mathbf{s} \in \{1,2\}^w$ and $m \in \{1,2\}$ let $\#\{s_k = m\}$ denote the number of indices $k \in \{1,\ldots,w\}$ for which $s_k = m$. Then

$$\frac{\partial}{\partial \theta_{k,1}} h_w(\boldsymbol{\theta}_{0:w}) = \sum_{\mathbf{s}} \left[p_1 \prod_{k'=1}^w \theta_{k',s_{k'}}^{1*} \right] \left[\frac{\mathbf{1}_{\{s_k=1\}}}{\theta_{k,1}} - \frac{\mathbf{1}_{\{s_k=2\}}}{1 - \theta_{k,1}} \right] \qquad k \in \{1,\dots,w\} \\
= \frac{p_1 \theta_{k,1}^{1*}}{\theta_{k,1}} - \frac{p_1 (1 - \theta_{k,1}^{1*})}{1 - \theta_{k,1}} \qquad (C.12)$$

$$\frac{\partial}{\partial\theta_{0,1}}h_w(\boldsymbol{\theta}_{0:w}) = \sum_{\mathbf{s}} \left[\sum_{j=2}^J p_j \prod_{k=1}^w \theta_{k,s_k}^{j*} + (1-\sum p_j) \prod_{k=1}^w \theta_{0,s_k}^* \right] \left[\frac{\#\{s_k=1\}}{\theta_{0,1}} - \frac{\#\{s_k=2\}}{1-\theta_{0,1}} \right] \\
= \frac{1}{\theta_{0,1}} \left(\sum_{j=2}^J p_j \sum_{k=1}^w \theta_{k,1}^{j*} + w(1-\sum p_j)\theta_{0,1}^* \right) \\
- \frac{1}{1-\theta_{0,1}} \left(\sum_{j=2}^J p_j \sum_{k=1}^w (1-\theta_{k,1}^{j*}) + w(1-\sum p_j)(1-\theta_{0,1}^*) \right).$$
(C.13)

Setting this equal to zero and solving for $\theta_{0,1}$ and $\theta_{k,1}$ shows that $h_w(\boldsymbol{\theta}_{0:w})$ has a stationary point at $(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*})$. Using (C.1), $\hat{\theta}_{0,1} \in [\phi, 1 - \phi]$.

Note that $\frac{\partial^2}{\partial \theta_{k,1} \partial \theta_{k',1}} h_w(\boldsymbol{\theta}_{0:w}) = 0$ for any $k \neq k'$, that $\frac{\partial^2}{\partial \theta_{k,1} \partial \theta_{0,1}} h_w(\boldsymbol{\theta}_{0:w}) = 0$ for any k, and that

$$\frac{\partial^2}{\partial \theta_{k,1}^2} h_w(\boldsymbol{\theta}_{0:w}) = -\frac{p_1 \theta_{k,1}^{1*}}{\theta_{k,1}^2} - \frac{p_1 (1 - \theta_{k,1}^{1*})}{(1 - \theta_{k,1})^2} \le -p_1 \theta_{k,1}^{1*} - p_1 (1 - \theta_{k,1}^{1*}) = -p_1 \quad (C.14)$$

$$\frac{\partial^2}{\partial \theta_{0,1}^2} h_w(\boldsymbol{\theta}_{0:w}) = -\frac{1}{\theta_{0,1}^2} \left(\sum_{j=2}^J p_j \sum_{k=1}^w \theta_{k,1}^{j*} + w(1 - \sum p_j) \theta_{0,1}^* \right) \\
- \frac{1}{(1 - \theta_{0,1})^2} \left(\sum_{j=2}^J p_j \sum_{k=1}^w (1 - \theta_{k,1}^{j*}) + w(1 - \sum p_j)(1 - \theta_{0,1}^*) \right) \\
\le -w(1 - p_1) \le -(1 - p_1). \quad (C.15)$$

So $h_w(\boldsymbol{\theta}_{0:w})$ is maximized at $(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*})$.

To show the second part of Lemma C.1, recall (C.8). We first address $\boldsymbol{\theta}_{0:w}$ such that $\theta_{0,1} = 1 - \phi + \zeta$. Using (C.13) we have $\frac{\partial}{\partial \theta_{0,1}} h_w(\boldsymbol{\theta}_{0:w})\Big|_{\boldsymbol{\theta}_{0,1} = \hat{\boldsymbol{\theta}}_{0,1}} = 0$. Applying (C.15), for any $\boldsymbol{\theta}_{0:w}$ such that $\theta_{0,1} = 1 - \phi + \zeta$,

$$h_{w}(\boldsymbol{\theta}_{0:w}) - h_{w}(\hat{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1:w}) = \int_{\hat{\theta}_{0,1}}^{1-\phi+\zeta} \frac{\partial}{\partial \theta_{0,1}} h_{w}(\boldsymbol{\theta}_{0:w}) \Big|_{\boldsymbol{\theta}_{0,1}=z} dz$$

$$= \int_{\hat{\theta}_{0,1}}^{1-\phi+\zeta} \int_{\hat{\theta}_{0,1}}^{z} \frac{\partial^{2}}{\partial \theta_{0,1}^{2}} h_{w}(\boldsymbol{\theta}_{0:w}) \Big|_{\boldsymbol{\theta}_{0,1}=w} dw dz$$

$$\leq -(1-p_{1})(1-\phi+\zeta-\hat{\theta}_{0,1})^{2}/2 \leq -(1-p_{1})\zeta^{2}/2.$$
(C.16)

By (C.12), for any fixed value of $\boldsymbol{\theta}_0$ the function $h_w(\boldsymbol{\theta}_{0:w})$ is maximized at $(\boldsymbol{\theta}_0, \boldsymbol{\theta}_{1:w}^{1*})$. Combining with (C.16),

$$\inf_{\boldsymbol{\theta}_{0:w}:\theta_{0,1}=1-\phi+\zeta} \left[h_w(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*}) - h_w(\boldsymbol{\theta}_{0:w}) \right] \ge \inf_{\boldsymbol{\theta}_{0:w}:\theta_{0,1}=1-\phi+\zeta} \left[h_w(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*}) - h_w(\boldsymbol{\theta}_0, \boldsymbol{\theta}_{1:w}^{1*}) \right] \\
\ge (1-p_1)\zeta^2/2 \tag{C.17}$$

which is positive and does not depend on w.

Analogously, for $\boldsymbol{\theta}_{0:w}$ such that $\theta_{0,1} = \phi - \zeta$ we have

$$\inf_{\boldsymbol{\theta}_{0:w}:\boldsymbol{\theta}_{0,1}=\phi-\zeta} \left[h_w(\hat{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}^{1*}) - h_w(\boldsymbol{\theta}_{0:w}) \right] \ge (1-p_1)\zeta^2/2.$$
(C.18)

Using the analogous argument to handle the case where $\exists k : |\theta_{k,1} - \theta_{k,1}^{1*}| = \zeta$, and combining with (C.8), (C.17) and (C.18) yields (C.10). This proves Lemma C.1.

Lemma C.2. Under Assumptions 3.1-3.3 and using the definitions (C.5) and (C.6),

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_w^1} |E\log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) - h_w(\boldsymbol{\theta}_{0:w})| \xrightarrow{w \to \infty} 0.$$
(C.19)

Proof. Using Assumption 3.3, $\prod_{k=1}^{w} \theta_{k,s_k}^{1*} = 1$ if $\mathbf{s} = \mathbf{t}_{1:w}^1$ and $\prod_{k=1}^{w} \theta_{k,s_k}^{1*} = 0$ for all other $\mathbf{s} \in \{1,2\}^w$. Combining with (2.8) and (3.3), the first term of $E \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) = \sum_{\mathbf{s}} g_{\boldsymbol{\theta}^*}(\mathbf{s}) \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$

is

$$\sum_{\mathbf{s}} \left[p_1 \prod_{k=1}^{w} \theta_{k,s_k}^{1*} \right] \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$$
(C.20)
= $p_1 \log \left[p_0 \prod_{k=1}^{w} \theta_{k,t_k^1} + (1-p_0) \prod_{k=1}^{w} \theta_{0,t_k^1} \right].$

We have that

$$\log\left[p_0\prod_{k=1}^{w}\theta_{k,t_k^1} + (1-p_0)\prod_{k=1}^{w}\theta_{0,t_k^1}\right] - \log\left[p_0\prod_{k=1}^{w}\theta_{k,t_k^1}\right] \ge 0.$$
(C.21)

Also, using (C.3)-(C.5) and the fact that $\theta_{k,t_k^1}^{1*} = 1$ for all $k \in \{1, \dots, w\}$,

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_w^1} \frac{(1-p_0)\prod_{k=1}^w \theta_{0,t_k^1}}{p_0\prod_{k=1}^w \theta_{k,t_k^1}} \le \frac{(1-p_0)(1-\phi+\zeta)^w}{p_0(1-\zeta)^w} \xrightarrow{w\to\infty} 0$$

since $1 - \phi + \zeta < 1 - \zeta$. So

$$\begin{split} \sup_{\boldsymbol{\theta}_{0:w}\in B_{w}^{1}} \left(\log \left[p_{0} \prod_{k=1}^{w} \theta_{k,t_{k}^{1}} + (1-p_{0}) \prod_{k=1}^{w} \theta_{0,t_{k}^{1}} \right] - \log \left[p_{0} \prod_{k=1}^{w} \theta_{k,t_{k}^{1}} \right] \right) \\ \leq \log \left[1 + \frac{(1-p_{0})(1-\phi+\zeta)^{w}}{p_{0}(1-\zeta)^{w}} \right] \xrightarrow{w \to \infty} 0. \end{split}$$

Combining with (C.21),

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_w^1} \left| \log \left[p_0 \prod_{k=1}^w \theta_{k,t_k^1} + (1-p_0) \prod_{k=1}^w \theta_{0,t_k^1} \right] - \log \left[p_0 \prod_{k=1}^w \theta_{k,t_k^1} \right] \right| \stackrel{w \to \infty}{\longrightarrow} 0.$$

So, using (C.20),

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_w^1} \left| \sum_{\mathbf{s}} \left[p_1 \prod_{k=1}^w \theta_{k,s_k}^{1*} \right] \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) - \sum_{\mathbf{s}} \left[p_1 \prod_{k=1}^w \theta_{k,s_k}^{1*} \right] \log \left[p_0 \prod_{k=1}^w \theta_{k,s_k}^{1*} \right] \right|$$
$$\underset{\longrightarrow}{w \to \infty} 0. \tag{C.22}$$

Next we approximate the middle terms of $\sum_{\mathbf{s}} g_{\boldsymbol{\theta}^*}(\mathbf{s}) \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$. Using (2.8), (3.3), and Assumption 3.3 they are of the following form for $j \in \{2, \ldots, J\}$.

$$\sum_{\mathbf{s}} \left[p_j \prod_{k=1}^w \theta_{k,s_k}^{j*} \right] \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$$

$$= p_j \log \left[p_0 \prod_{k=1}^w \theta_{k,t_k^j} + (1-p_0) \prod_{k=1}^w \theta_{0,t_k^j} \right].$$
(C.23)

