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1. Introduction

Multiple-outcome regression models pool information across related outcome variables; this

can lead to higher power to detect a significant predictor effect than fitting separate regression

models (Thurston et al., 2009). Such joint models are popular, for instance, in epidemiological

studies, which often have multiple measures of physiological or psychological health and

attempt to detect small but important effects of low-dose exposure on those outcomes. In

such contexts it is crucial to use the available information as efficiently as possible. We use

as a motivating example data from the Study for Future Families (Swan et al. 2003), relating

sexually dimorphic traits in male infants to explanatory variables.

There are two general approaches to modeling the relationship of predictor variables to

multiple correlated outcomes like these. One approach models the predictor effect on the

outcomes directly (Sammel, Lin, and Ryan 1999; Lin et al. 2000; Coull, Hobert, Ryan, and

Holmes 2001; Roy, Lin, and Ryan 2003) and induces correlations between outcomes with

random effects. Another approach, called the continuous latent factor approach, introduces

one or more continuous unobserved variables that are manifested by the multiple outcomes

(Dunson, 2000; Muthén, 2002; Budtz-Jorgensen et al., 2003; Sanchez et al., 2005). The direct

modeling approach includes the case where the outcomes are nested in domains (Thurston

et al., 2009). This is a common situation in epidemiology studies, where one is interested

in the relationship of the explanatory variables to a set of outcomes within domains such as

motor function, intelligence, and attention. In the Study for Future Families the outcomes

fall into natural domains including skinfold thickness measures, other “fatness” measures

like weight and body mass index, and head circumference (which forms its own domain).

We show that some direct modeling approaches are special cases of the continuous la-

tent factor model framework, even when the multiple outcomes are nested in domains. In

other words, the two modeling frameworks above are closely related. This is not surprising
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since continuous latent factor models are extremely general, and non-identifiable in the

unrestricted case. However, expressing the direct modeling approach in this way suggests

extensions and allows us to view the options for modeling grouped outcomes as a spectrum

between parsimonious, but less flexible, random effect models and highly parameterized,

but more flexible, latent factor models. We introduce a set of models along this spectrum,

starting with a single restriction to the latent factor model framework. We show that this

restriction is enough to ensure identifiability, while maintaining the ability to model complex

dependencies (Section 2). So all our models are identifiable, while capturing desirable features

like correlations between the latent variables and different correlations between different pairs

of outcomes in the same domain, features that are more commonly obtained by designing

very context-specific models and separately verifying identifiability.

Our models provide a set of general-purpose tools for the situation of multiple outcomes

nested in domains, yielding estimates of the predictor effects both at the domain level and

at the outcome level. They share information across outcomes, in part by shrinkage of the

estimated outcome-specific predictor effect across outcomes in a domain. The models differ

in the degree of shrinkage, in the most parsimonious case assuming that there is a common

predictor effect for all outcomes in the same domain.

We characterize the tradeoffs between parsimony and flexibility in our models by applying

them to both simulated data (Section 3) and to the Study for Future Families (Section 4).

We demonstrate the estimation accuracy of the models, and show how to select from among

the models using goodness-of-fit measures.

2. Modeling Grouped Outcomes

First we describe the random effect model of Thurston et al. (2009) for multiple outcomes

nested in domains, and show that it is a type of continuous latent factor model in the sense of

Sanchez et al. (2005), with one factor for each domain. The continuous latent factor model



Regression Models for Grouped Outcomes 3

is itself a special case of a structural equation model (SEM: cf. Sanchez et al. 2005). So

we traverse a spectrum from parsimony to flexibility as we go from random effect models

to latent variable models to SEMs, and the model-choice decision is not between a SEM

and a random effect model, but rather about the appropriate amount of parsimony when

considering model restrictions within the SEM framework.

Denote the outcome measurements by Yij for subjects i = 1, . . . , n and outcomes j =

1, . . . , p. Although we focus on the case of continuous outcomes, one can handle the dis-

crete case by use of the generalized linear model framework. The outcomes are grouped

into domains d(j) ∈ {1, . . . , d}, which are defined to contain strongly positively correlated

outcomes. Denote the covariates by the length-r vector Zi, and the (observed) exposure by

ηi. In accordance with the epidemiology literature we distinguish notationally between these

two sets of predictors, although they will be modeled in identical fashion; one can also drop

ηi in the following models in order to obtain a single undifferentiated set of predictors.

The model of Thurston et al. (2009) extends the linear mixed model approach to borrow

information across outcomes and domains while estimating the exposure effect. It provides

shrinkage of this effect across domains and across outcomes within a domain, and has higher

power to detect an effect than separate regression models. Their original model is as follows,

where the outcome variables, exposure, and covariates are assumed to be standardized, and

where the notation
ind∼ indicates that the random effects are independently distributed.

Yij = (bo,η,j + bD,η,d(j) + bη)ηi + (bo,z,j + bD,z,d(j) + bz)Zi + qi + qi,d(j) + eij (1)

where bη is a common exposure effect, bD,η,k
ind∼ N(0, τ 2

D) for k = 1, . . . , d is a domain-specific

exposure effect, bo,η,j
ind∼ N(0, τ 2

o ) is an outcome-specific exposure effect, bz is a vector of

overall covariate effects, bD,z,k,`
ind∼ N(0, τ 2

D,`) is a domain-specific covariate effect for the `th

covariate, bo,z,j,`
ind∼ N(0, τ 2

o,`) is an outcome-specific covariate effect for the `th covariate,

qi
ind∼ N(0, τ 2

q ) is a subject-specific random effect, qi,k
ind∼ N(0, τ 2

q,k) is a subject-domain effect,
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and eij
ind∼ N(0, σ2

j ) is the residual error. The subject random effect qi captures the situation

where all outcome measures are positively correlated even after accounting for covariates and

exposure. The subject-domain effect qi,k captures additional correlation between outcomes

within a domain. No intercept parameters are included by Thurston et al. (2009) in model

(1) due to centering of outcomes, exposure, and covariates. The class of models proposed

by Thurston et al. (2009) allows the domain-specific exposure and covariate effects, bD,η,d(j)

and bD,z,d(j), to be treated either as random effects as in (1) or as fixed effects.

