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APPENDIX A: CONSTANTS AND HYPERPARAMETERS

There are several constants and hyperparameters to be specified in the
Bayesian model. To set the GPS position error covariance matrix Σ, we cal-
culate the minimum distance from each GPS location in the data to the
nearest arc. Assuming that the error is radially symmetric, that the vehicle
was on the nearest arc when it generated the GPS point, and approximating
that arc locally by a straight line, this minimum distance should equal the
absolute value of one component of the 2-dimensional error, i.e. the abso-
lute value of a random variable E1 ∼ N(0, σ2), where Σ =

(
σ2 0
0 σ2

)
. Since

E(|E1|) = σ
√

2/π, we take σ̂ = Ê(|E1|)
√
π/2, where Ê(|E1|) is the mean

minimum distance of each GPS point to the nearest arc in the data. In the
Toronto EMS datasets, we have Ê(|E1|) = 8.4 m for the L-S data and 7.7 m
for the Std data, yielding ΣL-S = ( 111.6 0

0 111.6 ) and ΣStd = ( 92.7 0
0 92.7 ). In the

simulated data, a typical dataset has Ê(|E1|) = 7.3 m for good GPS data and
14.1 m for bad GPS data, yielding ΣGood = ( 84 0

0 84 ), and ΣBad = ( 312 0
0 312 ).

The hyperparameters b1, b2, s2, and mj control the prior distributions on
the travel time parameters µj and σ2

j (Section 2.2). We set b1 and b2 by
estimating the possible range in travel time variation for a single arc. Some
arcs have very consistent travel times (for example an arc with little traffic
and no major intersections at either end). We estimate that such an arc could
have travel time above or below the median time by a factor of 1.1. Taking
this range to be a two standard deviation σj interval (so that 1.1 exp (µj) =
exp (µj + 2σj)) yields σj ≈ 0.0477. Other arcs have very variable travel times
(for example an arc with substantial traffic). We estimate that such an arc
could have travel time above or below the median time by a factor of 3.5,
corresponding to σj ≈ 0.6264. Thus, we set b1 = 0.0477 and b2 = 0.6264.

We assume there exists an initial travel time estimate τj for each arc j.
For example, in Section 7 we use previous estimates from Toronto EMS. We
expect this estimate to be typically correct within a factor of two. Thus, we
specify mj and s2 so that the prior distribution for E [Ti,j ] is centered at τj
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and has a two standard deviation interval from τj/2 to 2τj . This gives

τj = E
(
exp

(
µj + σ2

j /2
))

= exp
(
mj + s2/2

)
E
(
exp

(
σ2
j /2

))
,

τj
2

= exp
(
mj + s2/2− 2s

)
E
(
exp

(
σ2
j /2

))
,

2τj = exp
(
mj + s2/2 + 2s

)
E
(
exp

(
σ2
j /2

))
,

where the final equation is redundant. Therefore,

mj = log

 τj

E
(
exp

(
σ2
j /2

))
− s2

2
, s =

log(2)
2

.

When τj is not available, as in our simulation study, one can use the following
data-based choice for τj : find the harmonic mean GPS speed reading in the
entire dataset and convert this speed to a travel time for each road.

Results are very insensitive to the hyperparameters b3 and b4, as long
as the interval [b3, b4] does not exclude regions of high likelihood. This is
because the entire dataset is used to estimate ζ2 (unlike for the parameters
σ2
j ). We fix b3 = 0 and b4 = 0.5. For observed GPS speed V `

i , suppose the true
speed at that moment is v. By Equation 2.3, V `

i ∼ LN
(
log(v)− ζ2/2, ζ2

)
.

If ζ = 0.5, we estimate by simulation that

E
(∣∣∣V `

i − v
∣∣∣)

v
≈ 0.4,

which is much higher than any mean absolute error observed by Witte and
Wilson (2004). It is not realistic that the error could be greater than this.