We have that

$$\log\left[p_0\prod_{k=1}^{w}\theta_{k,t_k^j} + (1-p_0)\prod_{k=1}^{w}\theta_{0,t_k^j}\right] - \log\left[(1-p_0)\prod_{k=1}^{w}\theta_{0,t_k^j}\right] \ge 0.$$
(C.24)

Let $\#\{t_k^j = t_k^1\}$ indicate the number of indices $k \in \{1, \dots, w\}$ for which $t_k^j = t_k^1$. Using (C.4)-(C.5) and the fact that $\theta_{k,t_k^j}^{1*} = 0$ for all k such that $t_k^j \neq t_k^1$, we have that

$$\sup_{\boldsymbol{\theta}_{0:w} \in B_w^1} \frac{p_0 \prod_{k=1}^w \theta_{k,t_k^j}}{(1-p_0) \prod_{k=1}^w \theta_{0,t_k^j}} \le \frac{p_0 \zeta^{\#\{t_k^j \neq t_k^1\}}}{(1-p_0)(\phi-\zeta)^w}.$$

Combining this with Assumption 3.3 and (C.3), for all w large enough

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_{w}^{1}} \frac{p_{0}\prod_{k=1}^{w}\theta_{k,t_{k}^{j}}}{(1-p_{0})\prod_{k=1}^{w}\theta_{0,t_{k}^{j}}} \leq \frac{p_{0}\zeta^{wa/2}}{(1-p_{0})(\phi-\zeta)^{w}} \leq \frac{p_{0}(\phi/4)^{w}}{(1-p_{0})(\phi-\zeta)^{w}} \xrightarrow{w \to \infty} 0$$

since $\phi/4 < \phi - \zeta$. So

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_{w}^{1}} \left(\log \left[p_{0} \prod_{k=1}^{w} \theta_{k,t_{k}^{j}} + (1-p_{0}) \prod_{k=1}^{w} \theta_{0,t_{k}^{j}} \right] - \log \left[(1-p_{0}) \prod_{k=1}^{w} \theta_{0,t_{k}^{j}} \right] \right) \\
\leq \log \left[\frac{p_{0}(\phi/4)^{w}}{(1-p_{0})(\phi-\zeta)^{w}} + 1 \right] \xrightarrow{w \to \infty} 0. \tag{C.25}$$

Using (C.24) and (C.25),

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_{w}^{1}} \left| \log \left[p_{0} \prod_{k=1}^{w} \theta_{k,t_{k}^{j}} + (1-p_{0}) \prod_{k=1}^{w} \theta_{0,t_{k}^{j}} \right] - \log \left[(1-p_{0}) \prod_{k=1}^{w} \theta_{0,t_{k}^{j}} \right] \right| \stackrel{w \to \infty}{\longrightarrow} 0.$$

Combining with (C.23), for $j \in \{2, \ldots, J\}$

$$\sup_{\boldsymbol{\theta}_{0:w} \in B_{w}^{1}} \left| \sum_{\mathbf{s}} \left[p_{j} \prod_{k=1}^{w} \theta_{k,s_{k}}^{j*} \right] \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) - \sum_{\mathbf{s}} \left[p_{j} \prod_{k=1}^{w} \theta_{k,s_{k}}^{j*} \right] \log \left[(1-p_{0}) \prod_{k=1}^{w} \theta_{0,s_{k}} \right] \right|$$
$$\overset{w \to \infty}{\longrightarrow} 0. \tag{C.26}$$

Finally we address the last term of term of $\sum_{\mathbf{s}} g_{\theta^*}(\mathbf{s}) \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$. Using (2.8) and (3.3) it is

$$\sum_{\mathbf{s}} \left[(1 - \sum p_j) \prod_{k=1}^w \theta_{0,s_k}^* \right] \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$$
$$= \sum_{\mathbf{s}} \left[(1 - \sum p_j) \prod_{k=1}^w \theta_{0,s_k}^* \right] \log \left[p_0 \prod_{k=1}^w \theta_{k,s_k} + (1 - p_0) \prod_{k=1}^w \theta_{0,s_k} \right]. \quad (C.27)$$

We will show that a subset of sequences \mathbf{s} can be omitted when considering (C.27). Denote by F(x; n, q) the cumulative distribution function of a Binomial(n, q) random variable, evaluated at $x \in \mathbb{R}$. For $\mathbf{s} \in \{1, 2\}^w$ recall that $\#\{s_k \neq t_k^1\}$ denotes the number of indices $k \in \{1, \ldots, w\}$ for which $s_k \neq t_k^1$. Define

$$D_w \triangleq \left\{ \mathbf{s} : \# \{ s_k \neq t_k^1 \} > w\phi/4 \right\}.$$
(C.28)

Then

$$\sum_{\mathbf{s}\in D_{w}} \left[\prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right]$$

$$\geq \max \left\{ \sum_{\mathbf{s}:\#\{s_{k}\neq t_{k}^{1}, t_{k}^{1}=1\} > w\phi/4} \left[\prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right], \sum_{\mathbf{s}:\#\{s_{k}\neq t_{k}^{1}, t_{k}^{1}=2\} > w\phi/4} \left[\prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \right\}$$

$$= \max \left\{ \sum_{\mathbf{s}:\#\{s_{k}=2, t_{k}^{1}=1\} > w\phi/4} \left[\prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right], \sum_{\mathbf{s}:\#\{s_{k}=1, t_{k}^{1}=2\} > w\phi/4} \left[\prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \right\}$$

$$= \max \left\{ 1 - F(w\phi/4; \#\{t_{k}^{1}=1\}, 1 - \theta_{0,1}^{*}), 1 - F(w\phi/4; \#\{t_{k}^{1}=2\}, \theta_{0,1}^{*}) \right\}. \quad (C.29)$$

For fixed x, F(x; n, q) is monotonic nonincreasing in n and q. Using (C.2) and (C.29), since $\phi < \min\{\theta_{0,1}^*, 1 - \theta_{0,1}^*\}$ and $w/2 \le \max\{\#\{t_k^1 = 1\}, \ \#\{t_k^1 = 2\}\}$, we have the following.

$$\sum_{\mathbf{s}\in D_{w}} \left[\prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \geq \max \left\{ 1 - F\left(w\phi/4; \#\{t_{k}^{1}=1\}, \phi\right), \ 1 - F\left(w\phi/4; \#\{t_{k}^{1}=2\}, \phi\right) \right\}$$
$$= 1 - F\left(w\phi/4; \max\left\{\#\{t_{k}^{1}=1\}, \#\{t_{k}^{1}=2\}\right\}, \phi\right)$$
$$\geq 1 - F\left(w\phi/4; w/2, \phi\right).$$
(C.30)

Using the normal approximation to the binomial distribution, the quantity $F(w\phi/4; w/2, \phi)$ decays exponentially in w. So by (C.30), the sum

$$\sum_{\mathbf{s}\notin D_w} \left[\prod_{k=1}^w \theta_{0,s_k}^* \right] = 1 - \sum_{\mathbf{s}\in D_w} \left[\prod_{k=1}^w \theta_{0,s_k}^* \right]$$
(C.31)

decays exponentially in w. Using this fact and (C.5),

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_{w}^{1}} \left| \sum_{\mathbf{s}\notin D_{w}} \left[(1-\sum p_{j}) \prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \log \left[p_{0} \prod_{k=1}^{w} \theta_{k,s_{k}} + (1-p_{0}) \prod_{k=1}^{w} \theta_{0,s_{k}} \right] \right| \\
\leq \sup_{\boldsymbol{\theta}_{0:w}\in B_{w}^{1}} \left[\sum_{\mathbf{s}\notin D_{w}} (1-\sum p_{j}) \prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \left| \min_{\mathbf{s}} \log \left[(1-p_{0}) \prod_{k=1}^{w} \theta_{0,s_{k}} \right] \right| \\
\leq \left[(1-\sum p_{j}) \sum_{\mathbf{s}\notin D_{w}} \prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \left| \log \left[(1-p_{0})(\phi-\zeta)^{w} \right] \right| \\
\overset{w\to\infty}{\longrightarrow} 0. \tag{C.32}$$

Using (C.3)-(C.5) and (C.28), for $\boldsymbol{\theta}_{0:w} \in B^1_w$ and $\mathbf{s} \in D_w$,

$$\frac{p_0 \prod_{k=1}^w \theta_{k,s_k}}{(1-p_0) \prod_{k=1}^w \theta_{0,s_k}} \leq \frac{p_0 \zeta^{\#\{s_k \neq t_k^1\}}}{(1-p_0)(\phi-\zeta)^w} \\ < \frac{p_0 \zeta^{w\phi/4}}{(1-p_0)(\phi-\zeta)^w} \\ \leq \frac{p_0 (\phi/4)^w}{(1-p_0)(\phi-\zeta)^w} \xrightarrow{w \to \infty} 0$$

uniformly over $\boldsymbol{\theta}_{0:w} \in B^1_w$ and $\mathbf{s} \in D_w$, since $\phi/4 < \phi - \zeta$. So

$$\sum_{\mathbf{s}\in D_{w}} \left[(1-\sum p_{j}) \prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \log \left[p_{0} \prod_{k=1}^{w} \theta_{k,s_{k}} + (1-p_{0}) \prod_{k=1}^{w} \theta_{0,s_{k}} \right] - \sum_{\mathbf{s}\in D_{w}} \left[(1-\sum p_{j}) \prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \log \left[(1-p_{0}) \prod_{k=1}^{w} \theta_{0,s_{k}} \right] \xrightarrow{w \to \infty} 0 \quad (C.33)$$

uniformly over $\boldsymbol{\theta}_{0:w} \in B^1_w$. Also, using an analogous argument to (C.32),

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_w^1} \left| \sum_{\mathbf{s}\notin D_w} \left[(1-\sum p_j) \prod_{k=1}^w \theta_{0,s_k}^* \right] \log \left[(1-p_0) \prod_{k=1}^w \theta_{0,s_k} \right] \right| \stackrel{w\to\infty}{\longrightarrow} 0.$$
(C.34)

Combining (C.32)-(C.34),

$$\sup_{\boldsymbol{\theta}_{0:w}\in B_{w}^{1}} \left| \sum_{\mathbf{s}} \left[(1-\sum p_{j}) \prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) - \sum_{\mathbf{s}} \left[(1-\sum p_{j}) \prod_{k=1}^{w} \theta_{0,s_{k}}^{*} \right] \log \left[(1-p_{0}) \prod_{k=1}^{w} \theta_{0,s_{k}} \right] \right| \xrightarrow{w \to \infty} 0.$$
(C.35)

Putting together the results (C.22), (C.26), and (C.35) for the various terms, we have that $\sum_{\mathbf{s}} g_{\boldsymbol{\theta}^*}(\mathbf{s}) \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$ converges to $h_w(\boldsymbol{\theta}_{0:w})$, uniformly over $\boldsymbol{\theta}_{0:w} \in B^1_w$.