In contrast with (1), a continuous latent factor model induces correlation between related

outcomes by assuming that they are all manifestations of a set of common unmeasurable

variables. The general form of a continuous latent factor model is the following (Sammel and

Ryan, 1996; Muthén, 2002; Sanchez et al., 2005), where we take the number of factors equal

to the number of domains:

Yi = α+ βo,ηηi + βo,zZi + Λξi + εi

ξi = βD,ηηi + βD,zZi + Bξi + ζi. (2)

Here, Yi is the length-p vector of outcomes for the ith subject, α is a length-p vector of

intercepts, βo,η and βo,z are p× 1 and p× r matrices of regression coefficients, Λ is a p× d

matrix of factor loadings, ξi is a length-d vector of latent factors, εi is a length-p vector of

independent residuals such that εij
ind∼ N(0, σ2

j ), βD,η and βD,z are d × 1 and d × r matrices

of regression coefficients, ζi is a length-d vector such that ζi,k
ind∼ N(0, τ 2

ζ,k), and B is a d× d

matrix with zero diagonal elements and (I−B) invertible. Without further restrictions this

model is non-identifiable.

To see that (1) is a special case of (2), specify the factor loadings matrix Λ so that the latent

traits ξi correspond to the outcome domains. To do this, the nonzero elements of Λ should be

the elements (j, d(j)) for each j, which we call λj. For example, if there are two domains and
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four outcomes with d(1) = d(2) = 1 and d(3) = d(4) = 2 then Λ =

 λ1 λ2 0 0

0 0 λ3 λ4


T

.

For identifiability, it is common practice in factor analysis to set λj = 1 for the first outcome

measurement j in each domain (Sanchez et al., 2005).

Next, a parsimonious way to induce B is to take the second line of (2) to be ξi = βD,ηηi +

βD,zZi + φi + ψi, where φi
ind∼ N(0, τ 2

φ) is a scalar and ψi is a length-d vector such that

ψik
ind∼ N(0, τ 2

ψ,k). This is shown in Appendix A to be a special case of (2). Using these

specifications,

Yij = αj + βo,η,jηi + βo,z,jZi + λjξi,d(j) + εij i = 1, . . . , n; j = 1, . . . , p

ξik = βD,η,kηi + βD,z,kZi + φi + ψik k = 1, . . . , d (3)

where βo,z,j and βD,z,k are the jth and kth rows of the matrices βo,z and βD,z, respec-

tively. With these choices of Λ and B, a rich covariance structure can be captured, since

Cov
(
Yij, Yi`

∣∣ ηi,Zi

)
= λjλ`

(
τ 2
φ + τ 2

ψ,d(j)1{d(j)=d(`)}

)
for j 6= `; i.e., the covariance/correlation

can be different for different pairs of outcomes, even within a single domain.

One could simplify (3) by setting λj = 1 for every j, so that each outcome variable puts

equal weight on the associated latent factor ξi,d(j):

Yij = αj + (βo,η,j + βD,η,d(j))ηi + (βo,z,j + βD,z,d(j))Zi + φi + ψi,d(j) + εij. (4)

The outcome-specific exposure and covariate effects for outcome j in (3) are OSη,j , βo,η,j +

λjβD,η,d(j) and OSz,j,` , βo,z,j,` + λjβD,z,d(j),`, respectively, which simplify in (4) to βo,η,j +

βD,η,d(j) and βo,z,j,` + βD,z,d(j),`, i.e. an outcome-level effect plus a domain-level effect. To

obtain (1) from (4), drop the intercept term αj and use the random effect specification

βD,η,k
ind∼ N(bη, τ

2
D), βD,z,k,`

ind∼ N(bz,`, τ
2
D,`) βo,η,j

ind∼ N(0, τ 2
o ), and βo,z,j,`

ind∼ N(0, τ 2
o,`) for each k,

j and `, after standardizing the outcome variables, covariates, and exposure.

We will investigate models that fit into the framework (3), using the random effect as-

sumption that βo,η,j
ind∼ N(0, τ 2

o ) and βo,z,j,`
ind∼ N(0, τ 2

o,`) and taking λj = 1 for the first
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outcome in each domain. We will see that this framework is identifiable without further

restrictions. The random effect specification of βo,η,j and βo,z,j,` also has the advantage of

leading to shrinkage estimation of the exposure/covariate effects for outcomes within each

domain. When shrinkage of these effects across domains is desirable we will also specify βD,η,k

and βD,z,k,` as random effects. Unlike (1) we will include the intercept terms αj in our models;

dropping the intercept term ignores the uncertainty in that intercept when estimating the

parameters of interest, potentially affecting the quality of interval estimates.

In deriving model (3) we have made assumptions regarding the structure of the matrices

Λ and B; contrast these choices with those standard in the SEM literature, where it is

conventional to assign the latent factors particular interpretations, such as “motor function”

and “verbally mediated function.” Having done that, one manually selects a small number

of nonzero elements in the matrices B and Λ corresponding to hypothesized associations

among the interpreted factors and between the interpreted factors and the outcome variables

(Sanchez et al., 2005; Palomo et al., 2007). Like these authors, we associate each latent factor

with a domain, and assign each of the outcomes to a single domain. However, we avoid

manually specifying the relationships between the latent factors, instead assuming that the

latent factors are related to each other by inclusion of the subject random effect φi, and

potentially by random effect modeling of the domain-specific coefficients βD,η,k and βD,z,k,`.

The subject random effect φi captures positive correlation between all of the outcomes,

conditional on exposure and covariates; to enforce this we restrict λj > 0 for each j.

This is appropriate in many contexts, for instance the SFF context of Section 4 and the

democratization example of Palomo et al. (2007). When not all of the outcomes are positively

correlated it may be possible to multiply some of the outcomes by −1 so that our models

can be applied; for instance, in the methylmercury analysis of Budtz-Jorgensen et al. (2003),

where for most outcome variables a higher value indicates better neurological development,
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but in a few it indicates worse development. In our models one could potentially allow

λj = 0 in addition to λj > 0. However, allowing λj = 0 simultaneously for all j leads to

non-identifiability, and it is reasonable to require the latent factor associated with a domain

to influence all of the outcomes within that domain.