The hyperparameter C governs the multinomial logit choice model prior
distribution on paths. While the results of the Bayesian method are generally
insensitive to moderate changes in the other hyperparameters, changes in
the value of C do have a noticeable effect, so we obtain a careful data-
based estimate. Equation 2.1 implies that the ratio of the probabilities of
two possible paths depends on their difference in expected travel time. For
example, let C = 0.1 and consider paths ãi and ȧi from dsi to dfi , where the
expected travel time of ãi is 10 seconds less than the expected travel time
of ȧi. Then path ãi is e ≈ 2.72 times more likely.

We specify C by the principle that for a trip of average travel time, a
driver is ten times less likely to choose a path that has 10% longer travel
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time. If T̄ is the average travel time, then by Equation 2.1, this requires

(A.1) 0.1 =
exp

(
−C

(
1.1T̄

))
exp

(
−CT̄

) = exp
(
−0.1CT̄

)
,

giving C = − log(0.1)/
(
0.1T̄

)
. For our simulated data, CSim = 0.24.

On the real data, we make a small adjustment to pool information across
the L-S and Std datasets. Observing that the route choices are very similar
in visual inspection of these datasets, we ensure that the prior distribution
on the route taken between two fixed locations is the same for the L-S and
Std datasets. To do this, we combine all the L-S and Std data to calculate
an overall mean L1 trip length LTor

1 (change in x coordinate plus change in
y coordinate) for the Toronto EMS data, which is LTor

1 = 1378.8m. Let LD1
and TD be the mean L1 length and mean trip time for each dataset D. We
estimate a weighted mean time TDW = TDLTor

1 /LD1 for dataset D for a trip
of length LTor

1 , and use the time TDW to set C by Equation A.1. This yields
CL-S = 0.211 and CStd = 0.110.

APPENDIX B: REVERSIBILITY OF THE PATH UPDATE

The path Ai = (Ai,1, . . . , Ai,Ni) takes values in the finite set Pi. Condi-
tional on Ai, the vector Ti takes values on the simplex

XNi ,

Ti ∈ RNi : Ti,j > 0,
Ni∑
j=1

Ti,j = tfi − t
s
i

 ,
where tfi − tsi is the known total travel time of trip i. For the reference
measure on XNi we use (Ni − 1)-dimensional Lebesgue measure on the first
Ni − 1 elements of the vector. Then

(Ai, Ti) ∈ C ,
⋃
A∈Pi

{A} × Xlen(A)

where len(A) is the number of arcs in A ∈ Pi. We claim that the move
for (Ai, Ti) is reversible with respect to the conditional posterior density of
(Ai, Ti) given the GPS data G = {Gi′}Ii′=1, the parameters, and the paths
and travel times A[−i], T[−i] for all other trips:

ν(Ai, Ti) , π

(
Ai, Ti

∣∣∣∣ G,A[−i], T[−i],
{
µj , σ

2
j

}J
j=1

, ζ2
)

∝ fi
(
Ai, Ti, Gi

∣∣∣∣ {µj , σ2
j

}J
j=1

, ζ2
)
.(B.1)
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Since the dimension of the unknown vector Ti depends on Ai, one can
consider this to be a case of model uncertainty as in Green (1995), where
the model index k corresponds to the value of Ai ∈ Pi. Our context, which
has an uncertain route for each trip, is slightly different from the context
of Green (1995), which has a single uncertain model index k and corre-
sponding parameter vector θ(k). However, their argument can still be used
to show reversibility of a move for (Ai, Ti) conditional on A[−i], T[−i] and the
parameters {µj , σ2

j }Jj=1, ζ
2.

Conditional onA(1)
i andA(2)

i , we show that our move from T
(1)
i ∈ X

len

(
A

(1)
i

)
to T

(2)
i ∈ X

len

(
A

(2)
i

) satisfies the dimension-matching condition of Green

(1995), Section 3.3. We need a bijection between an augmented vector
(
T

(1)
i , u(1)

)
and the corresponding augmented vector

(
T

(2)
i , u(2)

)
, for some u(1) and u(2).