C.3 Proof of Theorem 3.3

For simplicity of notation we state the proof for the case M = 2 and $\beta_{k,m} = 1$ for all k, m, although the proof is analogous for any other choices of these constants. Recall the definitions of $\mathbf{C}(\mathbf{A})$, $\bar{\mathcal{X}}$, $\bar{\pi}$, $D_{\mathbf{c}}$, and \bar{T} from Equations (5.3), (5.5), and (5.7)-(5.9). In the case w = 1 and M = 2 the vector $\mathbf{C}(\mathbf{A}) \in \bar{\mathcal{X}}$ only has two elements, $n \triangleq C(\mathbf{A})_1$ and $r \triangleq C(\mathbf{A})_2$. So we write $\bar{\pi}(n, r)$, suppressing the dependence of $\bar{\pi}$ on \mathbf{S} . Using (5.7), $\bar{\pi}(n, r) = \sum_{\mathbf{A}:\mathbf{C}(\mathbf{A})=(n,r)} \pi(\mathbf{A}|\mathbf{S})$. Since $D_{(n,r)} = \{\mathbf{A} \in \mathcal{X} : \mathbf{C}(\mathbf{A}) = (n, r)\}$, let $|D_{(n,r)}|$ be the cardinality of $D_{(n,r)}$ and note that $|D_{(n,r)}| = \binom{N(\mathbf{S})_1}{n} \binom{N(\mathbf{S})_2}{r}$. Using (5.6) we have $|\mathbf{A}| = n + r$, $N(\mathbf{A}^{(1)})_1 = n$, $N(\mathbf{A}^{(1)})_2 = r$, $N(\mathbf{A}^c)_1 = N(\mathbf{S})_1 - n$, and $N(\mathbf{A}^c)_2 = N(\mathbf{S})_2 - r$. Then $\bar{\pi}$ simplifies as follows, using (2.5):

$$\bar{\pi}(n,r) \propto |D_{(n,r)}| p_0^{n+r} (1-p_0)^{L-n-r} \frac{\Gamma(N(\mathbf{S})_1 - n + \beta_{0,1}) \Gamma(N(\mathbf{S})_2 - r + \beta_{0,2})}{\Gamma(L-n-r+|\boldsymbol{\beta}_0|)} \frac{\Gamma(n+\beta_{1,1}) \Gamma(r+\beta_{1,2})}{\Gamma(n+r+|\boldsymbol{\beta}_1|)}$$

$$= |D_{(n,r)}| p_0^{n+r} (1-p_0)^{L-n-r} \frac{\Gamma(N(\mathbf{S})_1 - n + 1)\Gamma(N(\mathbf{S})_2 - r + 1)}{\Gamma(L-n-r+2)} \frac{\Gamma(n+1)\Gamma(r+1)}{\Gamma(n+r+2)}$$

$$= \frac{N(\mathbf{S})_{1}!}{n!(N(\mathbf{S})_{1}-n)!} \left(\frac{N(\mathbf{S})_{2}!}{r!(N(\mathbf{S})_{2}-r)!}\right) p_{0}^{n+r} (1-p_{0})^{L-n-r} \times \frac{(N(\mathbf{S})_{1}-n)!(N(\mathbf{S})_{2}-r)!}{(L-n-r+1)!} \frac{n!r!}{(n+r+1)!}$$

$$\propto \frac{p_0^{n+r}(1-p_0)^{L-n-r}}{(L-n-r+1)!(n+r+1)!}.$$
(C.36)

This is a function of (n+r) only; $\bar{\pi}(n,r)$ is also unimodal in (n+r), shown as follows. The ratio

$$\frac{\bar{\pi}(n+1,r)}{\bar{\pi}(n,r)} = \frac{\bar{\pi}(n,r+1)}{\bar{\pi}(n,r)} = \frac{p_0}{1-p_0} \left(\frac{L-n-r+1}{n+r+2}\right)$$
(C.37)

is > 1 iff $n + r < p_0L + 3p_0 - 2$, showing that $\bar{\pi}(n, r)$ is unimodal in (n + r).

Using (2.6) and (5.9), in each iteration of T the quantity (n+r) can only be incremented or decremented by one. Using (C.37) we have that incrementing or decrementing (n+r) by one changes $\bar{\pi}(n,r)$ by no more than a factor of

$$d_2 \triangleq \max\left\{\frac{L-n-r+1}{(1-p_0)}, \frac{n+r+2}{p_0}\right\} = \mathcal{O}(L).$$
 (C.38)

We will find a lower bound for the quantity d defined in (5.11), by defining a path $\gamma_{\mathbf{c}_1,\mathbf{c}_2}$ in the graph of \overline{T} for every pair of states $\mathbf{c}_1, \mathbf{c}_2 \in \overline{\mathcal{X}}$. We will construct the paths in such a way that for any state $\mathbf{c} \in \gamma_{\mathbf{c}_1,\mathbf{c}_2}$ we have $\overline{\pi}(\mathbf{c}) \geq \min\{\overline{\pi}(\mathbf{c}_1), \overline{\pi}(\mathbf{c}_2)\}/d_2$. Denote $\mathbf{c}_1 = (n_1, r_1)$ and $\mathbf{c}_2 = (n_2, r_2)$. If $n_1 \leq n_2$ and $r_1 \leq r_2$, then construct the path by first increasing the first coordinate n from n_1 to n_2 , then by increasing the second coordinate r from r_1 to r_2 . Along this path, n + r increases at every step. Since $\bar{\pi}(n, r)$ is a function only of n + r and is unimodal in n + r, we have that for states (n, r) along the path,

$$\bar{\pi}(n,r) \ge \min\{\bar{\pi}(n_1,r_1), \bar{\pi}(n_2,r_2)\} \ge \min\{\bar{\pi}(n_1,r_1), \bar{\pi}(n_2,r_2)\}/d_2.$$

The case where $n_1 \geq n_2$ and $r_1 \geq r_2$ is analogous, since we can construct a path in the opposite direction as above. Now consider the case where $n_1 \leq n_2$ and $r_1 > r_2$ (the case $n_1 > n_2, r_1 \leq r_2$ is equivalent). Starting at (n_1, r_1) , first decrement r by one, then increment n by one, and repeat until either $r = r_2$ or $n = n_2$. Notice that so far n + r has changed by at most one, so that $\bar{\pi}(n, r)$ has changed by at most a factor of d_2 . At this point, if $r = r_2$ then increase n until $n = n_2$, or if $n = n_2$ then decrease r until $r = r_2$. Any state (n, r) along this path satisfies $\bar{\pi}(n, r) \geq \min\{\bar{\pi}(n_1, r_1), \bar{\pi}(n_2, r_2)\}/d_2$ as desired. Using (C.38), the quantity d defined in (5.11) satisfies $d^{-1} = \mathcal{O}(L)$. Combined with (5.13) and Proposition 5.2 this proves Theorem 3.3.

C.4 Verifying the Assumptions of Theorem A.1

By (5.29) Λ is a Borel set, and $\operatorname{Int}(B_j)$ is a Borel set for $j \in \{1, 2\}$ because it is open. So the spaces Λ_j for $j \in \{1, 2\}$ are Borel subsets of the complete, separable metric space \mathbb{R}^{w+1} as required. Also, $f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$ is measurable jointly in \mathbf{s} and $\boldsymbol{\theta}_{0:w}$ since it is a continuous function of $\boldsymbol{\theta}_{0:w}$ and since \mathbf{s} takes a finite set of values. Of course, Λ_j might not be connected, in which case $f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$ being continuous simply means that it is continuous on each connected component of Λ_j . Assumption 4 of Theorem A.1 is satisfied since $\eta(\boldsymbol{\theta}_{0:w}) = E \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})$ is continuous. To show Assumption 2, observe that for all $\boldsymbol{\theta}_{0:w} \in \Lambda_j$ where $j \in \{1,2\}^w$, so $G\{\mathbf{s} \in \{1,2\}^w : f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) > 0\} = 1$ as desired.

To show Assumption 3 for Λ_1 , take any compact $F \subset \Lambda_1$. We claim that there is some $\zeta \in (0, \frac{1}{2})$ such that

$$F \subset ([\zeta, 1-\zeta] \times [0,1]^w) \cup ([0,1] \times [\zeta, 1-\zeta]^w) \setminus \operatorname{Int}(B_2).$$
(C.39)

Otherwise, there is some sequence $\{\boldsymbol{\theta}_{0:w}^{(\ell)} : \ell \in \mathbb{N}\}$ such that $\lim_{\ell \to \infty} \theta_{0,1}^{(\ell)} \in \{0,1\}$ and $\exists k \in \{1,\ldots,w\}$ such that $\lim_{\ell \to \infty} \theta_{k,1}^{(\ell)} \in \{0,1\}$. Since F is compact these points must have a limit point $\tilde{\boldsymbol{\theta}}_{0:w} \in F \subset \Lambda_1$. Then $\tilde{\theta}_{0,1} \in \{0,1\}$ and $\tilde{\theta}_{k,1} \in \{0,1\}$ which is a contradiction.

By (C.39), for any $\boldsymbol{\theta}_{0:w} \in F$ and any **s** we have $f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) \geq \min\{p_0, 1-p_0\}\zeta^w$. Then

$$E \sup_{\boldsymbol{\theta}_{0:w} \in F} |\log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})| \le \sup_{\mathbf{s} \in \{1,2\}^w, \boldsymbol{\theta}_{0:w} \in F} |\log f(\mathbf{s}|\boldsymbol{\theta}_{0:w})|$$
$$\le -\log [\min\{p_0, 1-p_0\}\zeta^w] < \infty$$

To show that Assumption 5 is satisfied for Λ_1 , it is sufficient to consider values of $r \in \mathbb{R}$ for which $r < (\log \frac{1}{2})(\min_{\mathbf{s}} g(\mathbf{s}))$. Let $\psi = \exp\{\frac{r}{\min_{\mathbf{s}} g(\mathbf{s})}\}$, so that $\psi \in (0, \frac{1}{2})$. Then define $D = \Lambda_1 \setminus D^c$ by letting D^c be the compact subset

$$D^{c} = ([\psi, 1 - \psi] \times [0, 1]^{w}) \cup ([0, 1] \times [\psi, 1 - \psi]^{w}) \setminus \text{Int}(B_{2}) \qquad \subset \Lambda_{1}$$

We will define a cover D_1, \ldots, D_K of D such that (A.1) holds. Define

$$D_{k00} = \{ \boldsymbol{\theta}_{0:w} \in [0,1]^{w+1} : \theta_{0,1} \in [0,\psi) \land \theta_{k,1} \in [0,\psi) \} \qquad k \in \{1,\ldots,w\}$$

$$D_{k10} = \{ \boldsymbol{\theta}_{0:w} \in [0,1]^{w+1} : \theta_{0,1} \in (1-\psi,1] \land \theta_{k,1} \in [0,\psi) \}$$

$$D_{k01} = \{ \boldsymbol{\theta}_{0:w} \in [0,1]^{w+1} : \theta_{0,1} \in [0,\psi) \land \theta_{k,1} \in (1-\psi,1] \}$$

$$D_{k11} = \{ \boldsymbol{\theta}_{0:w} \in [0,1]^{w+1} : \theta_{0,1} \in (1-\psi,1] \land \theta_{k,1} \in (1-\psi,1] \}.$$

For all $\theta_{0:w} \in D$ we have $\theta_{0,1} \in [0, \psi) \cup (1-\psi, 1]$ and $\exists k \in \{1, ..., w\} : \theta_{k,1} \in [0, \psi) \cup (1-\psi, 1]$. So

$$D \subset \bigcup_{k=1}^{w} (D_{k00} \cup D_{k10} \cup D_{k01} \cup D_{k11}).$$

Since $\log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) \leq 0$, for any $k \in \{1, \ldots, w\}$

$$E \sup_{\boldsymbol{\theta}_{0:w} \in D_{k00}} \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) \le g(\mathbf{t}) \sup_{\boldsymbol{\theta}_{0:w} \in D_{k00}} \log f(\mathbf{t}|\boldsymbol{\theta}_{0:w}) \quad \text{where } \mathbf{t} = (1, \dots, 1)$$
$$\le g(\mathbf{t}) \log [p_0 \psi + (1 - p_0) \psi] \le \left[\min_{\mathbf{s}} g(\mathbf{s})\right] \log \psi \quad = r$$

Also,

$$E \sup_{\boldsymbol{\theta}_{0:w} \in D_{k01}} \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) \leq g(\mathbf{t}) \sup_{\boldsymbol{\theta}_{0:w} \in D_{k01}} \log f(\mathbf{t}|\boldsymbol{\theta}_{0:w}) \quad \text{where } \mathbf{t} = (\underbrace{1,\ldots,1}_{k-1 \text{ ones}}, 2, 1, \ldots, 1)$$
$$\leq \left[\min_{\mathbf{s}} g(\mathbf{s})\right] \log \left[p_0 \psi + (1-p_0)\psi\right] = r.$$

Analogously, $E \sup_{\boldsymbol{\theta}_{0:w} \in D_{k10}} \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) \leq r$ and $E \sup_{\boldsymbol{\theta}_{0:w} \in D_{k11}} \log f(\mathbf{s}|\boldsymbol{\theta}_{0:w}) \leq r$, showing that Assumption 5 holds for Λ_1 . Since Assumptions 3 and 5 hold for Λ_1 , they hold for Λ_2 by symmetry.