2.1 Model Formulation

Next we define a set of models for grouped outcomes, from flexible latent factor models to

parsimonious random effect models. All variables are standardized before model-fitting.

Model A: Given in (3), treating βD,η,k, βD,z,k, αj, and λj as fixed effects restricting

to λj > 0, and recalling that λj = 1 for the first outcome in each domain and that

βo,η,j ∼ N(0, τ 2
o ), βo,z,j,` ∼ N(0, τ 2

o,`), φi ∼ N(0, τ 2
φ), and ψik ∼ N(0, τ 2

ψ,k) are random

effects. Recall that (3) is obtained from the latent factor model (2) by specifying Λ, B

as described.

Model B: Identical to Model A except that it models βD,η,k as a random effect, βD,η,k ∼

N(bη, τ
2
D) (reducing the effective number of free parameters in the model). Since this

induces shrinkage of βD,η,k across domains k, it is only reasonable if the effect of ηi is

believed to be similar for the outcomes in all domains.

Model C: Identical to Model A except that βo,η = βo,z = 0. This gives a more parsimo-

nious model while allowing the outcome-specific predictor effects (now OSη,j = λjβD,η,d(j)

and OSz,j,` = λjβD,z,d(j),`) to be different for outcomes in the same domain.

Model D: Identical to Model A except that λj = 1 for all j, so each outcome puts the

same weight on the latent factors. Close to the model (1) of Thurston et al. (2009).

Model E: Identical to Model D except that βo,η = βo,z = 0. Here the outcome-specific

effects OSη,j = βD,η,d(j) and OSz,j,` = βD,z,d(j),` are the same for all outcomes in a domain.

All our models capture positive correlation between the outcomes, conditional on the

predictors. Models A-D allow the predictor effects OSη,j and OSz,j,` to be different for
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outcomes within a domain. Model B leads to shrinkage of the exposure effect across domains.

In Appendix B we prove that our most general model (Model A) is identifiable so long as

there is more than one domain and more than one outcome in each domain. If a particular

domain has only one outcome, we show that identifiability can be achieved by setting

βo,η,j = τ 2
ψ,d(j) = 0 = βo,z,j for that outcome j. When applying Models A-E in practice

small modifications may be needed to accommodate features seen in the data; in the Study

for Future Families, for instance, we allow nonzero correlation between the residuals εij and

εij′ of two particular outcomes j, j′.

2.2 Estimation

We use Bayesian inference in the above models. All prior distributions not given in the model

descriptions are specified as follows. The parameters log(λj), αj, βD,η,k, and the elements of

the vector βD,z,k, are given prior distributions that are uniform on the real line. For the

variance parameters σ2
j , τ

2
o , τ

2
o,`, τ

2
D , τ 2

φ , and τ 2
ψ,k, we use a uniform prior on the associated

standard deviation (Gelman et al., 2004), with support on the interval from zero to two.

This upper bound is reasonable: none of the variance parameters is expected to be greater

than one due to standardization of the outcomes, but we use a slightly higher upper bound

since in some cases the likelihood can be high near and just above one. To understand why

variance parameter values with high likelihood typically are 6 1, take the example of Model

A, and consider an arbitrary outcome j. Then Var(Yij|ηi,Zi) = λ2
jτ

2
φ + λ2

jτ
2
ψ,d(j) + σ2

j . For

parameter vectors with high likelihood, the model typically explains some of the variability

in the outcome Yij in the sense that Var(Yij|ηi,Zi) 6 Var(Yij). Due to standardization of

Yij, we then have λ2
jτ

2
φ +λ2

jτ
2
ψ,d(j) +σ2

j 6 1 for each j. This implies that σ2
j 6 1, and taking j

to be the first outcome in an arbitrary domain k yields λj = 1 and thus τ 2
φ , τ

2
ψ,k 6 1. Similar

arguments show that the standard deviations τo and τo,` of βo,η,j and βo,z,j,` should be 6 1.
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While the prior distributions for λj, αj, βD,η,k, and βD,z,k are nonintegrable, the posterior

distributions for Models A-E are integrable (well-defined). We assessed prior sensitivity for

the variance parameters by changing the upper bounds on the standard deviations; the results

in Sections 3-4 were insensitive to increases in the upper bound and to moderate decreases

in the upper bound. Not surprisingly, decreasing the upper bound so far as to truncate the

region of high likelihood changed the parameter estimates in an undesirable way.

Computation is performed by Markov chain Monte Carlo. Parameter point estimates are

taken to be the posterior mean, and (1 − a) interval estimates for a ∈ (0, 1) are given

by the a/2 and (1 − a/2) posterior quantiles. For the variance parameters and λj we find

the posterior mean on the log scale and then exponentiate to obtain the point estimate,

since the posterior distributions of these parameters are right-skewed. We verify convergence

of the Markov chain by ensuring that the estimated Monte Carlo standard error is less

than 1% of each parameter’s posterior standard deviation (equivalently, the effective sample

sizes are > 10000; Flegal, Haran, and Jones 2008). In the simulation study we allow slightly

higher Monte Carlo standard error (5% of each the posterior standard deviation; equivalently,

the effective sample sizes are > 400) to reduce computation time since we analyze a large

number of scenarios. Using stricter convergence criteria can only be expected to improve our

simulation results.

3. Simulation Study

3.1 Simulation Conditions

We performed a simulation study to compare the performance of the five models, evaluating

the accuracy of point and interval estimation and assessing goodness-of-fit. We used one

exposure ηi and one covariate Zi, which were generated from a bivariate normal distribu-
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tion with mean zero, variance one and covariance 0.2. The outcomes and predictors were

standardized as described in Section 2.

