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We consider the convergence properties of recently proposed adap-
tive Markov chain Monte Carlo (MCMC) algorithms for approxima-
tion of high-dimensional integrals arising in Bayesian analysis and
statistical mechanics. Despite their name, in the general case these
algorithms produce non-Markovian, time-inhomogeneous, irreversible
stochastic processes. Nevertheless, we show that lower bounds on
the mixing times of these processes can be obtained using familiar
ideas of hitting times and conductance from the theory of reversible
Markov chains. While loose in some cases, the bounds obtained are
sufficient to demonstrate slow mixing of several recently proposed
algorithms including the adaptive Metropolis algorithm of Haario
et al. (2001), the equi-energy sampler (Kou et al., 2006), and the
importance-resampling MCMC algorithm (Atchadé, 2009) on some
multimodal target distributions including mixtures of normal distri-
butions and the mean-field Potts model. These results appear to be
the first non-trivial bounds on the mixing times of adaptive MCMC
samplers, and suggest that the adaptive methods considered may not
provide qualitative improvements in mixing over the simpler Markov
chain algorithms on which they are based. Our bounds also indicate
properties which adaptive MCMC algorithms must have to achieve
exponential speed-ups, suggesting directions for further research in
these methods.

1. Introduction. Markov chain Monte Carlo (MCMC) sampling tech-
niques are currently the most widely used approach to approximating the
high-dimensional integrals arising in Bayesian statistics, as well as in related
areas such as statistical mechanics. As such, derivation of new MCMC meth-
ods, and formal analysis of their properties, has become an important area of
Bayesian statistics research (Andrieu and Roberts, 2009; Douc et al., 2007;
Ji and Schmidler, 2012; Jones and Hobert, 2001; Kou et al., 2006; Mengersen
and Tweedie, 1996; Mira, 2001; Neal, 2003; Roberts and Rosenthal, 2001;
Tierney, 1994).

A common construction for MCMC utilizes a (Metropolis-Hastings) ran-
dom walk that explores the state space via local moves; however, for some
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2 SCHMIDLER & WOODARD

target distributions this random walk takes an impractically long time to
explore the target distribution. For example, when the target distribution
is multimodal, a local random walk may rarely move between modes. Many
algorithms have been introduced to address the challenge of efficient sam-
pling from high-dimensional and multimodal distributions. Parallel temper-
ing (Geyer, 1991) supplements a basic Metropolis-Hastings chain with a set
of auxiliary chains, the states of which are occasionally swapped, “seeding”
the primary chain with samples from other chains. These auxiliary chains
are typically constructed via a temperature parameter, which flattens the
target distribution in order to enable crossing of energy barriers (regions
of low density), and can allow rapid movement between multiple modes.
The related technique of simulated tempering (Geyer and Thompson, 1995;
Marinari and Parisi, 1992) uses a single chain with alternating transition
kernels.

An alternative is to adapt the transition kernel of the chain, using informa-
tion obtained from previous iterations to speed convergence - such methods
are termed adaptive MCMC. The recently proposed equi-energy sampler
(Kou et al., 2006), like parallel tempering, constructs auxiliary sampling
chains typically constructed by temperature. However, rather than swap-
ping, the equi-energy sampler seeds the primary chain with proposed jumps
to locations visited previously by the other chains, specifically those lo-
cations having approximately equal energy (density) to the current state.
Such jumps potentially enable movement between distinct modes of the tar-
get distribution. Two other adaptive algorithms, the importance-resampling
MCMC (IR-MCMC) algorithm (Atchadé, 2009) and a method proposed by
Gelfand and Sahu (1994), also utilize multiple (non-Markovian) processes
which can supplement local moves with jumps to locations previously vis-
ited by another process. Again, these methods aim to improve upon the
efficiency of a single Markov chain.