C.5 Proof of Theorem 5.3

Assume that there exist $\epsilon > 0$ and $B_1, B_2 \subset [0, 1]^{w+1}$ separated by distance ϵ such that the ratios in (5.25) decrease exponentially in L, and take F_1, F_2 as in Proposition C.1 below. Letting \mathbf{c}_1 be a maximizer of $\bar{\pi}(\mathbf{c}|\mathbf{S})$ over $\mathbf{c} \in F_1$, and \mathbf{c}_2 be a maximizer of $\bar{\pi}(\mathbf{c}|\mathbf{S})$ over $\mathbf{c} \in F_2$ and using Proposition C.1, for all L large enough

$$\max\{\bar{\pi}(\mathbf{c}_{1}|\mathbf{S}), \bar{\pi}(\mathbf{c}_{2}|\mathbf{S})\} \geq \frac{1}{2} \left(\bar{\pi}(\mathbf{c}_{1}|\mathbf{S}) + \bar{\pi}(\mathbf{c}_{2}|\mathbf{S})\right) \geq \frac{\bar{\pi}(F_{1}|\mathbf{S})}{2|F_{1}|} + \frac{\bar{\pi}(F_{2}|\mathbf{S})}{2|F_{2}|}$$
$$\geq \frac{1}{2|\bar{\mathcal{X}}|} \left(\bar{\pi}(F_{1}|\mathbf{S}) + \bar{\pi}(F_{2}|\mathbf{S})\right) \geq \frac{1}{4|\bar{\mathcal{X}}|}.$$
(C.40)

Combining with the fact that any path from \mathbf{c}_1 to \mathbf{c}_2 must include a state in $(F_1 \cup F_2)^c$,

$$\max_{\gamma \in \Gamma_{\mathbf{c}_{1},\mathbf{c}_{2}}} \min_{\mathbf{c} \in \gamma} \frac{\bar{\pi}(\mathbf{c}|\mathbf{S})}{\bar{\pi}(\mathbf{c}_{1}|\mathbf{S})\bar{\pi}(\mathbf{c}_{2}|\mathbf{S})} \leq \max_{\gamma \in \Gamma_{\mathbf{c}_{1},\mathbf{c}_{2}}} \min_{\mathbf{c} \in \gamma} \frac{4|\bar{\mathcal{X}}| \ \bar{\pi}(\mathbf{c}|\mathbf{S})}{\min\{\bar{\pi}(\mathbf{c}_{1}|\mathbf{S}), \bar{\pi}(\mathbf{c}_{2}|\mathbf{S})\}} \\
\leq \max_{\mathbf{c} \in (F_{1} \cup F_{2})^{c}} \frac{4|\bar{\mathcal{X}}| \ \bar{\pi}(\mathbf{c}|\mathbf{S})}{\min\{\bar{\pi}(\mathbf{c}_{1}|\mathbf{S}), \bar{\pi}(\mathbf{c}_{2}|\mathbf{S})\}} \\
\leq \frac{4|\bar{\mathcal{X}}| \ \bar{\pi}((F_{1} \cup F_{2})^{c}|\mathbf{S})}{\min\{\bar{\pi}(\mathbf{c}_{1}|\mathbf{S}), \bar{\pi}(\mathbf{c}_{2}|\mathbf{S})\}} \leq \frac{4|\bar{\mathcal{X}}|^{2} \ \bar{\pi}((F_{1} \cup F_{2})^{c}|\mathbf{S})}{\min\{\bar{\pi}(F_{1}|\mathbf{S}), \bar{\pi}(F_{2}|\mathbf{S})\}}.$$

Since $|\bar{\mathcal{X}}|$ grows polynomially in L (using (5.10)), and using Proposition C.1, the quantity d decreases exponentially in L. \Box

Proposition C.1. If there exist $\epsilon > 0$ and two sets $B_1, B_2 \subset [0, 1]^{w+1}$ separated by Euclidean distance ϵ such that the ratios in (5.25) decrease exponentially in L, then there are two sets $F_1, F_2 \subset \bar{\mathcal{X}}$ such that:

- 1. For any $\mathbf{c}_1 \in F_1$ and $\mathbf{c}_2 \in F_2$, any path from \mathbf{c}_1 to \mathbf{c}_2 must include a state $\mathbf{c} \notin (F_1 \cup F_2)$.
- 2. The quantities

$$\frac{\bar{\pi}\left((F_1 \cup F_2)^c | \mathbf{S}\right)}{\bar{\pi}\left(F_1 | \mathbf{S}\right)} \quad and \quad \frac{\bar{\pi}\left((F_1 \cup F_2)^c | \mathbf{S}\right)}{\bar{\pi}\left(F_2 | \mathbf{S}\right)} \tag{C.41}$$

decrease exponentially in L.

Before proving Proposition C.1 we need a few preliminary results. The notation $\stackrel{\text{ind.}}{\sim}$ means independently distributed as.

Lemma C.3. For any measure $\nu(dz)$ and nonnegative functions a(z) and b(z) on a space $z \in \mathbb{Z}$,

$$\frac{\int a(z)\nu(dz)}{\int b(z)\nu(dz)} \ge \inf_{z\in\mathcal{Z}}\frac{a(z)}{b(z)}.$$

where the ratio inside the infimum is taken to $be = \infty$ whenever b(z) = 0.

Proof. We have

$$\frac{\int a(z)\nu(dz)}{\int b(z)\nu(dz)} \ge \frac{\int (\inf_w \frac{a(w)}{b(w)})b(z)\nu(dz)}{\int b(z)\nu(dz)} = \inf_w \frac{a(w)}{b(w)}.$$

Lemma C.4. Regarding the density of the Beta(a, b) distribution, where $a, b \ge 1$:

- 1. The density is unimodal if a + b > 2 and constant on [0, 1] if a + b = 2.
- 2. A global maximum of the density occurs at

$$x^* = \begin{cases} \frac{a-1}{a+b-2} & a+b > 2\\ 0 & a+b = 2. \end{cases}$$

3. For $X \sim Beta(a, b)$ and any $\zeta > 0$, $Pr(X \in [x^* - \zeta, x^* + \zeta]) \ge \min\{\zeta, 1\}$.

Proof. The first two statements are well-known. To show the last, assume WLOG that $x^* \leq 1 - x^*$. We handle three cases separately: $\zeta \leq x^*$, $\zeta \in (x^*, 1 - x^*]$, and $\zeta > 1 - x^*$. For $\zeta > 1 - x^*$, $\Pr(X \in [x^* - \zeta, x^* + \zeta]) = 1$ so the result holds trivially.

For $\zeta \leq x^*$, letting f(x) indicate the Beta(a, b) density and using Lemma C.3 and the fact that f(x) is monotonically nondecreasing for $x < x^*$ and monotonically nonincreasing for $x > x^*$,

$$\frac{\Pr(X \in [x^* - \zeta, x^* + \zeta])}{\Pr(X \notin [x^* - \zeta, x^* + \zeta])} = \frac{\int_{x^* - \zeta}^{x^*} f(x)dx + \int_{x^*}^{x^* + \zeta} f(x)dx}{\int_0^{x^* - \zeta} f(x)dx + \int_{x^* + \zeta}^1 f(x)dx}$$
$$\geq \frac{f(x^* - \zeta)\zeta + f(x^* + \zeta)\zeta}{f(x^* - \zeta)(x^* - \zeta) + f(x^* + \zeta)(1 - x^* - \zeta)}$$
$$\geq \min\left\{\frac{\zeta}{x^* - \zeta}, \frac{\zeta}{1 - x^* - \zeta}\right\} \geq \frac{\zeta}{1 - \zeta}.$$

So $\Pr(X \in [x^* - \zeta, x^* + \zeta]) \ge \zeta$.

Finally we address $\zeta \in (x^*, 1 - x^*]$. Then

$$\frac{\Pr(X \in [x^* - \zeta, x^* + \zeta])}{\Pr(X \notin [x^* - \zeta, x^* + \zeta])} \ge \frac{\int_{x^*}^{x^* + \zeta} f(x)dx}{\int_{x^* + \zeta}^1 f(x)dx}$$
$$\ge \frac{f(x^* + \zeta)\zeta}{f(x^* + \zeta)(1 - x^* - \zeta)} \ge \frac{\zeta}{1 - \zeta}$$

as desired.

Lemma C.5. For any $\zeta > 0$ and any $K \in \mathbb{N}$ the following holds for any $D_1, D_2 \subset [0, 1]^K$ that are separated by Euclidean distance $\geq \zeta$. Let $X_k \stackrel{ind.}{\sim} Beta(a_k, b_k)$ for $k \in \{1, \ldots, K\}$, where $a_k, b_k \geq 1$. Assume that the mode $\mathbf{x}^* = (x_1^*, \ldots, x_K^*)$ of the probability density function $f(\mathbf{x})$ of $\mathbf{X} = (X_1, \ldots, X_K)$ satisfies $\mathbf{x}^* \in D_1$, where x_k^* for $k \in \{1, \ldots, K\}$ are the modes of the univariate Beta densities as defined in Lemma C.4. Then $\frac{Pr(\mathbf{x} \notin D_1 \cup D_2)}{Pr(\mathbf{x} \in D_2)} \geq \left(\frac{\zeta}{2\sqrt{K}}\right)^{K+1}$.