Here we report results for Models A, B, D, and E; in additional results the performance

of Model C was generally in between those of Models E and A, and was similar to A when

the parameters βo,η,j and βo,z,j were not too large. We cannot compare the results of our

models to those of a generic continuous latent factor model, or a generic SEM, because these

frameworks are non-identified without further restrictions. In addition to varying the models

used to simulate and fit the data, we also varied six factors each with two levels: (a) sample

size (n=100 or 500); (b) number of outcomes in each domain, either (4, 2, 1) or (4, 6, 3); (c) λj

values (all equal to 1, or some = 0.5); (d) β̄D,η , 1
3

∑3
k=1 βD,η,k, either 0.05 or 0.15; (e) βD,η,k−

β̄D,η, either (−0.03, 0, 0.03) or (−0.1, 0, 0.1) (unless simulating from Model B, in which case

either βD,η,k ∼ N(β̄D,η, .032) or βD,η,k ∼ N(β̄D,η, .1
2)); and (f) βD,z,k−β̄D,z, either (-0.05, 0, 0.05)

or (-0.2, 0, 0.2) where β̄D,z , 1
3

∑3
k=1 βD,z,k. For simulations in which some λj = 0.5, for the

model with (4,2,1) outcomes we used λj values of (1, 1, 0.5, 0.5, 1, 0.5, 1) and for the model

with (4,6,3) outcomes, we used λj values of (1, 1, 0.5, 0.5, 1, 1, 1, 0.5, 0.5, 0.5, 1, 0.5, 0.5).

For all models we used β̄D,z = 0.2, τφ = 0.2, τψ,k = 0.05 for k = 1, 2, 3, and σj = 1 for all j.

For Models A, B, D the standard deviations τo and τo,1 of βo,η,j and βo,z,j were 0.05.

We generated 25 datasets for each of the following scenarios. For experiment one we both

simulated from and fit Model A, using several combinations of factors (a)-(f) as shown in

Table 1. For experiment two we tried several combinations of simulation model, estimation

model, and λj values as shown in Table 2, while fixing: n = 500; (4, 6, 3) outcomes in the

domains; β̄D,η = 0.15; βD,η,k−β̄D,η equal to (−0.1, 0, 0.1); and βD,z,k−β̄D,z equal to (−0.2, 0, 0.2).

3.2 Evaluation

We evaluated the bias, relative bias (bias / true parameter value) and root mean squared

error (RMSE) of point estimates, as well as coverage and width of 95% interval estimates



Regression Models for Grouped Outcomes 11

for the parameters βD,η,k, βD,z,k, OSη,j, OSz,j, and λj. Since each model has multiple βD,η,k

parameters, we averaged the performance measures across the multiple parameters in such

cases. For relative bias, since some of the parameters can take values arbitrarily close to

zero we divide the average of the bias by the average of the parameter true value, which is

strictly positive in all cases considered. We also calculated four goodness-of-fit measures: the

estimated root mean squared error of approximation (RMSEA; Browne & Cudeck 1992), the

p-value for a test of whether population RMSEA is less than .05 (a recommended threshold

for close fit), the p-value for a test of whether population RMSEA = 0 (exact fit), and the

average residual correlations of the outcomes. RMSEA is a measure of how well the model

covariance matrix approximates the empirical covariance matrix.

As shown in Tables 1 and 2, the absolute bias and RMSE are small for the parameters of

interest βD,η,k, βD,z,k, OSη,j and OSz,j, under most scenarios. The true values of the outcome-

specific effects OSη,j in this simulation study typically range from −.15 to .35, while the

values of the domain-specific effects βD,η,k range from −.05 to .25. By contrast the absolute

bias is below .03 for OSη,j and below .025 for βD,η,k (ten times smaller than the parameter

range) under all scenarios in which the true model is nested within the fitted model and

Model B is not fit (eliminating Columns 3, 4, 6, 8, and 10 of Table 2). The RMSE is 6 .11,

which is roughly five times smaller than the parameter range for OSη,j and three times

smaller than that for βD,η,k. The bias and RMSE are even smaller if we additionally restrict

to scenarios having the larger sample size n = 500. In these cases the absolute bias is less

than .004 for OSη,j and .014 for βD,η,k, and the RMSE is less than .06 for both parameters.

The relative bias of βD,η,k, βD,z,k, OSη,j and OSz,j is typically below 20% in absolute value

(again ignoring Columns 3, 4, 6, 8, and 10 of Table 2); the only exceptions are in cases where

both n = 100 and the average true parameter value happens to be very small (6 .07). We

have found the relative bias to be sensitive to what we choose the true values to be, tending
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to reflect the particular simulation study choices more than the estimation accuracy (in order

to even report these measures the average true values had to be chosen to be nonzero), so

comparing the bias to the spread of the true values as above provides more insight.

The estimates of the less well-identified parameter λj are less accurate, with absolute

bias up to .75 and RMSE from .40 to .78 (compare to true values in the range 0.5 to 1.0).

This is lessened somewhat by increasing the sample size; compare Columns 2-5 of Table 1. So

caution should be taken in interpreting the λj estimates, but the estimates of the parameters

of interest βD,η,k, βD,z,k, OSη,j and OSz,j are reliable when the model is chosen carefully.

The bias and RMSE for all parameters are higher, and the interval coverage is lower, when

the true model is A and we fit the more parsimonious models D or E; compare Column 2

to Columns 3-4 in Table 2. On the other hand, when the simulated model is D the bias and

RMSE are smaller when fitting Model D than when fitting Model A; compare Columns 5

and 7 in Table 2. This demonstrates the advantage of fitting a parsimonious model when

that model is correct. We do not see this advantage when the simulated model is B; compare

Columns 9 & 10 in Table 2. In general our results from fitting Model B are worse than

those from fitting Model A (see also Columns 5-6 of Table 2); this could due to the fact that

Table 2 uses large true deviations βD,η,k − β̄D,η, so that Model B is not very appropriate.

The confidence interval coverage is excellent (> 90%) in all scenarios shown in Tables 1-2,

except when either the true model is not nested in the fitted model, or when Model B is fit.

As expected, the confidence intervals are substantially narrower when fitting Models B, D,

and E than when fitting Model A.

Several of the goodness-of-fit measures, namely residual correlations, estimated RMSEA,

and p-values for the test of whether population RMSEA 6 .05, give evidence of good fit

in all cases. The average residual correlations are less than 8%, the average RMSEA values

are always less than .05 (the cutoff for “good fit”), and the p-values for the test of whether
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population RMSEA is 6 .05 are typically very close to one. This holds even when the true

model is not nested in the fitted model, meaning that the lack of fit in these cases was not

detected using these measures. However, p-values for the test of whether population RMSEA

= 0 are close to zero (indicating lack of fit) when the data are drawn from Models A or D and

Model E is fit (Columns 4 & 8 of Table 2). This does not occur when the true model is A and

Model D is fit (Column 3 of Table 2), perhaps because the true values of λj are not very far

from one, making the lack of fit hard to detect. These results suggest that testing population

RMSEA is a reasonable approach to distinguish between models. While in the somewhat

idealized setting of simulated data we need the more sensitive test of whether RMSEA = 0,

in real-data situations we believe that the more conservative measure of whether RMSEA

6 .05 is more appropriate, for reasons described in Browne and Cudeck (1992).