Take u(1) ,
(
T

(2)
i (p1), . . . , T (2)

i (pn)
)

and u(2) ,
(
T

(1)
i (c1), . . . , T (1)

i (cm)
)

and recall that u(1) is drawn independently of T (1)
i . Define the bijection

h
(
T

(1)
i , u(1)

)
,
(
T

(2)
i , u(2)

)
that simply rearranges the elements of the vec-

tor
(
T

(1)
i , u(1)

)
. The absolute value of the Jacobian of such a transformation

is one (since that of the identity transform is one, and since rearranging
the elements corresponds to permuting the rows of the Jacobian, which
only changes the sign of the determinant). Although for notational conve-
nience we have included the redundant final elements of the vectors u(1), u(2),
T

(1)
i , and T (2)

i , the dimension-matching is on the non-redundant elements of
the vectors; in the notation of Green (1995), n1 = N

(1)
i − 1, m1 = n − 1,

n2 = N
(2)
i − 1, and m2 = m− 1.

For a dimension-matching move, the acceptance probability that ensures
reversibility with respect to a density ν(Ai, Ti) is given by Equation 7 of

Green (1995). It is equal to the absolute value of the Jacobian, times
ν

(
A

(2)
i ,T

(2)
i

)
ν

(
A

(1)
i ,T

(1)
i

) ,

times the ratio of the proposal density of the reverse move relative to that of
the proposed move. The probability of proposing a move to A(2)

i , given that
the current state is

(
A

(1)
i , T

(1)
i

)
, is 1

N
(1)
i min{a(1),K}

divided by the number of

paths of length ≤ K from d′ to d′′. The probability of attempting the reverse
move is 1

N
(2)
i min{a(2),K}

divided by the number of paths of length ≤ K from

d′ to d′′. We propose T (2)
i by drawing the subvector T (2)

i (j) : j ∈ {p1, . . . , pn}
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according to the density

1
Sn−1
i

Dir

(
T

(2)
i (p1)
Si

, . . . ,
T

(2)
i (pn)
Si

;αθ(p1), . . . , αθ(pn)

)

on the simplex {Ti ∈ Rn : Ti,j > 0,
∑n
j=1 Ti,j = Si}, with respect to (n− 1)-

dimensional Lebesgue measure. The reverse move, from T
(2)
i ∈ X

len

(
A

(2)
i

)
to T

(1)
i ∈ X

len

(
A

(1)
i

), proposes T (1)
i by drawing the subvector T (1)

i (j) : j ∈

{c1, . . . , cm} according to the density

1
Sm−1
i

Dir

(
T

(1)
i (c1)
Si

, . . . ,
T

(1)
i (cm)
Si

;αθ(c1), . . . , αθ(cm)

)
.

Plugging these quantities into Equation 7 of Green (1995) and using our
Equation B.1 gives the acceptance probability in our Equation 3.1.

APPENDIX C: HARMONIC MEAN SPEED AND GPS SAMPLING

When estimating road segment travel times via speed data from GPS
readings, as in the local methods of Section 4.1, it is critical whether the
GPS readings are sampled by distance or by time. Sampling-by-distance
could mean recording a GPS point every 100 m, and sampling-by-time could
mean recording a GPS point every 30 s, for example. As discussed in Sections
1 and 4.1, most EMS providers use a combination of distance and time
sampling. If both constraints are satisfied frequently (unlike in the Toronto
EMS dataset, where most points are sampled by distance), this could create
a problem for estimating travel times via these speeds.