Proof. Consider the pdf $f(\mathbf{x})$ along any line segment originating at \mathbf{x}^* . This density is monotonically nonincreasing with distance from \mathbf{x}^* . For any set $D \subset [0, 1]^K$ one can calculate the integral $\int_D f(\mathbf{x}) d\mathbf{x}$ by first transforming to spherical coordinates, where the origin of the coordinate system is taken to be \mathbf{x}^* . In this coordinate system let $\boldsymbol{\phi}$ denote the (K-1)dimensional vector of angular coordinates, and $\rho \geq 0$ denote the radius, i.e. the distance from \mathbf{x}^* . Let $h(\rho, \phi)$ be the (invertible) function that maps from the spherical coordinates to the Euclidean coordinates. The Jacobian of the transformation h takes the form $\rho^K g(\phi)$ for some function g. So for any $D \subset [0, 1]^K$ we can write

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{h^{-1}(D)} f(h(\rho, \phi)) \rho^{K} g(\phi) d\rho d\phi.$$

In particular (using Lemma C.3),

$$\frac{\Pr(\mathbf{X} \notin D_1 \cup D_2)}{\Pr(\mathbf{X} \in D_2)} = \frac{\int_{h^{-1}((D_1 \cup D_2)^c)} f(h(\rho, \phi))\rho^K g(\phi)d\rho d\phi}{\int_{h^{-1}(D_2)} f(h(\rho, \phi))\rho^K g(\phi)d\rho d\phi}$$
$$= \frac{\int \left[\int \mathbf{1}_{h(\rho, \phi) \in (D_1 \cup D_2)^c} f(h(\rho, \phi))\rho^K d\rho\right] g(\phi)d\phi}{\int \left[\int \mathbf{1}_{h(\rho, \phi) \in D_2} f(h(\rho, \phi))\rho^K d\rho\right] g(\phi)d\phi}$$
$$\geq \inf_{\phi} \frac{\int \mathbf{1}_{h(\rho, \phi) \in (D_1 \cup D_2)^c} f(h(\rho, \phi))\rho^K d\rho}{\int \mathbf{1}_{h(\rho, \phi) \in D_2} f(h(\rho, \phi))\rho^K d\rho}$$

where we consider the ratio inside the infimum to $be = \infty$ if the denominator is zero. Then

$$\frac{\Pr(\mathbf{X} \notin D_1 \cup D_2)}{\Pr(\mathbf{X} \in D_2)} \ge \inf_{\phi} \frac{\int_{\zeta/2}^{\infty} \mathbf{1}_{h(\rho,\phi) \in (D_1 \cup D_2)^c} f(h(\rho,\phi)) \rho^K d\rho}{\int \mathbf{1}_{h(\rho,\phi) \in D_2} f(h(\rho,\phi)) \rho^K d\rho} \\
= \inf_{\phi} \frac{\int_{\zeta/2}^{\sqrt{K}} \mathbf{1}_{h(\rho,\phi) \in (D_1 \cup D_2)^c} f(h(\rho,\phi)) \rho^K d\rho}{\int_0^{\sqrt{K}} \mathbf{1}_{h(\rho,\phi) \in D_2} f(h(\rho,\phi)) \rho^K d\rho} \\
\ge \left(\frac{\zeta}{2\sqrt{K}}\right)^K \inf_{\phi} \frac{\int_{\zeta/2}^{\sqrt{K}} \mathbf{1}_{h(\rho,\phi) \in (D_1 \cup D_2)^c} f(h(\rho,\phi)) d\rho}{\int_0^{\sqrt{K}} \mathbf{1}_{h(\rho,\phi) \in D_2} f(h(\rho,\phi)) d\rho}.$$
(C.42)

For any fixed ϕ for which $0 \neq \int_0^{\sqrt{K}} \mathbf{1}_{h(\rho,\phi)\in D_2} f(h(\rho,\phi)) d\rho$, there is some $\tilde{\rho}$ such that $h(\tilde{\rho},\phi) \in D_2$. Since $\mathbf{x}^* = h(0,\phi) \in D_1$ and since D_1 and D_2 are separated by distance ζ , there must be an interval $[\rho_1(\phi), \rho_2(\phi)] \subset [0, \tilde{\rho}]$ of width at least ζ such that any $\rho \in [0, \rho_1(\phi)]$ satisfies $h(\rho, \phi) \notin D_2$ and any $\rho \in (\rho_1(\phi), \rho_2(\phi))$ satisfies $h(\rho, \phi) \in (D_1 \cup D_2)^c$. Using (C.42) and since $f(h(\rho, \phi))$ is monotonically nonincreasing in ρ ,

$$\frac{\Pr(\mathbf{X} \notin D_1 \cup D_2)}{\Pr(\mathbf{X} \in D_2)} \ge \left(\frac{\zeta}{2\sqrt{K}}\right)^K \inf_{\boldsymbol{\phi}} \frac{\int_{\max\{\zeta/2,\rho_1(\boldsymbol{\phi})\}}^{\rho_2(\boldsymbol{\phi})} f(h(\rho,\boldsymbol{\phi}))d\rho}{\int_{\rho_2(\boldsymbol{\phi})}^{\sqrt{K}} f(h(\rho,\boldsymbol{\phi}))d\rho} \\ \ge \left(\frac{\zeta}{2\sqrt{K}}\right)^K \inf_{\boldsymbol{\phi}} \frac{\int_{\max\{\zeta/2,\rho_1(\boldsymbol{\phi})\}}^{\rho_2(\boldsymbol{\phi})} f(h(\rho_2(\boldsymbol{\phi}),\boldsymbol{\phi}))d\rho}{\int_{\rho_2(\boldsymbol{\phi})}^{\sqrt{K}} f(h(\rho_2(\boldsymbol{\phi}),\boldsymbol{\phi}))d\rho} \\ \ge \left(\frac{\zeta}{2\sqrt{K}}\right)^{K+1}.$$

Lemma C.6. For $k \in \{1, \ldots, K\}$ let $X_k \stackrel{ind.}{\sim} Beta(a_k, b_k)$ where $a_k, b_k \ge 1$. Then for any set $D \subset [0, 1]^K$ with positive Lebesgue measure $(\lambda(D) > 0)$ and any $d_3 > 1$,

$$\inf_{a_1,b_1,\ldots,a_K,b_K\in[1,d_3]}\Pr(\mathbf{X}\in D)>0$$

where $\mathbf{X} = (X_1, \ldots, X_K)$.

Proof. Since $\lambda(D) > 0$, there is some $\zeta \in (0, 1/2)$ such that the set $\tilde{D} = D \cap [\zeta, 1 - \zeta]^K$ satisfies $\lambda(\tilde{D}) > 0$. Letting f(x) indicate the density of any Beta(a, b) distribution where $a, b \in [1, d_3]$, and using Lemma C.4,

$$\frac{\inf_{x \in [\zeta, 1-\zeta]} f(x)}{\sup_x f(x)} = \frac{\min\{f(\zeta), f(1-\zeta)\}}{f(\frac{a-1}{a+b-2})}$$
$$\geq \frac{\zeta^{a+b-2}(a+b-2)^{a+b-2}}{(a-1)^{a-1}(b-1)^{b-1}}$$
$$\geq \zeta^{a+b-2} \geq \zeta^{2d_3-2}.$$

Now letting $f(\mathbf{x})$ indicate the function on $\mathbf{x} \in [0,1]^K$ that is the product of $\text{Beta}(a_k, b_k)$ densities where $a_k, b_k \in [1, d_3]$,

$$\frac{\inf_{\mathbf{x}\in[\zeta,1-\zeta]^K}f(\mathbf{x})}{\sup_{\mathbf{x}}f(\mathbf{x})} \ge \zeta^{K(2d_3-2)}$$

 So

$$\frac{\Pr(\mathbf{X} \in D)}{\Pr(\mathbf{X} \in D^c)} \ge \frac{\Pr(\mathbf{X} \in \tilde{D})}{\Pr(\mathbf{X} \in \tilde{D}^c)} \ge \frac{\lambda(\tilde{D}) \inf_{\mathbf{x} \in [\zeta, 1-\zeta]^K} f(\mathbf{x})}{(1-\lambda(\tilde{D})) \sup_{\mathbf{x}} f(\mathbf{x})} \ge \frac{\lambda(\tilde{D}) \zeta^{K(2d_3-2)}}{(1-\lambda(\tilde{D}))}$$
(C.43)

which is strictly positive and does not depend on $\{a_k, b_k\}_{k=1}^K$.

Lemma C.7. Let $X_k \stackrel{ind.}{\sim} Beta(a_k, b_k)$ for $k \in \{1, \ldots, Q\}$ where $Q \in \mathbb{N}$ and $a_k, b_k \geq 1$. Also let x_k^* be the global mode of the density of $Beta(a_k, b_k)$ as defined in Lemma C.4. Let $B(\mathbf{x}, \delta)$ indicate the ball of radius $\delta > 0$ centered at a point $\mathbf{x} \in [0, 1]^Q$. Then for any fixed $\delta > 0$, $d_3 \geq 1$, and $K \in \{1, \ldots, Q\}$,

$$\inf_{a_k,b_k \in [1,d_3]: k=1,\dots,K} \inf_{a_k,b_k \ge 1: k=K+1,\dots,Q} \inf_{\mathbf{x} \in [0,1]^Q: x_k = x_k^*, k=K+1,\dots,Q} \Pr(\mathbf{X} \in B(\mathbf{x},\delta)) > 0.$$

Proof. Take a hypercube $H(\mathbf{x}, \delta)$ centered at \mathbf{x} and with some fixed side length $2\delta_1 \in (0, 1]$ for which $H(\mathbf{x}, \delta) \subset B(\mathbf{x}, \delta)$. Then

$$\inf_{a_k,b_k \in [1,d_3]:k=1,...,K} \inf_{a_k,b_k \ge 1:k=K+1,...,Q} \inf_{\mathbf{x} \in [0,1]^Q:x_k = x_k^*,k=K+1,...,Q} \Pr(\mathbf{X} \in B(\mathbf{x},\delta))$$

$$\ge \inf_{a_k,b_k \in [1,d_3]:k=1,...,K} \inf_{a_k,b_k \ge 1:k=K+1,...,Q} \inf_{\mathbf{x} \in [0,1]^Q:x_k = x_k^*,k=K+1,...,Q} \Pr(\mathbf{X} \in H(\mathbf{x},\delta))$$

$$= \left[\prod_{k=1}^K \inf_{a_k,b_k \in [1,d_3]} \inf_{x_k \in [0,1]} \Pr(X_k \in [x_k - \delta_1, x_k + \delta_1])\right] \prod_{k=K+1}^Q \inf_{a_k,b_k \ge 1} \Pr(X_k \in [x_k^* - \delta_1, x_k^* + \delta_1]).$$
(C.44)

By Lemma C.4, the second product in this expression is bounded below by δ_1^{Q-K} . To bound the first product in (C.44) we will use the explicit lower bound (C.43) given in the proof of Lemma C.6, applied to the single variable X_k where $k \in \{1, \ldots, K\}$. Here we take the set $D = [x_k - \delta_1, x_k + \delta_1] \cap [0, 1]$. Let $\zeta = \frac{\delta_1}{2}$ so that $\tilde{D} = D \cap [\frac{\delta_1}{2}, 1 - \frac{\delta_1}{2}]$. Noticing that $\lambda(\tilde{D}) \geq \frac{\delta_1}{2}$, the bound (C.43) gives

$$\frac{\Pr(X_k \in D)}{\Pr(X_k \in D^c)} \ge \frac{\left(\frac{\delta_1}{2}\right)^{1+(2d_3-2)}}{1-\frac{\delta_1}{2}} \ge \frac{\left(\frac{\delta_1}{2}\right)^{(2d_3-1)}}{1-\left(\frac{\delta_1}{2}\right)^{(2d_3-1)}}$$

So $\Pr(X_k \in D) \ge \left(\frac{\delta_1}{2}\right)^{(2d_3-1)}$; applying this method for each $k = 1, \dots, K$ we have that

$$\inf_{\substack{a_k,b_k \in [1,d_3]: k=1,\dots,K \\ 2}} \inf_{\substack{a_k,b_k \ge 1: k=K+1,\dots,Q \\ x \in [0,1]^Q: x_k = x_k^*, k=K+1,\dots,Q}} \Pr(\mathbf{X} \in B(\mathbf{x}, \delta)) \\
\geq \left(\frac{\delta_1}{2}\right)^{K(2d_3-1)} \delta_1^{Q-K} > 0.$$

Proof of Proposition C.1. Recall the definition (Sec. 2.1) of β_k ; we will take $\beta_{k,m} = 1$ for $k \in \{0, \ldots, w\}$ and $m \in \{1, 2\}$ for simplicity of exposition, although the results do not depend on this choice. Then the prior for $\boldsymbol{\theta}_{0:w}$ is uniform: $\pi(\boldsymbol{\theta}_{0:w}) \propto \mathbf{1}_{\{\boldsymbol{\theta}_{0:w} \in [0,1]^{w+1}\}}$.