4. Data Analysis

4.1 Study for Future Families

The Study for Future Families (SFF) is a pregnancy cohort study measuring a variety of

infant anthropometric characteristics (Swan et al. 2003), including four skinfold thickness

metrics, body mass index, weight percentile-for-age, and head circumference percentile-for-

age. Most of these traits are known to be strongly sexually dimorphic; in particular, skinfold

thickness measures tend to be larger in females at all ages up to three years, while head

circumference and weight are larger in males than females of the same age (Rodriguez et al.

2004; U.S. Centers for Disease Control and Prevention 2000). These metrics fall into three

natural domains: (1) skinfold thickness metrics, (2) weight percentile and BMI, which are

closely related, and (3) head circumference percentile. We investigate explanatory variables

that may be related to these sexually dimorphic traits in male infants, including exposure to

phthalates (toxic chemicals that are believed to have an anti-androgenic effect) as measured
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using the “phthalate score” (Swan, 2008). Other variables considered include infant’s age

and gestational age, mother’s age at time of birth, mother’s race, mother’s educational

level, mother’s smoking status, and the creatinine concentration for the urine sample from

which the phthalate measurements were taken. We performed a preliminary analysis by

regressing each of the anthropometry measurements on the covariates and phthalate score.

After appropriate transformations all variables are standardized before fitting all regression

models. This analysis gave evidence of a relationship between infant’s age, gestational age,

mother’s age, and mother’s race (Caucasian/non-) and some of the anthropometry measures.

We include these four predictors in our models, as well as the creatinine concentration

(although it was not a significant predictor for the outcomes, it is a significant predictor

for the phthalate concentrations and is included in order to adjust for this effect; Barr et al.

2005). We restrict to infants with complete data, leaving 118 male infants out of 172.

Table 3 gives summary statistics for the outcomes and covariates. It also shows the

regression coefficient for phthalate score obtained from the separate regressions, with 95%

confidence intervals. We do not see a significant relationship between phthalate score and the

outcomes using the separate regressions; however, by fitting the multiple-outcomes models

from Section 2.1 one would have higher power to detect a potential effect.

4.2 Results

We apply Models A, C, D, and E, omitting Model B because we do not hypothesize that the

phthalate effect is similar across domains. The third domain defined in Section 4.1 has only

one outcome variable (head circumference), so for identifiability we set βo,η,j = τ 2
ψ,d(j) = 0 =

βo,z,j for this outcome j. Models A, C, D, and E were appropriate since residuals from the

separate regressions done in Section 4.1 were positively correlated for the different outcomes

(having correlations .08− .65).

The residual correlations of skinfold thickness quadriceps and skinfold thickness triceps
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were large in all of the models (e.g., .32 in Model A and .40 in Model C), indicating that

these two outcomes are more strongly correlated than was captured by the models. We added

a random effect to the four models to account for this; with the random effect, the residual

correlations for all pairs of outcomes in all models were 6 .20. These residual correlations

are small and do not indicate lack of fit of any of the models (for variables X and Y with

correlation .20, a regression of Y on X has r2 = .202, meaning that the fraction of variance

in Y explained by X is .202; then the standard error of prediction of Y by X is only (1 −
√

1− .202) = 2.0% less than the standard deviation of Y ). However, the point estimates of

the goodness-of-fit measure RMSEA (see Section 3) are .080, .120, .077, and .129 for Models

A, C, D, and E respectively. Also, the p-values for a test of whether population RMSEA is

6 .05 are .089, 8.0×10−5, .096, and 2.2×10−6, respectively. Both of these measures indicate

(Browne and Cudeck, 1992) that Models A and D have reasonable fit, while Models C and

E have poor fit to these data. One should use the most parsimonious model that shows good

fit, namely Model D for these data.

Although Model D is more parsimonious than separate regression models, we do not find

a significant relationship between phthalate exposure and the anthropometry outcomes (the

95% interval estimates of the outcome-specific and domain-specific exposure effects OSη,j and

βD,η,j all contain zero). If a link exists between phthalates and the anthropometric measures,

we are unable to detect it due to the size of our dataset and the need to adjust for covariates.

Selected outcome-specific covariate effects OSz,j for Model D are shown in Table 4. Results

for Model A are similar; the set of significant outcome-specific covariate effects is the same,

the point estimates of OSz,j are different by 11% on average between the two models, and

the left and right interval estimate endpoints differ by 5% and 10%, respectively. So there

is not much sensitivity of the results to the choice of model, among those models for which

the RMSEA hypothesis test indicates good fit.
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We find a positive relationship between gestational age and weight percentile, which is in

accordance with previous findings (U.S. Centers for Disease Control and Prevention, National

Center for Health Statistics, 2000). We also find a negative relationship between infant age

and several skinfold thickness measures as well as weight percentile. Such relationships are

surprising, in part since weight percentile is already adjusted for infant age. These negative

correlations also exist in the raw data; however, if we restrict to infants in the most rapid

phase of growth (younger than 9 months) these become positive correlations, which are in

accordance with previous findings. Regarding the domain-specific covariate effects βD,z,k,`,

in Model D none is significant, and in Model A only the coefficient for age in the skinfold

thickness domain is significant (having 95% interval estimate (-.71,-.08)).

Figure 1 illustrates the varying degrees of shrinkage of the estimated effects OSz,j in Models

A, C, D, E. Estimates from Model A show shrinkage towards the domain average, relative

to estimates from the separate regressions described in Section 4.1. Model D shows a slight

amount of shrinkage relative to Model A. Model E restricts to a single coefficient estimate per

domain, and this estimate is close to the average of the outcome-specific estimates from either

Model A or separate regressions. By contrast, no shrinkage between domains is visible; this

is due to the fact that the domain-specific coefficients βD,z,k are fixed effects in these models.