In the transportation research literature, speeds are typically recorded by
loop detectors at fixed locations on the road, which means that sampling
is done by distance. In this context, it is well known that the harmonic
mean of the observed speeds (the “space mean speed”) is appropriate for
estimating travel times [Rakha and Zhang (2005); Soriguera and Robuste
(2011); Wardrop (1952)]. Under a simple probabilistic model of sampling-by-
distance, without assuming constant speed, we confirm that the harmonic
mean speed gives an unbiased and consistent estimator of the mean travel
time. However, we also show that if the sampling is done by time, the har-
monic mean is biased towards overestimating the mean travel time.

Consider a set of n ambulance trips on a single road segment. For conve-
nience, let the length of the road segment be 1. Let the travel time on the
segment for ambulance i be Ti, and assume that the Ti are iid with finite
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expectation. Let xi(t) be the position function of ambulance i, conditional
on Ti, so xi(0) = 0 and xi(Ti) = 1. Assume that xi(t) is continuously differ-
entiable, with derivative vi(t), the velocity function, and that vi(t) > 0 for
all t. Each trip samples one GPS point. Let V o

i be the observed GPS speed
for the ith ambulance.

First, consider sampling-by-distance. For trip i, draw a random location
ξi ∼ Unif(0, 1) at which to sample the GPS point. This is different from
the example of sampling-by-distance above. However, if the sampling loca-
tions are not random, we cannot say anything about the observed speeds
in general (the ambulances might briefly speed up where the reading is ob-
served, for example). Assuming that the ambulance trip started before this
road segment, it is reasonable to model sampling-by-distance with a uniform
random location.

Conditional on Ti, xi(·) is a cumulative distribution function, with support
[0, Ti], density vi(·), and inverse x−1

i (·). Thus, τi = x−1
i (ξi), the random time

of the GPS reading, has distribution function xi(·) and density vi(·), by the
probability integral transform. The observed speed V o

i = vi(τi), so the GPS
reading is more likely to be sampled when the ambulance has high speed
than when it has low speed. This is called the inspection paradox (see e.g.
Stein and Dattero (1985)). Mathematically,

E(V o
i |Ti) = E(vi(τi)|Ti) =

∫ Ti

0
vi(t)vi(t)dt ≥

(∫ Ti
0 vi(t)dt

)2

∫ Ti
0 12dt

=
1
Ti
,

by the Cauchy-Schwarz inequality, with strict inequality unless vi(·) is con-
stant. However, if we draw a uniform time φi ∼ U(0, Ti), then

(C.1) E(vi(φi) |Ti ) =
∫ Ti

0
vi(t)

1
Ti
dt =

1
Ti
.

The inspection paradox has a greater impact in the Toronto Std data than
in the L-S data, because ambulance speed varies more in standard travel.

Consider estimating the mean travel time E(Ti) via the estimator T̂H =
1/V̄ o

H , where V̄ o
H is the harmonic mean observed speed. We have

E
(
T̂H

)
= E

(
E
(
T̂H

∣∣∣ {Ti}ni=1

))
= E

(
1
n

n∑
i=1

E

(
1

vi(τi)

∣∣∣∣Ti)
)

= E

(
1
n

n∑
i=1

∫ Ti

t=0

1
vi(t)

vi(t)dt

)
= E

(
1
n

n∑
i=1

Ti

)
= E(Ti),

and so it is unbiased. Moreover, it is consistent as n → ∞, by the Law of
Large Numbers.
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Next, suppose the sampling is instead done by time. To model this, let
τi ∼ Unif(0, Ti) be a random time to sample the GPS point for ambulance
i. In this case, we have

E
(
T̂H

)
= E

(
1
n

n∑
i=1

E

(
1

vi(τi)

∣∣∣∣Ti)
)

≥ E
(

1
n

n∑
i=1

1
E (vi(τi)|Ti)

)

= E

(
1
n

n∑
i=1

1
1
Ti

)
= E(Ti),

by Jensen’s Inequality and Equation C.1. Again, the inequality is strict
unless vi(·) is constant.
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