Such adaptive algorithms have been shown empirically to have more
rapid convergence and more rapid decay of autocorrelation than their non-
adaptive counterparts on several examples (Kou et al., 2006; Minary and
Levitt, 2006). However, Atchadé (2010) gives an example for which the em-
pirical performance of the equi-energy sampler and IR-MCMC is comparable
to that of random-walk Metropolis, and argues that the equi-energy and IR-
MCMC samplers are not themselves asymptotically as efficient as their (very
efficient) limiting kernels.

Few rigorous bounds on the convergence rates of adaptive MCMC tech-
niques are available. Andrieu and Moulines (2006) and Andrieu and Atchadé
(2007) obtain asymptotic efficiency results for another class of adaptive

imsart-aos ver. 2007/02/20 file: AdaptiveLowerBounds.tex date: March 12, 2013



CONVERGENCE OF ADAPTIVE MCMC 3

MCMC techniques which tune parameters of a parametric transition ker-
nel. Atchadé (2009) considers an adaptive process that at some fixed set of
times jumps back to a previously visited location, and shows that if the un-
derlying process converges geometrically then the adaptive process converges
at least polynomially (in the number of steps n, not in problem size).

Here we consider the non-asymptotic behavior of such adaptive algo-
rithms, specifically whether they yield convergence (“mixing”) times that
improve significantly on their non-adaptive counterparts. A major obstacle
to obtaining non-asymptotic bounds is the non-Markovian, time-
inhomogeneous, irreversible nature of the algorithms, preventing direct ap-
plication of spectral analysis and other common methods used for Markov
chains. Our main result (Theorem 4.1) extends a bound by Woodard et al.
(2009b) for parallel and simulated tempering to these adaptive methods.
When the multiple processes are based on the same Markov kernel, the
bound shows that the mixing time of the adaptive sampler is limited by
the conductance of the Markov kernel (Corollary 4.1). Therefore this type
of adaptivity, which we call multichain resampling, cannot provide a qual-
itative speedup from slow to rapid mixing (defined formally in Section 3).
This result is not immediately obvious since it might seem advantageous, if
the current route of exploration proves unfruitful, to jump back to a more
promising location and restart exploration from that point. We use our re-
sults to show that multichain resampling methods (including the equi-energy
sampler and TR-MCMC) mix slowly on two examples: mixtures of normal
distributions in R¢, and the mean-field ferromagnetic Potts model. We also
show that adaptive samplers in the second class described above (invariant
adaptive methods) are slowly mixing on a mixture of normals.

Our results formalize the intuitive notion that jumping back to locations
already visited cannot speed exploration of new, as yet unseen, regions of
the target distribution. However, such adaptation may indeed yield improve-
ments in autocorrelation times (and hence asymptotic efficiency) relative to
their non-adaptive counterparts. Indeed, this is suggested by the empirical
results demonstrated in these papers. However, our lower bounds indicate
that qualitative improvements in convergence to equilibrium may not be ob-
tainable under the type of adaptivity utilized in these algorithms. Instead,
algorithms that encourage exploration of new regions, in addition to speed-
ing mixing among previously visited regions, must be explored. A framework
for designing algorithms of this type has been provided by Wang and Schmi-
dler (2012b).

In Section 2 and 3 we define the class of adaptive methods under con-
sideration and give background on mixing time. Section 4 obtains bounds

imsart-aos ver. 2007/02/20 file: AdaptiveLowerBounds.tex date: March 12, 2013



4 SCHMIDLER & WOODARD

on the mixing time of these techniques and relates them to existing results
on Markov chains. Section 5 shows slow mixing on the two examples, and
Section 6 gives our results for invariant adaptive methods. We conclude with
some discussion in Section 7.

2. Adaptive MCMC Techniques. We divide adaptive MCMC tech-
niques considered here into two classes, which capture the majority of meth-
ods proposed to date. The first class simulates one or more parallel chains,
and for each chain i attempts to adaptively optimize over a family of tran-
sition kernels {Ty : # € O} that are invariant with respect to the target
distribution of that chain. We call these methods invariant adaptive Markov
chain (IAMC) methods. The second class also simulates one or more paral-
lel chains, but sometimes resamples from the history of the chains in order
to share information among the chains, or to speed mixing among previ-
ously visited regions. The transition kernels of such methods generally are
only invariant with respect to the target distribution in a limiting sense. We
call these methods multichain resampling adaptive Markov chain (MRAM)
methods.