The coefficient estimates from Model C, at the bottom of Figure 1, also show shrinkage

but are somewhat different than those of the other models, perhaps due to the poor fit of

Model C for these data. Although the shrinkage of coefficients in Model A relative to separate

regressions appears moderate in Figure 1, it can be dramatic when the signal-to-noise ratio is

low. Compare Table 3, Column 3 to the phthalate coefficient estimates (×100) from Model A

(−3.3, −0.3, −2.4, 1.0, 9.5, 9.5 and −1.4, respectively); the coefficient estimates are strongly

pulled together.
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5. Conclusions

We introduced identifiable models for regression with multiple outcomes nested in domains,

from very general continuous latent factor models to very parsimonious random effect mod-

els. Our models extend existing models for this context, in the sense that they introduce

outcome-specific loadings λj for latent factors associated with the domains. Our methods

are appropriate in situations where all outcomes are positively correlated conditional on

the predictors; this can be checked empirically by verifying that the residuals from separate

regressions are positively correlated. It is appropriate in some situations to multiply a subset

of outcomes by −1 to get this property.

We applied our models to simulated data and the SFF data. In simulations we evaluated

estimation accuracy as well as goodness-of-fit approaches to model selection. All models

except Model B had high accuracy in estimating the outcome-specific and domain-specific

predictor effects, and had excellent coverage of interval estimates, when the true model was

nested in the fitted model. When the latter does not hold, the point estimation accuracy and

coverage of interval estimates are lower. Conversely, there is a beneficial effect of fitting the

more parsimonious models when the data come from those models. We did not find evidence

supporting the use of Model B, perhaps because we used true domain effects that differed

widely and Model B is intended for situations where these effects are similar. The parameters

λj are less well-identified so they are estimated with more bias and higher error than the

parameters of interest; care should be taken when interpreting the λj point estimates for

small to moderate sample sizes.

Regarding goodness-of-fit measures in the simulation study, a test of population RMSEA

found good fit whenever the true model was nested within the fitted model, and often

detected lack of fit when this was not the case. So we recommend using this hypothesis test

to find the subset of appropriate models; among these models the most parsimonious model
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should be chosen, but all models with good fit can be used in a sensitivity analysis. Although

in the somewhat idealized simulation setting the more sensitive test of whether population

RMSEA = 0 was needed to accurately detect lack of fit, we argued that for real-data settings

the more conservative test of whether RMSEA 6 .05 is more appropriate.

In the SFF analysis the RMSEA hypothesis test indicated that Models A and D had good

fit. So we chose the more parsimonious Model D, obtaining estimates of the outcome-specific

and domain-specific covariate effects, and noted that Model A gave very similar results. We

also used the SFF data to illustrate the differing degrees of shrinkage of the outcome-specific

effects induced by the various models. Models A, D, and E gave very similar estimates apart

from the shrinkage. Models A, C, D, and E led to shrinkage of the outcome-specific effects

within domains but not across domains, because they treat the domain-level effects as fixed

and the outcome-level effects (present in A & D) as random. Desirably, the shrinkage is more

dramatic in cases where the signal-to-noise ratio appears to be low (as evidenced by wide

coefficient interval estimates that contain zero).

Our methods extend the multiple-outcomes random effect models of Sammel et al. (1999),

Lin et al. (2000), Roy et al. (2003), Thurston et al. (2009), and others. Our Model D is

similar to the model of Thurston et al. (2009), while our Models A, B and C are extensions

via inclusion of the factor loadings λj and our Model E is a parsimonious special case of

Model D. The factor loadings allow for complex dependencies, like different correlations

for different pairs of outcomes in the same domain, that cannot be captured by Model D.

However, our work lends additional support to Model D, showing for instance that it is

appropriate for the SFF data.

Like in the scaled linear mixed and scaled linear marginal models of Lin et al. (2000) and

Roy et al. (2003), we use rescaled versions of the outcome variables, so that the predictor

effects can be compared across outcomes (the scaling in the three cases is done differently).
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Also like these authors, we include random effects to account for correlation of the outcomes

conditional on the predictors. However, unlike these authors we handle the situation of

outcomes nested in domains, obtaining estimates of both the outcome-specific and the

domain-specific predictor effects, and capturing higher correlation of outcomes in the same

domain than outcomes in different domains.

Our models also relate to some latent variable models for multivariate longitudinal data

(Oort 2001, Sivo 2001, and others; see Verbeke, Fieuws, Molenberghs and Davidian 2012 for

an overview), in the sense that both approaches define a set of continuous latent factors that

are modeled as a function of an exogenous variable (exposure or time). The fundamental

difference is that in the longitudinal context the outcomes are measured at multiple time

points for each subject, while in our context outcomes are measured for a single value

of the exposure, for each subject. This affects what types of models can be used, due to

identifiability and practical considerations; for instance, in the some longitudinal contexts,

unlike ours, one can use autoregressive models for the latent factors (Oort, 2001).
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Web Appendix for “Latent Factor Regression Models for

Grouped Outcomes” by D. B. Woodard, T. Love, S. W. Thurston,

D. Ruppert, S. Sathyanarayana and S. H. Swan

Appendix : Derivation of the Matrix B

We wish to specify τ2
ζ,k and B in such a way that the factor vector ξi, defined by

ξi = βD,ηηi + βD,zZi + Bξi + ζi (A.1)

where ζi,k
ind∼ N(0, τ2

ζ,k), can be rewritten as follows.

ξi,k = βD,η,kηi + βD,z,kZi + φi + ψi,k k = 1, . . . , d

where φi
ind∼ N(0, τ2

φ), ψi,k
ind∼ N(0, τ2

ψ,k), and βD,z,k is the kth row of the matrix βD,z. First, let’s rewrite (A.1) as

ξi = (I−B)−1βD,ηηi + (I−B)−1βD,zZi + (I−B)−1ζi

Since (I − B)−1 is a one-to-one transformation, we can reparametrize using β∗
D,η = (I − B)−1βD,η and β∗

D,z =

(I−B)−1βD,z. Suppressing the ∗s, we now have

ξi = βD,ηηi + βD,zZi + (I−B)−1ζi.