The quantities $\mathbf{N}(\mathbf{A}^{(k)})$ and $\mathbf{N}(\mathbf{A}^{c})$ only depend on \mathbf{A} via $\mathbf{C}(\mathbf{A})$, due to (5.6). Consider

the conditional distribution $\pi(\theta_{0:w}|\mathbf{C}(\mathbf{A}), \mathbf{S})$, which can be written as follows, using (2.3):

$$\pi(\boldsymbol{\theta}_{0:w}|\mathbf{C}(\mathbf{A}), \mathbf{S}) \propto \pi(\boldsymbol{\theta}_{0:w}, \mathbf{C}(\mathbf{A}), \mathbf{S}) \propto \pi(\boldsymbol{\theta}_{0:w}) \pi(\mathbf{C}(\mathbf{A})) \pi(\mathbf{S}|\mathbf{C}(\mathbf{A}), \boldsymbol{\theta}_{0:w})$$

$$\propto \left[\prod_{k=1}^{w} \prod_{m=1}^{2} \theta_{k,m}^{N(\mathbf{A}^{(k)})_{m}}\right] \prod_{m=1}^{2} \theta_{0,m}^{N(\mathbf{A}^{c})_{m}}$$

$$\propto \left[\prod_{k=1}^{w} \operatorname{Beta}(\theta_{k,1}; N(\mathbf{A}^{(k)})_{1} + 1, N(\mathbf{A}^{(k)})_{2} + 1)\right] \times$$

$$\operatorname{Beta}(\theta_{0,1}; N(\mathbf{A}^{c})_{1} + 1, N(\mathbf{A}^{c})_{2} + 1). \quad (C.45)$$

where Beta(x; a, b) indicates the Beta density with parameters a, b, evaluated at x. By Lemma C.4, $\pi(\boldsymbol{\theta}_{0:w}|\mathbf{C}(\mathbf{A}), \mathbf{S})$ is a density with global maximum at $\tilde{\boldsymbol{\theta}}_{0:w}$ where

$$\tilde{\theta}_{k,1} = \begin{cases} \frac{N(\mathbf{A}^{(k)})_1}{|\mathbf{N}(\mathbf{A}^{(k)})|} & |\mathbf{N}(\mathbf{A}^{(k)})| > 0\\ 0 & \text{else} \end{cases} \quad k \in \{1, \dots, w\} \quad (C.46)$$

$$\tilde{\theta}_{0,1} = \begin{cases} \frac{N(\mathbf{A}^c)_1}{|\mathbf{N}(\mathbf{A}^c)|} & |\mathbf{N}(\mathbf{A}^c)| > 0\\ 0 & \text{else.} \end{cases}$$

To complete the notation define $\tilde{\theta}_{k,2} = 1 - \tilde{\theta}_{k,1}$ for $k \in \{0, \dots, w\}$. By (C.45) and since $|\mathbf{N}(\mathbf{A}^c)| = L - \sum_{k=1}^{w} |\mathbf{N}(\mathbf{A}^{(k)})|$, we have that $\pi(\boldsymbol{\theta}_{0:w}|\mathbf{C}(\mathbf{A}), \mathbf{S})$ only depends on $\mathbf{C}(\mathbf{A})$ via $\tilde{\boldsymbol{\theta}}_{0:w}$ and $|\mathbf{N}(\mathbf{A}^{(1)})| = |\mathbf{N}(\mathbf{A}^{(2)})| = \ldots = |\mathbf{N}(\mathbf{A}^{(w)})|$. So

$$\pi \left(\boldsymbol{\theta}_{0:w} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S} \right)$$

$$= \left[\prod_{k=1}^{w} \operatorname{Beta} \left(\theta_{k,1}; \; \tilde{\theta}_{k,1} |\mathbf{N}(\mathbf{A}^{(1)})| + 1, \; \tilde{\theta}_{k,2} |\mathbf{N}(\mathbf{A}^{(1)})| + 1 \right) \right] \times \operatorname{Beta} \left(\theta_{0,1}; \; \tilde{\theta}_{0,1}(L - w |\mathbf{N}(\mathbf{A}^{(1)})|) + 1, \; \tilde{\theta}_{0,2}(L - w |\mathbf{N}(\mathbf{A}^{(1)})|) + 1 \right). \quad (C.47)$$

Using Lemma C.4 and regardless of the value of $|\mathbf{N}(\mathbf{A}^{(1)})|$, $\pi\left(\boldsymbol{\theta}_{0:w} \mid \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)$ has a global maximum at $\hat{\boldsymbol{\theta}}_{0:w}$.

For our analysis the only relevant quantities regarding $\mathbf{C}(\mathbf{A}) \in \bar{\mathcal{X}}$ will be $\tilde{\boldsymbol{\theta}}_{0:w}$ and $|\mathbf{N}(\mathbf{A}^{(1)})|$, so we define $F_1, F_2 \subset \bar{\mathcal{X}}$ more conveniently as sets of *possible values* of $(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|)$, i.e. values that arise from some state $\mathbf{C}(\mathbf{A}) \in \bar{\mathcal{X}}$. We will define F_1 to be a particular set for which there is some constant $d_4 > 0$ satisfying

$$\min_{(\tilde{\boldsymbol{\theta}}_{0:w},|\mathbf{N}(\mathbf{A}^{(1)})|)\notin F_1} \frac{\Pr\left(\boldsymbol{\theta}_{0:w}\notin B_1\cup B_2 \mid \tilde{\boldsymbol{\theta}}_{0:w},|\mathbf{N}(\mathbf{A}^{(1)})|,\mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w}\in B_1 \mid \tilde{\boldsymbol{\theta}}_{0:w},|\mathbf{N}(\mathbf{A}^{(1)})|,\mathbf{S}\right)} \ge d_4.$$
(C.48)

So $F_1 \subset \overline{\mathcal{X}}$ is associated with $B_1 \subset [0,1]^{w+1}$ in the sense that it (informally speaking) contains all the values of $(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|)$ for which $\Pr(\boldsymbol{\theta}_{0:w} \in B_1 | \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S})$ is much larger

Figure 1: An illustration of the proof.

than $\Pr(\boldsymbol{\theta}_{0:w} \notin B_1 \cup B_2 | \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S})$. The set F_1 must have high probability (given \mathbf{S}) in order to explain the fact that the first quantity in (5.25) decreases exponentially in L.

To begin, recall the definition of $\epsilon > 0$ from Proposition C.1. Let E_1 be the set of all points $\mathbf{x} \in [0,1]^{w+1}$ that are within distance $\epsilon/3$ of the set B_1 , and let E_2 be the set of all points that are within distance $\epsilon/3$ of the set B_2 . This is illustrated in Web Appendix Figure 1. Then E_1 and E_2 are separated by distance $\epsilon_1 \triangleq \epsilon/3$. Let $d_5 \triangleq \frac{w+1}{\epsilon_1}$; since $B_1, B_2 \subset [0,1]^{w+1}$ are separated by distance ϵ , we have that $\epsilon \leq \sqrt{w+1}$ and so

$$d_5 = \frac{w+1}{\epsilon/3} > \frac{w+1}{\sqrt{w+1}} > 1.$$
(C.49)

Also define

$$V \triangleq \left\{ \left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \right) : \max\{ |\mathbf{N}(\mathbf{A}^{(1)})|, |\mathbf{N}(\mathbf{A}^{c})|/w \} > d_5 \right\}$$
(C.50)

$$\cap \left\{ \left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \right) : \text{ if } \exists \boldsymbol{\theta}_0 \in [0, 1] \text{ s.t. } (\boldsymbol{\theta}_0, \tilde{\boldsymbol{\theta}}_{1:w}) \in (E_1 \cup E_2)^c \text{ then } |\mathbf{N}(\mathbf{A}^{c})|/w > d_5 \right\}$$
$$\cap \left\{ \left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \right) : \text{ if } \exists \boldsymbol{\theta}_{1:w} \in [0, 1]^w \text{ s.t. } (\tilde{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}) \in (E_1 \cup E_2)^c \text{ then } |\mathbf{N}(\mathbf{A}^{(1)})| > d_5 \right\}$$
$$F_j \triangleq \left\{ \left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \right) \in V : \tilde{\boldsymbol{\theta}}_{0:w} \in E_j \right\} \qquad j \in \{1, 2\}.$$