To fix notation, let m denote the target distribution of interest on state
space X. Let XM ..., XU be a set of discrete time stochastic processes
X = Xo(i),Xfi), ... on X, targeted at distributions 7(*). At least one X @
is assumed to have 7 = 7; call it X,

2.1. IAMC Methods. The most familiar approach to adapting MCMC
samplers is to optimize the proposal kernel of a Metropolis-Hastings chain.
More generally, let {Tp}ycom be a set of ergodic, 7 _reversible Markov
transition kernels on X', and denote by X(SQL_I the history of the i*™® process
at time n. We consider adaptive sampling algorithms for which the X @ are
generated by respective time-inhomogeneous but 7" -invariant transition
kernels T; ,, = Ty, , where 0;,, = gZ(Xo(lnI_)l) € O, We call such algorithms
TAMC methods. Here g; are functions defining the adaptation; IAMC meth-
ods are typically constructed to ensure 0; ,, "Z3° 9* for some optimal value
0*, but our results do not depend on this property. For concreteness we re-
strict to the case 79 = 7 and O = O for a common set ©, which captures

all such algorithms proposed to date.

Adaptive Metropolis. The adaptive Metropolis scheme of Haario et al. (2001)
was the first of this type to provide formal proof of convergence under con-
tinuous adaptation, and helped spark a resurgence of interest in adaptive
MCMC methods. The Haario et al. (2001) scheme uses a single chain with
m-invariant Metropolis-Hastings kernels Ty on X = R¢ constructed from a
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CONVERGENCE OF ADAPTIVE MCMC 5

multivariate normal random-walk proposal. The adaptive parameter 6 is the
covariance matrix of the random-walk proposal.

Parallel Chains. Craiu et al. (2009) propose simulating parallel Metropolis-
Hastings chains with common invariant distribution 7 and a common pro-
posal kernel Py, adapting the parameters of that kernel using the past sam-
ples from all of the chains (“Inter-chain Adaptation”).

2.2. MRAM Methods. We distinguish a second type of adaptivity pro-
posed for MCMC algorithms, which we refer to as multichain resampling (or
MRAM), as follows. We define the MRAM class to include those adaptive
sampling algorithms for which the X(® are generated by respective time-
inhomogeneous transition kernels Kj;,, given by:

(1) Kipn=aTi+(1—-a)Riy

for o € (0, 1], where each T} is an ergodic time-homogeneous 7(")-reversible
Markov transition kernel on X', and R; ,, is a sequence of resampling Metropolis-

type kernels which propose from the set of previously drawn samples X (1 I).

an x dy Zzwukn - (k))dy

k=1 j=0

where ij Wijkn, = 1 and ¢ is Dirac’s delta, and accept with probability
calculated to ensure limiting distribution 7(9. The resulting sequence of
random vectors X = X, Xq,... where X, = (Xr(Ll), . ,X,(LI)) forms a non-
Markovian, irreversible, time-inhomogeneous joint stochastic process with
limiting marginal distributions 7(9. Commonly T; may be a Metropolis-
Hastings (MH) kernel using a local random walk proposal; then R;,, sup-
plements these local moves with jumps to potentially distant regions of the
state space.

Equi-energy sampler. Of the MRAM methods published to date, the equi-
energy sampler (EES) of Kou et al. (2006) has perhaps received the most
attention. The EES aims to enable moves between points of similar energy
(equivalently, density) throughout the state space, potentially allowing the
sampler to cross between modes.