Our problem now has been simplified to that of specifying τ2
ζ,k and B in such a way that (I−B)−1ζi

d
= ψ∗

i , where

ψ∗
i is the vector with elements φi + ψi,k for k = 1, . . . , d. Let’s equivalently find an invertible matrix A = (I−B)−1

such that Aζi
d
= ψ∗

i and such that the diagonal entries of A−1 are equal to one. Since the vector ψi has a multivariate

normal distribution, and since φi is normally distributed independent of ψi, the vector ψ∗
i has a multivariate normal

distribution. So we can write ψ∗
i

d
= µ + Σ1/2Xi where Xi is a vector of i.i.d. standard normal random variables,

µ = E(ψ∗
i ) = 0, and Σ = Var(ψ∗

i ) is the invertible variance-covariance matrix of ψ∗
i . So for any values of the

τ2
ζ,k > 0, taking A = Σ1/2C where C is a diagonal matrix with entries 1/τζ,k, we have that Aζi

d
= ψ∗

i . The inverse

A−1 = C−1Σ−1/2 exists; furthermore, by taking 1/τζ,k equal to the kth diagonal entry of Σ−1/2 ensures that A−1

has diagonal entries equal to one.

Appendix : Identifiability

We show the identifiability of our most general model (A), for the case where ηi is included in the model but Zi is

not; Zi can be handled analogously to ηi. We assume that there is more than one domain, and that the values ηi

are i.i.d. from some unknown distribution with mean zero and variance one (the case of any finite mean and variance

proceeds in the same fashion but is notationally cumbersome). We also assume that each domain either has more

than one outcome, or if it has only one outcome j then we assume that βo,η,j = τ2
ψ,d(j) = 0.

Proof of identifiability can proceed by setting the empirical moments of Yi and ηi equal to the moments implied

by the model (3), and showing that the solution for the parameter values is unique (Bollen, 1989). For model (3)
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such uniqueness can be shown by looking at the first and second moments; in particular we will use E(Yi), the

first-moment vector for the outcomes; Var(Yi), the variance-covariance matrix of the outcomes; and Cov(Yi, ηi), the

vector of covariances between ηi and the elements of the vector Yi. First, E(Yij) = αj , so αj is identified for each

outcome j. Next,

Cov(Yij , ηi) =Cov(Yij − αj , ηi) = E [(Yij − αj)ηi]

=
ˆ
βo,η,j + λjβD,η,d(j)

˜
E(η2

i ) = βo,η,j + λjβD,η,d(j)

for each outcome j, so
ˆ
βo,η,j + λjβD,η,d(j)

˜
is identified. The elements of the variance-covariance matrix Var(Yi) are

Cov(Yij , Yi`) = E [(Yij − αj)(Yi` − α`)]

= (βo,η,j + λjβD,η,d(j))(βo,η,` + λ`βD,η,d(`)) + λjλ`τ
2
φ + 1{d(j)=d(`)}λjλ`τ

2
ψ,d(j) + 1{j=`}σ

2
j .

Using this expression, since
ˆ
βo,η,j + λjβD,η,d(j)

˜
is identified ∀j, since λj = 1 for the first outcome in each domain,

and since there is more than one domain, τ2
φ is identified. Since τ2

φ is identified, λj is identified for each j (by taking

` to be the first outcome in another domain). For any domain k ∈ {1, . . . , d} that has more than one outcome,

τ2
ψ,k is then identified. For a domain with a single outcome, τ2

ψ,k = 0 so we don’t have to be concerned about its

identifiability. Since everything else is identified in the expression for Cov(Yij , Yi`), σ
2
j is also identified for each j.

Next we address the question of whether βo,η,j and βD,η,d(j) are separately identified for each j. Since we have

assigned βo,η,j a random effect prior distribution centered at zero, and since
ˆ
βo,η,j + λjβD,η,d(j)

˜
and λj are identified

for each j, βo,η,j and βD,η,d(j) are separately identified. So Model A is fully identified.
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Model D

Model A

Separate

0 50-50

Infant age
Domain 1 outcomes

Race
Domain 1 outcomes

Coefficient Estimate

Model C

Model E

Figure 1. Outcome-specific covariate effects (×100) for Models A, C, D, and E and
separate regressions on the SFF data, for two representative covariates and the Domain
1 outcomes.
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Num of Outcomes 4,2,1 4,6,3
β̄D,η 0.05 0.05 0.15 0.15
βD,·,k − β̄D,· Small∗ Small Large Small Large Large
λj All λj = 1 Some λj = 0.5 All λj = 1 Some λj = 0.5
n 100 500 100 500 100

bias βD,η,k -.019 .006 .022 .008 .025 .002 .016 .009 .015
bias OSη,j -.015 -.002 .020 .000 -.002 -.007 -.027 -.022 -.015
bias λj -.748 -.603 -.455 -.388 -.641 -.640 -.584 -.539 -.381

relbias βD,η,k (%) -39.1 12.7 47.2 17.2 50.9 4.6 11.4 6.6 11.3
relbias βD,z,k 4.6 4.5 3.2 0.0 17.9 7.1 13.5 18.7 2.8
relbias OSη,j -40.5 -4.6 73.2 0.0 -4.1 -18.6 -19.6 -17.2 -14.9
relbias OSz,j -11.2 -2.1 -15.3 -6.6 -12.7 -14.4 -10.7 -6.0 -16.7
relbias λj -72.6 -60.9 -67.4 -60.8 -64.2 -57.8 -56.3 -50.3 -60.8

CI cov βD,η,k (%) 97.3 98.7 98.7 97.2 97.3 100.0 100.0 98.7 100.0
CI width βD,η,k .592 .322 .621 .345 .469 .476 .547 .517 .542
CI cov OSη,j (%) 98.3 94.9 98.3 92.3 94.8 99.1 93.8 96.9 96.6
CI width OSη,j .344 .161 .348 .161 .301 .310 .338 .330 .319

RMSE βD,η,k .102 .056 .086 .054 .100 .082 .085 .088 .085
RMSE βD,z,k .108 .055 .091 .056 .110 .090 .084 .088 .103
RMSE OSη,j .077 .042 .074 .041 .072 .063 .081 .080 .074
RMSE OSz,j .102 .038 .082 .046 .097 .095 .086 .084 .087
RMSE λj .776 .663 .498 .428 .714 .703 .660 .660 .479

RMSEA .035 .010 .033 .011 .027 .031 .026 .025 .023
p-val RMSEA6 .05 .553 .981 .590 .983 .757 .686 .762 .759 .778
p-val RMSEA= 0 .349 .449 .392 .456 .338 .285 .356 .360 .376
residl corr (%) 6.3 3.0 6.2 3.0 7.0 7.2 7.1 7.0 6.9

∗ Small: βD,η,k − β̄D,η = (−0.03, 0, 0.03) and βD,z,k − β̄D,z = (−0.05, 0, 0.05); Large: βD,η,k − β̄D,η = (−0.1, 0, 0.1) and

βD,z,k − β̄D,z = (−0.2, 0, 0.2).