First we show that it is not possible to move from any state $(\tilde{\boldsymbol{\theta}}_{0:w}^1, |\mathbf{N}(\mathbf{A}^{(1)})|^1) \in F_1$ to any state $(\tilde{\boldsymbol{\theta}}_{0:w}^2, |\mathbf{N}(\mathbf{A}^{(1)})|^2) \in F_2$ in one iteration of \bar{T} . Since $\tilde{\boldsymbol{\theta}}_{0:w}^1 \in E_1$ and $\tilde{\boldsymbol{\theta}}_{0:w}^2 \in E_2$ satisfy $\|\tilde{\boldsymbol{\theta}}_{0:w}^1 - \tilde{\boldsymbol{\theta}}_{0:w}^2\| \ge \epsilon_1$, we have that $\exists \tilde{k} \in \{0, \ldots, w\}$ such that $|\tilde{\theta}_{\tilde{k},1}^1 - \tilde{\theta}_{\tilde{k},1}^2| \ge \frac{\epsilon_1}{w+1} = \frac{1}{d_5}$. We handle the four cases: 1. where $|\mathbf{N}(\mathbf{A}^{(1)})|^1 \le d_5$; 2. where $|\mathbf{N}(\mathbf{A}^c)|^1/w \le d_5$; 3. where $|\mathbf{N}(\mathbf{A}^{(1)})|^1 > d_5$, $|\mathbf{N}(\mathbf{A}^c)|^1/w > d_5$ and $\tilde{k} > 0$; 4. where $|\mathbf{N}(\mathbf{A}^{(1)})|^1 > d_5$, $|\mathbf{N}(\mathbf{A}^c)|^1/w > d_5$ and $\tilde{k} = 0$. We assume that it is it is possible to move from $(\tilde{\boldsymbol{\theta}}_{0:w}^1, |\mathbf{N}(\mathbf{A}^{(1)})|^1)$ to $(\tilde{\boldsymbol{\theta}}_{0:w}^2, |\mathbf{N}(\mathbf{A}^{(1)})|^2)$ in one iteration of \bar{T} , and find a contradiction. We use the fact that, by (2.6) and (5.9), in one iteration of \bar{T} the vector $\mathbf{N}(\mathbf{A}^{(\tilde{k})})| = |\mathbf{N}(\mathbf{A}^{(1)})||$ can only increase or decrease by one. Also, the vector $\mathbf{N}(\mathbf{A}^c)$ can only change by either incrementing its elements by a total of w, which increases $|\mathbf{N}(\mathbf{A}^c)|$ by w, or decrementing its elements by a total of w, which decreases $|\mathbf{N}(\mathbf{A}^c)|$ by w. First take the case where $|\mathbf{N}(\mathbf{A}^{(1)})|^1 > d_5$, $|\mathbf{N}(\mathbf{A}^c)|^1/w > d_5$ and $\tilde{k} > 0$. By (C.49), $|\mathbf{N}(\mathbf{A}^{(1)})|^1 > 1$, so $|\mathbf{N}(\mathbf{A}^{(1)})|^2 > 0$. By (C.46),

$$|\tilde{\theta}_{\tilde{k},1}^{1} - \tilde{\theta}_{\tilde{k},1}^{2}| = \left| \frac{N(\mathbf{A}^{(\tilde{k})})_{1}^{1}}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1}} - \frac{N(\mathbf{A}^{(\tilde{k})})_{1}^{2}}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{2}} \right|.$$
 (C.51)

Also, we claim that this is bounded above by $\frac{1}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^1}$. In the case where $N(\mathbf{A}^{(\tilde{k})})_1^2 = N(\mathbf{A}^{(\tilde{k})})_1^1 + \delta$ and $\delta \in \{-1, 1\}$, we have $N(\mathbf{A}^{(\tilde{k})})_1^2 \ge 0$ so $N(\mathbf{A}^{(\tilde{k})})_1^1 \ge -\delta$ and thus

$$\begin{split} |\tilde{\theta}_{\tilde{k},1}^{1} - \tilde{\theta}_{\tilde{k},1}^{2}| &= \left| \frac{N(\mathbf{A}^{(\tilde{k})})_{1}^{1}}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1}} - \frac{N(\mathbf{A}^{(\tilde{k})})_{1}^{1} + \delta}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1} + \delta} \right| &= \left(\frac{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1} - N(\mathbf{A}^{(\tilde{k})})_{1}^{1}}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1}} \right) \frac{|\delta|}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1}} \\ &\leq \frac{|\delta|}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1}} = \frac{1}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1}}. \end{split}$$

In the case where $N(\mathbf{A}^{(\tilde{k})})_2^2 = N(\mathbf{A}^{(\tilde{k})})_2^1 + \delta$ and $\delta \in \{-1, 1\}$, by using the fact that $|\tilde{\theta}_{\tilde{k},1}^1 - \tilde{\theta}_{\tilde{k},2}^2|$ and applying the above argument we still obtain the upper bound $\frac{1}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^1}$. Combining with (C.51) we have

$$|\tilde{\theta}_{\tilde{k},1}^{1} - \tilde{\theta}_{\tilde{k},1}^{2}| \le \frac{1}{|\mathbf{N}(\mathbf{A}^{(\tilde{k})})|^{1}} < \frac{1}{d_{5}}$$
(C.52)

which is a contradiction (by the definition of k).

Now take the case where $|\mathbf{N}(\mathbf{A}^{(1)})|^1 \leq d_5$. Then by (C.50) we must have $|\mathbf{N}(\mathbf{A}^c)|^1/w > d_5$. Also, $\tilde{\boldsymbol{\theta}}_{0:w}^1 \in E_1$ and there is no $\boldsymbol{\theta}_{1:w}$ such that $(\tilde{\boldsymbol{\theta}}_0^1, \boldsymbol{\theta}_{1:w}) \in (E_1 \cup E_2)^c$, so $(\tilde{\boldsymbol{\theta}}_0^1, \tilde{\boldsymbol{\theta}}_{1:w}^2) \in E_1$. Therefore the Euclidean distance between $(\tilde{\boldsymbol{\theta}}_0^1, \tilde{\boldsymbol{\theta}}_{1:w}^2) \in E_1$ and $(\tilde{\boldsymbol{\theta}}_0^2, \tilde{\boldsymbol{\theta}}_{1:w}^2) \in E_2$ is $\geq \epsilon_1$. This implies $|\tilde{\theta}_{0,1}^1 - \tilde{\theta}_{0,1}^2| \geq \epsilon_1 > \frac{1}{d_5}$. However, by (C.49), $|\mathbf{N}(\mathbf{A}^c)|^1 > d_5w > w$, so $|\mathbf{N}(\mathbf{A}^c)|^2 > 0$. Then by (C.46),

$$|\tilde{\theta}_{0,1}^1 - \tilde{\theta}_{0,1}^2| = \left|\frac{N(\mathbf{A}^c)_1^1}{|\mathbf{N}(\mathbf{A}^c)|^1} - \frac{N(\mathbf{A}^c)_1^2}{|\mathbf{N}(\mathbf{A}^c)|^2}\right|$$

Also, we claim that this is bounded above by $\frac{w}{|\mathbf{N}(\mathbf{A}^c)|^1}$. In the case where $N(\mathbf{A}^c)_1^2 = N(\mathbf{A}^c)_1^1 + \delta$ and $N(\mathbf{A}^c)_2^2 = N(\mathbf{A}^c)_2^1 + w - \delta$ for $\delta \in \{0, \dots, w\}$,

$$\begin{split} |\tilde{\theta}_{0,1}^{1} - \tilde{\theta}_{0,1}^{2}| &= \left| \frac{N(\mathbf{A}^{c})_{1}^{1}}{|\mathbf{N}(\mathbf{A}^{c})|^{1}} - \frac{N(\mathbf{A}^{c})_{1}^{1} + \delta}{|\mathbf{N}(\mathbf{A}^{c})|^{1} + w} \right| \\ &= \left| \frac{wN(\mathbf{A}^{c})_{1}^{1} - \delta |\mathbf{N}(\mathbf{A}^{c})|^{1}}{|\mathbf{N}(\mathbf{A}^{c})|^{1} (|\mathbf{N}(\mathbf{A}^{c})|^{1} + w)} \right| \\ &\leq \frac{\max\left\{ w\left(|\mathbf{N}(\mathbf{A}^{c})|^{1} - N(\mathbf{A}^{c})_{1}^{1} \right), wN(\mathbf{A}^{c})_{1}^{1} \right\}}{|\mathbf{N}(\mathbf{A}^{c})|^{1} (|\mathbf{N}(\mathbf{A}^{c})|^{1} + w)} \right| \\ &\leq \frac{w}{|\mathbf{N}(\mathbf{A}^{c})|^{1} (|\mathbf{N}(\mathbf{A}^{c})|^{1} - N(\mathbf{A}^{c})_{1}^{1})} \\ &\leq \frac{w}{|\mathbf{N}(\mathbf{A}^{c})|^{1} (|\mathbf{N}(\mathbf{A}^{c})|^{1} + w)} \end{split}$$

In the case where $N(\mathbf{A}^c)_1^2 = N(\mathbf{A}^c)_1^1 - \delta$ and $N(\mathbf{A}^c)_2^2 = N(\mathbf{A}^c)_2^1 - w + \delta$ for $\delta \in \{0, \dots, w\}$,

$$\begin{aligned} |\tilde{\theta}_{0,1}^{1} - \tilde{\theta}_{0,1}^{2}| &= \left| \frac{N(\mathbf{A}^{c})_{1}^{1}}{|\mathbf{N}(\mathbf{A}^{c})|^{1}} - \frac{N(\mathbf{A}^{c})_{1}^{1} - \delta}{|\mathbf{N}(\mathbf{A}^{c})|^{1} - w} \right| \\ &= \left| \frac{-wN(\mathbf{A}^{c})_{1}^{1} + \delta |\mathbf{N}(\mathbf{A}^{c})|^{1}}{|\mathbf{N}(\mathbf{A}^{c})|^{1} (|\mathbf{N}(\mathbf{A}^{c})|^{1} - w)} \right| \end{aligned}$$
(C.53)

This is largest when $\delta \in \{0, w\}$. Note that $N(\mathbf{A}^c)_1^2 \ge 0$ and $N(\mathbf{A}^c)_2^2 \ge 0$ so $N(\mathbf{A}^c)_1^1 \ge \delta$ and $N(\mathbf{A}^c)_2^1 \ge w - \delta$. Using (C.53), when $\delta = 0$ we have $N(\mathbf{A}^c)_2^1 \ge w$ and

$$\begin{split} |\tilde{\theta}_{0,1}^{1} - \tilde{\theta}_{0,1}^{2}| &= \frac{wN(\mathbf{A}^{c})_{1}^{1}}{|\mathbf{N}(\mathbf{A}^{c})|^{1} (|\mathbf{N}(\mathbf{A}^{c})|^{1} - w)} \\ &= \frac{w(|\mathbf{N}(\mathbf{A}^{c})|^{1} - N(\mathbf{A}^{c})_{2}^{1})}{|\mathbf{N}(\mathbf{A}^{c})|^{1} (|\mathbf{N}(\mathbf{A}^{c})|^{1} - w)} \leq \frac{w}{|\mathbf{N}(\mathbf{A}^{c})|^{1}}. \end{split}$$

When $\delta = w$ we have $N(\mathbf{A}^c)_1^1 \ge w$ and (using (C.53))

$$|\tilde{\theta}_{0,1}^1 - \tilde{\theta}_{0,1}^2| = \frac{w \left(|\mathbf{N}(\mathbf{A}^c)|^1 - N(\mathbf{A}^c)_1^1 \right)}{|\mathbf{N}(\mathbf{A}^c)|^1 \left(|\mathbf{N}(\mathbf{A}^c)|^1 - w \right)} \le \frac{w}{|\mathbf{N}(\mathbf{A}^c)|^1}.$$

as claimed. So $|\tilde{\theta}_{0,1}^1 - \tilde{\theta}_{0,1}^2| \leq \frac{w}{|\mathbf{N}(\mathbf{A}^c)|^1} < \frac{1}{d_5}$, which is a contradiction. The case where $|\mathbf{N}(\mathbf{A}^{(1)})|^1 > d_5, |\mathbf{N}(\mathbf{A}^c)|^1/w > d_5 \text{ and } \tilde{k} = 0, \text{ and the case where } |\mathbf{N}(\mathbf{A}^c)|^1 \le d_5w, \text{ lead to}$ contradictions analogously to the two cases handled above. So it is not possible to move from $(\tilde{\boldsymbol{\theta}}_{0:w}^1, |\mathbf{N}(\mathbf{A}^{(1)})|^1)$ to $(\tilde{\boldsymbol{\theta}}_{0:w}^2, |\mathbf{N}(\mathbf{A}^{(1)})|^2)$ in one iteration of \bar{T} . Next we show (C.48). By Lemma C.5, (C.47), (C.50), and $B_2 \subset E_2$, there is some $d_6 > 0$

that depends only on w such that

$$\min_{\left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|\right) \in F_{2}} \frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}$$

$$\geq \min_{\tilde{\boldsymbol{\theta}}_{0:w} \in E_{2}} \min_{|\mathbf{N}(\mathbf{A}^{(1)})|} \frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}$$

$$\geq \min_{\tilde{\boldsymbol{\theta}}_{0:w} \in E_{2}} \min_{|\mathbf{N}(\mathbf{A}^{(1)})|} \frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup E_{2} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup E_{2} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)} \ge d_{6}. \quad (C.54)$$