Similar to parallel tempering, the EES constructs processes X @) with
tempered target densities 7(9) o 77 for a sequence of “inverse temperatures”
1=p1>...>pr>0. (Kou et al. (2006) also truncate the densities i > 1
by 7@ o 78 A ¢; for some constant ¢; > 0; this truncation does not alter
our slow mixing results in Section 5 and is omitted here for simplicity.)

imsart-aos ver. 2007/02/20 file: AdaptiveLowerBounds.tex date: March 12, 2013



6 SCHMIDLER & WOODARD

Each process X is constructed by specifying T} to be a 7 -reversible MH
kernel for some common (across i) proposal P. Adaptivity is obtained by
binning the state histories of each process ¢ according to energy; then for
i < I the process X occasionally proposes to move to one of the states
previously visited by the 7 + 1 process (X(SZ:Lr 1)) that lie in the same energy
bin of 7 as the current state Xf(f), and accepts with probability calculated
to ensure that 7(9) is the limiting distribution of X®. (Hence the EES takes
Wijkn X 5En71(X](k))1{k:i+1}.) Such “equi-energy” moves can be non-local
in the state space, potentially involving moves between distinct modes of 7.

Importance-resampling MCMC. Two other MRAM methods are proposed
by Atchadé (2009). The first is a simplification of EES, using a single pro-
cess X with non-local moves sampled uniformly from the entire history Xo.,,.
(That is, the proposed moves are not restricted to an energy bin correspond-
ing to the current state X,, as done in EES, so Q),, is simply the empirical
process Xo.,.) The second method, referred to as importance-resampling

MCMC (IR-MCMC), uses auxiliary chains as in EES, but samples from

. () (x*)
Xé?;rl) using weights w;jx, o< Wl{k:iﬂ} chosen to be importance
J

weights.

Adaptive Metropolized independence sampling (AMIS). AMIS methods con-
struct an approximation of the target distribution from the current sample
history Xg., to use as the proposal at time n; see e.g. Andrieu and Thoms
(2008); Ji and Schmidler (2012). When this approximation takes the form
of a non-parametric kernel-density estimator, the resulting transition kernel
is of the form (1) with o = 0 and @,, instead a kernel mixture of the X; for
some mixing kernel . Although this does not strictly satisfy our definition
of MRAM samplers, it behaves similarly and we will obtain a similar result
(Theorem 5.2). In practice, a mixture distribution is often used in place
of a kernel density estimate (Andrieu and Thoms, 2008; Ji and Schmidler,
2012); in this case our results are expected to hold, but technical conditions
required for proof become more complicated.

3. Mixing Times. The algorithms described in Section 2 construct
multiple (non-Markovian) dependent stochastic processes X @, .., XD on
X often having distinct limiting distributions; denote by X the joint process
Xo, X1, ... where X, = (X,(LI), . ,Xy(LI)). However, it is convergence of the
(marginal) process X1 with limiting distribution m which is of interest.
For 7, = Lx, (Xy(Ll)) the marginal distribution of X" under the joint initial

imsart-aos ver. 2007/02/20 file: AdaptiveLowerBounds.tex date: March 12, 2013



CONVERGENCE OF ADAPTIVE MCMC 7
distribution 7, the total variation norm

17 = 7y = sup |, (A) — 7(A)|
ACX

measures the distance to m, where the supremum is over measurable subsets.
Define the mixing time 1. as the number of iterations required to be within
distance € of the target m for any initial distribution mg:

(2) 7o = supmin{n : |7y — 7w <€ Vn' >n}.
™0

By analogy to Markov chains (Aldous, 1982; Sinclair, 1992), we say X is
rapidly mixing if for every fixed e the mixing time grows at most polynomi-
ally in the “problem size” d (typically the dimension of X'). The process is
slowly mixing if the mixing time grows exponentially in the problem size.
(To avoid trivial conditions on our theorems, we will also call the process
slowly mixing if the number of chains I(d) grows exponentially in d, as
this also requires exponential computational effort.) The rapid/slow distinc-
tion provides a categorization of computational feasibility: while polynomial
factors are presumed to eventually be overwhelmed by increases in comput-
ing power, exponential factors are presumed to cause persistent computa-
tional difficulties. Rapidly mixing processes lead to efficient approximation
algorithms for combinatorial counting (Sinclair, 1992) and expectations of
bounded variance functions under the target distribution (Schmidler and
Woodard, 2012). In unbounded state spaces the inf over 7y may lead to
T. = 00; in such cases it is desirable to assume sup 7:;’((;6)) is bounded, e.g. by
restriction to some compact set.