Table 1
Bias, relative bias, RMSE, 95% interval coverage and width, and goodness-of-fit measures, for some scenarios in the
simulation study. Here we use data simulated from Model A and report the results for fitting Model A. Also recall

the true values of τo = τo,1 = 0.05, σj = 1, τφ = 0.2, and τψ,k = 0.05.
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λj Some λj = 0.5 All λj = 1
Simulated Model A Model D Model B
Estimation A D E A B D E A B

bias βD,η,k .009 -.038 -.036 .013 -.032 .003 .003 .010 -.033
bias OSη,j -.002 .003 .004 -.004 -.002 .000 .000 -.004 -.002
bias λj -.254 .329 .329 -.234 .504 .000 .000 -.225 .481

relbias βD,η,k (%) 6.3 -27.8 -26.5 9.5 -23.2 2.0 2.3 7.5 -25.0
relbias βD,z,k 1.3 -30.7 -29.4 5.2 -21.5 0.5 0.9 2.1 -21.2
relbias OSη,j -2.3 3.0 4.6 -3.0 -1.3 -0.1 0.4 -2.9 -1.2
relbias OSz,j -5.9 -2.4 -0.7 -1.2 -0.6 0.4 0.9 -2.0 -1.7
relbias λj -39.4 51.0 51.0 -23.4 50.4 0.0 0.0 -23.0 49.3

CI cov βD,η,k (%) 98.6 74.7 48.0 98.7 69.3 96.0 76.0 100.0 69.3
CI width βD,η,k .297 .181 .090 .238 .130 .150 .090 .266 .129
CI cov OSη,j (%) 93.8 91.7 48.9 94.2 92.6 90.5 54.8 93.5 91.7
CI width OSη,j .155 .153 .087 .153 .147 .141 .088 .156 .148

RMSE βD,η,k .055 .056 .054 .045 .047 .034 .035 .047 .050
RMSE βD,z,k .053 .074 .071 .048 .053 .033 .033 .047 .062
RMSE OSη,j .040 .042 .061 .038 .037 .038 .050 .038 .037
RMSE OSz,j .039 .041 .065 .039 .038 .036 .047 .040 .039
RMSE λj .392 .398 .398 .415 .582 .000 .000 .407 .568

RMSEA .005 .004 .036 .006 .008 .005 .024 .003 .006
p-val RMSEA6 .05 1.00 1.00 .928 1.00 1.00 1.00 .996 1.00 1.00
p-val RMSEA= 0 .523 .571 .017 .557 .510 .617 .103 .680 .555
residl corr (%) 3.3 3.5 3.6 3.3 3.3 3.4 3.4 3.2 3.3

Table 2
Bias, relative bias, RMSE, 95% interval coverage and width, and goodness-of-fit measures, for some scenarios in the

simulation study. Here we use (4,6,3) outcomes in the three domains, a large sample size (n = 500), a large
exposure effect (β̄D,η = 0.15), and large deviations between domains (βD,η,k − β̄D,η = (−0.1, 0, 0.1) and

βD,z,k − β̄D,z = (−0.2, 0, 0.2)). Also recall the true values of τo = τo,1 = 0.05, σj = 1, τφ = 0.2, and τψ,k = 0.05.
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Variable Counts or Regression
Mean ±SD Coefficient for

Phthalate Score (×100)

Mother’s Race (Cauc. / Non-) 89 / 29 –
Mother’s Age 30.1± 5.08 –
Infant Age (mos.) 10.3± 7.30 –
Gestational Age (wks.) 39.0± 2.18 –
Creatinine 88.5± 62.1 –
Skinfold Thickness Flank 5.56± 1.86 −13.5 (−40.3, 13.3)
Skinfold Thickness Quadriceps 14.82± 5.42 5.38 (−22.3, 33.1)
Skinfold Thickness Subscapular 6.96± 1.98 −3.29 (−28.2, 21.6)
Skinfold Thickness Triceps 9.74± 2.42 13.1 (−13.5, 39.8)
Body Mass Index 16.8± 1.49 7.76 (−20.7, 36.2)
Weight Percentile 49.1± 31.5 11.1 (−15.6, 37.7)
Head Circumference Percentile 56.3± 30.1 −1.26 (−29.4, 26.9)

Table 3
Column 2: Summaries of the covariates and outcomes for the SFF data; Column 3: regression coefficient for

phthalate score (×100) from separate regressions, with 95% confidence interval.
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Outcome Infant Age Gestational Age

S.T. Flank −32.6 (−49.9, −15.0) −8.7 (−27.0, 9.1)
S.T. Quadriceps −16.7 (−35.9, 2.5) 8.6 (−9.5, 26.7)
S.T. Subscapular −42.2 (−58.8, −25.4) 8.7 (−7.0, 24.8)
S.T. Triceps −20.0 (−38.8, −0.8) 23.8 (4.5, 43.1)
BMI −10.0 (−27.8, 7.9) 7.4 (−10.1, 25.0)
Weight Pct. −27.2 (−44.6, −9.4) 26.6 (9.8, 43.7)
Head Circ. Pct. 16.2 (−3.4, 35.8) 10.4 (−9.2, 29.9)

Table 4
Selected outcome-specific covariate effects OSz,j times 100 in Model D for the SFF data (95% interval estimates

shown in parentheses).