Also, by Lemma C.5 and $E_1 \setminus B_1 \subset (B_1 \cup B_2)^c$, there exists $d_7 > 0$ that depends only on w such that

$$\min_{\tilde{\boldsymbol{\theta}}_{0:w}\in(E_{1}\cup E_{2})^{c}} \min_{|\mathbf{N}(\mathbf{A}^{(1)})|} \frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)} \\
\geq \min_{\tilde{\boldsymbol{\theta}}_{0:w}\in E_{1}^{c}} \min_{|\mathbf{N}(\mathbf{A}^{(1)})|} \frac{\Pr\left(\boldsymbol{\theta}_{0:w} \in E_{1} \setminus B_{1} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)} \geq d_{7}. \quad (C.55)$$

Additionally, by Lemma C.6, $\exists d_8 > 0$ such that

$$\min_{\tilde{\boldsymbol{\theta}}_{0:w}} \min_{|\mathbf{N}(\mathbf{A}^{(1)})|:|\mathbf{N}(\mathbf{A}^{(1)})|,|\mathbf{N}(\mathbf{A}^{c})|/w \leq d_{5}} \frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \mid \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \mid \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)} \\
\geq \min_{\tilde{\boldsymbol{\theta}}_{0:w}} \min_{|\mathbf{N}(\mathbf{A}^{(1)})|:|\mathbf{N}(\mathbf{A}^{(1)})|,|\mathbf{N}(\mathbf{A}^{c})|/w \leq d_{5}} \Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \mid \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right) > d_{8}. \quad (C.56)$$

Also, for any $\boldsymbol{\theta}_{1:w}$ such that $(\tilde{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w}) \in (E_1 \cup E_2)^c$, a ball of radius $\epsilon_1/2 = \epsilon/6$ centered at $(\tilde{\boldsymbol{\theta}}_0, \boldsymbol{\theta}_{1:w})$ is entirely contained in $(B_1 \cup B_2)^c$. By Lemma C.7, $\exists d_9 > 0$

$$\min_{\tilde{\boldsymbol{\theta}}_{0:w}:\exists(\tilde{\boldsymbol{\theta}}_{0},\boldsymbol{\theta}_{1:w}')\in(E_{1}\cup E_{2})^{c}}}\min_{|\mathbf{N}(\mathbf{A}^{(1)})|\leq d_{5}}\frac{\Pr\left(\boldsymbol{\theta}_{0:w}\notin B_{1}\cup B_{2} \mid \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w}\in B_{1} \mid \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}$$
(C.57)

$$\geq \min_{\tilde{\boldsymbol{\theta}}_{0:w}: \exists (\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}'_{1:w}) \in (E_1 \cup E_2)^c} \min_{|\mathbf{N}(\mathbf{A}^{(1)})| \leq d_5} \Pr\Big(\boldsymbol{\theta}_{0:w} \in B\big((\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}'_{1:w}), \epsilon_1/2\big) \ \Big| \ \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\Big) \geq d_9.$$

By the analogous argument, $\exists d_{10} > 0$

$$\min_{\tilde{\boldsymbol{\theta}}_{0:w}:\exists (\boldsymbol{\theta}'_{0}, \tilde{\boldsymbol{\theta}}_{1:w}) \in (E_{1} \cup E_{2})^{c}} \min_{|\mathbf{N}(\mathbf{A}^{c})|/w \leq d_{5}} \frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \mid \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \mid \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)} \geq d_{10}.$$
(C.58)

$$(F_{1} \cup F_{2})^{c} = \left\{ \left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \right) : \tilde{\boldsymbol{\theta}}_{0:w} \in (E_{1} \cup E_{2})^{c} \lor \max\{ |\mathbf{N}(\mathbf{A}^{(1)})|, |\mathbf{N}(\mathbf{A}^{c})|/w\} \le d_{5} \right\}$$
$$\cup \left\{ \left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \right) : |\mathbf{N}(\mathbf{A}^{c})|/w \le d_{5} \land \exists \boldsymbol{\theta}_{0} \text{ s.t. } (\boldsymbol{\theta}_{0}, \tilde{\boldsymbol{\theta}}_{1:w}) \in (E_{1} \cup E_{2})^{c} \right\}$$
$$\cup \left\{ \left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \right) : |\mathbf{N}(\mathbf{A}^{(1)})| \le d_{5} \land \exists \boldsymbol{\theta}_{1:w} \text{ s.t. } (\tilde{\boldsymbol{\theta}}_{0}, \boldsymbol{\theta}_{1:w}) \in (E_{1} \cup E_{2})^{c} \right\}$$

and due to (C.55)-(C.58) we have

$$\min_{\left(\tilde{\boldsymbol{\theta}}_{0:w},|\mathbf{N}(\mathbf{A}^{(1)})|\right)\in(F_{1}\cup F_{2})^{c}}\frac{\Pr\left(\boldsymbol{\theta}_{0:w}\notin B_{1}\cup B_{2} \mid \tilde{\boldsymbol{\theta}}_{0:w},|\mathbf{N}(\mathbf{A}^{(1)})|,\mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w}\in B_{1} \mid \tilde{\boldsymbol{\theta}}_{0:w},|\mathbf{N}(\mathbf{A}^{(1)})|,\mathbf{S}\right)} \geq \min\{d_{7},d_{8},d_{9},d_{10}\} > 0.$$

Combining this result with (C.54) yields (C.48).

Now we prove the second part of Proposition C.1. Using Lemma C.3 and (C.48),

$$\frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \middle| \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_{2}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \middle| \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_{2}\right)} = \frac{\sum_{\left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_{2}\right)} \Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right) \pi\left(|\mathbf{N}(\mathbf{A}^{(1)})|, \tilde{\boldsymbol{\theta}}_{0:w} \middle| \mathbf{S}\right)}{\sum_{\left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \in F_{2}\right)} \Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right) \pi\left(|\mathbf{N}(\mathbf{A}^{(1)})|, \tilde{\boldsymbol{\theta}}_{0:w} \middle| \mathbf{S}\right)} \\ \geq \min_{\left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})| \in F_{2}\right)} \frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_{1} \middle| \tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)})|, \mathbf{S}\right)} \ge d_{4}. \tag{C.59}$$

Analogously,

$$\frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_1 \cup B_2 \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_1 \cup F_2\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_1 \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_1 \cup F_2\right)} \ge d_4.$$
(C.60)

Then by symmetry we have

$$\frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_1 \cup B_2 \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_1 \cup F_2\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_2 \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_1 \cup F_2\right)} \ge d_4$$

which combined with (C.60) yields

$$\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_1 \cup B_2 \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_1 \cup F_2\right) \ge \frac{d_4}{2+d_4} > 0.$$
(C.61)

Again using Lemma C.3,

$$\frac{\Pr(\boldsymbol{\theta}_{0:w} \notin B_1 \cup B_2 | \mathbf{S})}{\Pr(\boldsymbol{\theta}_{0:w} \in B_1 | \mathbf{S})} \ge \min \left\{ \frac{\Pr(\boldsymbol{\theta}_{0:w} \notin B_1 \cup B_2 | \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_2))}{\Pr(\boldsymbol{\theta}_{0:w} \in B_1 | \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_2))}, \frac{\Pr(\boldsymbol{\theta}_{0:w} \notin B_1 \cup B_2 | \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_2))}{\Pr(\boldsymbol{\theta}_{0:w} \in B_1 | \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_2))} \right\}.$$

Using this fact and (C.59) and since the ratios in (5.25) are exponentially decreasing in L,

$$\frac{\Pr\left(\boldsymbol{\theta}_{0:w} \notin B_1 \cup B_2 \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_2\right)}{\Pr\left(\boldsymbol{\theta}_{0:w} \in B_1 \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_2\right)}$$
(C.62)

is also exponentially decreasing in L. Also, using (C.60)-(C.61),

$$\begin{aligned} \frac{\Pr(\boldsymbol{\theta}_{0:w} \in B_{1} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{2})}{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{2} \mid \mathbf{S})} \\ &= \frac{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{2} \mid \mathbf{S})}{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{2} \mid \mathbf{S})} \\ &= \frac{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{2} \mid \mathbf{S})}{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{2} \mid \mathbf{S}) + \Pr(\boldsymbol{\theta}_{0:w} \in B_{1} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{1} \cup F_{2} \mid \mathbf{S})} \\ &= \frac{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_{1} \mid \mathbf{S}) + \Pr(\boldsymbol{\theta}_{0:w} \in B_{1} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{1} \cup F_{2} \mid \mathbf{S})}{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{1} \cup F_{2} \mid \mathbf{S})} + \Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{1} \cup F_{2} \mid \mathbf{S})} \\ &\leq \frac{\Pr((\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_{1} \mid \mathbf{S})}{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{1} \cup F_{2} \mid \mathbf{S})}} + \Pr(\boldsymbol{\theta}_{0:w} \in B_{1} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{1} \cup F_{2} \mid \mathbf{S})} \\ &= \frac{\Pr((\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|)) \in F_{1} \mid \mathbf{S})}{\Pr(\boldsymbol{\theta}_{0:w} \notin B_{1} \cup B_{2} \mid \mathbf{S}, (\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|)] \notin F_{1} \cup F_{2} \mid \mathbf{S})}} \\ &= \frac{\Pr((\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|)) \in F_{1} \mid \mathbf{S})}{\Pr(\boldsymbol{\theta}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \mid \# F_{1} \cup F_{2} \mid \mathbf{S})}}}{\Pr(\boldsymbol{\theta}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \mid \# F_{1} \cup F_{2} \mid \mathbf{S})}} \\ &\leq \left(\frac{2 + d_{4}}{d_{4}}\right) \frac{\Pr((\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_{1} \mid \mathbf{S})}{\Pr((\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \mid \# F_{1} \cup F_{2} \mid \mathbf{S})}} \\ &= is \text{ also exponentially decreasing in } L, \\ \frac{\Pr((\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \notin F_{1} \cup F_{2} \mid \mathbf{S})}{\exp((\mathbf{N}(\mathbf{A}^{(1)}) \mid \# F_{1} \cup F_{2} \mid \mathbf{S})}} is also exponentially decreasing in } L.$$

 $\frac{\Pr\left(\left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_1 \mid \mathbf{s}\right)}{\Pr\left(\left(\tilde{\boldsymbol{\theta}}_{0:w}, |\mathbf{N}(\mathbf{A}^{(1)}|) \in F_2 \mid \mathbf{s}\right)} \text{ decreases exponentially in } L, \text{ proving Proposition C.1.}$