Many of the standard techniques for bounding mixing times of Markov
chains are not immediately applicable to the adaptive processes of Sec-
tion 2, which under the general construction produce non-Markovian, time-
inhomogeneous, irreversible stochastic processes. However, we will obtain
lower bounds on mixing times via the hitting time for subsets A C X"

H,4 = min HX) a7 = min{n : X\ € A}

and involving the familiar conductance of a mw-reversible Markov kernel 7'

_ fA 7(dv)T (v, A®)
m(A)m(A°)

(I)T = Alélﬁ( (I)T(A) (I)T(A)
0<m(A)<1

where ®p(A) captures the probability of moving between A and A® under
T, and &1 quantifies the worst “bottleneck” in the transition kernel.
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8 SCHMIDLER & WOODARD

For any A C X with w(A) > 0, denote the restriction of m to A by
m|a(dy) oc m(dy)1gyeay- The restriction T4 of a Markov kernel 7" to A is
defined to reject any move that would leave A:

T|a(x, B) = T(z, B) + 1izepy T (v, A9) r€eA BCA.

Similarly, we define the restriction Y = X|4 of an (adaptive) process X to
A as a stochastic process that is independent of X, but defined identically
to X except that any move leaving A is rejected. So for a MRAM sampler
the ith chain of the restricted process Y is initialized according to the same
distribution as X (so X < Yy) and transitions according to aTj|4 + (1 —
a)RZn, where R;/n is the kernel that resamples from the history of the process
Y (according to the rules of the specific algorithm).

Convergence of estimators. Some authors have questioned the relevance of
L; convergence to MCMC (Mira and Geyer, 2000), where interest lies in
convergence of ergodic averages 6, = n~! Yo, 0(Xy) to Ex(0(X)), arguing
for restricting attention to asymptotic variance (Flegal, 2008; Mira, 2001).
When negative eigenvalues are present the former can be slow even when the
latter is small. However, for finite-length MCMC runs the relevant quantity
is the expected mean-squared error:

MSE(f) = Bias?() + Var(f)

and focusing on the integrated autocorrelation considers only the second
term. Convergence of the Markov chain to its stationary distribution appears
in the bias term; this is the formal justification for the standard practice of
discarding an initial transient (“burn-in”) period.

Although our bounds are stated in terms of L; convergence, our proofs use
hitting times and thus immediately imply bounds on the MSE convergence
of the ergodic averages as well. To see this, define

10n — Ex0(X)|nse = sup MSE 6,
0cLa(m); Vary (0)<1

and let Pr(H4 < n) < € for some A C X. Then taking § = 14(x) gives
Bias?(0,) > (m(A) — ¢)?. In this case the bias term may dominate and
cannot be ignored.

4. Bounds for MRAM Processes. We first obtain bounds for MRAM
samplers. Although the transition kernels K;,, depend on the history of the
chain, the Markov kernels T; on which they are based do not. This enables
us to obtain very general results.

imsart-aos ver. 2007/02/20 file: AdaptiveLowerBounds.tex date: March 12, 2013



CONVERGENCE OF ADAPTIVE MCMC 9

Adaptive processes are not in general invariant with respect to their target
distributions. For example, in the EES algorithm it is easily seen that the
acceptance ratio for resampling moves in chain 7,

7 (dy)m D) (d) }

3 z,y) =minq 1, — .
leaves 7(" invariant only if the current and proposed states are indepen-
dent; but the resampling process makes the chains dependent (e.g. inflating

Pr(Xy(Li) = X,(fﬂ))). Thus even when initialized according to the target dis-
tribution 7, the EES process wanders away from 7 before returning in the
limit. In contrast, Markov chain methods monotonically approach their lim-
iting distribution. The mixing parameter « in the MRAM kernel controls
the amount of drift: as @ — 1 the number of T; moves increases relative to
the number of R;,, moves. T; moves reduce the y2 distance to 7 by at
least a factor equal to the spectral gap of T;, while R;,, moves can inflate
this distance. For « relatively large or n large this drift should be minimal;
in order to analyze adaptive methods in the presence of this drift, we quan-
tify it as follows. Recall the definition of the restricted process X|4 from
Section 3.

DEFINITION 4.1.  Let A C X such that 0 < 7W(A) < 1 for all i, and
consider the sampler Y = X|ac with YO(Z) @ | e Let Vy(LZ)(dy) indicate

the marginal distribution of Yn(i), and define the ratio

e Ty, A (dy)
14 = max : .
i [ Ty, A ac (dy)

Since T; is ergodic, the denominator [,. T;i(y, A)w®| 4e(dy) is strictly pos-
itive. Additionally, the numerator [ Ac]}(y,A)Vr(f)(dy) is < 1, hence ¥4 <
max; [ [ 4. Ti(y, A)ﬂ(i)\Ac(dy)]_l < 00. The quantity 14, essentially a ratio
of conductances, measures the extent to which the drift of the process away
from its target distribution inflates the probability of transitioning to A
under Markov kernel T;.

In certain special cases 14 = 1: the degenerate case a = 1; the single-
chain method of Atchadé (2009), and more generally any multi-chain MRAM
sampler having 7 = 7 and fixed resampling probabilities Wjjkn for all n, so
the acceptance rate for resampling moves is one (see Corollary 4.1 below).

The bound we obtain for MRAM algorithms is a generalization of a mixing
time bound for parallel tempering given by Woodard et al. (2009b). Define
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10 SCHMIDLER & WOODARD

the persistence for any A C X and any i € {1,...,1} as:

vy T
’V(A,Z)—Hlln{l, A }

Then the following bound for parallel tempering follows directly from the
spectral gap bounds obtained in Woodard et al. (2009b):

THEOREM A. (Woodard et al., 2009b)
For X finite, € > 0, and any A C X with 0 < 7D (A) < 1, the mizing time
7. of parallel tempering satisfies

—1/2
75> 27 1In(26) " |maxy(A, )01, (A4)

Now let X be a MRAM process on general X' as defined in Section 2. We
have the following result:

THEOREM 4.1. For any € > 0 and any A C X, the mizing time 7. of the

MRADM process satisfies:
-1
Te > (m(A) —€) [[pa maxy(A, )P, (A)

ind.
~Y

PROOF. Let Xo(i) ﬂ(i)’Ac, and consider the hitting time H, for X.

Since HS) > Hy, for any n such that Pr(H4 < n) < 7(A) — € we have
|7 — 7||rv > € and so 7. > n.

Let Y = X|4¢, and define the sequences Z (@) of Boolean random variables,
where Z,(LZ) is true if a move of YV at time n is rejected because it would
leave A¢, and false otherwise. The probability that X first hits A at time n
(i.e. Hq = n) is equal to the probability that Y first attempts a move (in
any of I chains) to A at time n but rejects due to restriction, so

Pr(Ha <n) < ZZPrZZ ZZ/ Wy, A (dy)

j=111=1 =1 j=1
< ¥ Z Z/ i(y, )] 4e (dy)
= 1] 1
=nia ZW A)or (A
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CONVERGENCE OF ADAPTIVE MCMC 11

where the second inequality comes from the mixture representation of (1),
since the resampling proposal for the process Y satisfies Q}’/j(y,A) =0
for all y, ¢, and j. The last equality uses reversibility of T;. Now define
ne(A) = min{n : Pr(H4 < n) > n(A) — €}, so that

—1

Te > ne(A) > (m(A) —e) [wA > (A)er(4)

-1
> (n(A) =€) [Im max w(i)(A)CDTi(A)} :

Then () (A) < (A, i) gives the desired result. O

The factor of I appearing in Theorem 4.1 but not Theorem A comes
from the slightly different definitions of mixing in the two cases: the parallel
tempering mixing time is for convergence of the joint chain process to its
limiting product distribution, required for the spectral analysis of Woodard
et al. (20090).

The appearance of ¥4 in Theorem 4.1 is quite informative. Comparing
with Theorem A strongly suggests that slow mixing of the original non-
adaptive process implies slow mixing of the MRAM process, unless 14 in-
creases exponentially (in d) for at least some set A. (We say “strongly sug-
gests” because slight differences in the quantities appearing in the upper
and lower bounds of Woodard et al. (2009a) and Woodard et al. (2009b)
prevent this conclusion from following immediately.) Moreover since T; is
unchanged in MRAM processes, this means that I/r(j) must increase exponen-
tially relative to the invariant distribution. More precisely, for every A C X
with exponentially small conductance or persistence (max; y(A4, )P, (A)),
Vr(j) must increase exponentially relative to W(i)’ Ac, on a set A C A€ that
is “close” to A in the sense that inf,cpa T;(y, A) is at most polynomially
decreasing. That is, the drift of V,(f) away from the stationary distribution
must be exponentially large and done in precisely the right way so as to
(exponentially) improve the conductance of all such A relative to the non-
adaptive process T;, i.e. V,(Li)(aA)/ﬂ(i)(aA) > ¢? for some ¢ > 1. While some
adaptation schemes may have the potential to achieve this, the methods in
common use discussed in this paper (MRAM and TAMC), which focus pri-
marily on adapting the proposal distribution, do not. This tells us a great
deal about the utility of these approaches on hard problems, and provides
guidance for future design of adaptive strategies; we return to this point in
Section 7.
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12 SCHMIDLER & WOODARD

The difference in the dependence on € between the two theorems comes
from our use of hitting times to bound variation distance directly for the
time-inhomogeneous MRAM processes, compared to standard time-change
arguments for time-homogeneous processes. We suspect this can be im-
proved; the bound in Theorem 4.1 is certainly loose as a function of € for
some MRAM processes, since parallel tempering is trivially in this set. How-
ever, Theorem 4.1 is sufficient to analyze the effect of problem size on mixing
time for fixed € (as in Section 5).

4.1. Common Markov kernel. Consider a MRAM process with a com-
mon Markov kernel T} = T and common target density 7(?) = =, for which
the resampling probabilities w;jiy, are fixed (do not depend on the history
of the process) for each n and the resampling acceptance probability is one.
The single-chain sampler of Atchadé (2009) is included in this class.

COROLLARY 4.1.  For any 0 < € < 1/4, the mizing time 7. of a MRAM
sampler with 79 = 7, T; = T, and fized resampling probabilities Wijkn and
resampling acceptance probability one, satisfies:

1

> .
Te= 41dy

PROOF. For any measurable A C X such that 1/2 < w(A4) < 1 we have

14 = 1 by the following induction. Let Yo(i) ~ 7| 4c. Now assuming Yj(l) ~

m|ac for j = 0,...,n — 1 for all i and some n, the distribution of Y,E“ is a
mixture of the distributions obtained by transitioning according to T;| 4c and

RB’/”, which are 7|4c and (a mixture with each component equal to) 7|4c,

respectively. So Y,E") ~ m| e and therefore ¢4 = 1 by induction. Theorem 4.1
then gives 7. > (1(A) — €)[I®7(A)]~!, and the result follows from &7 (A) =
Op(A°). O

Compare this result with standard results for Markov chains. For X finite,
assuming T'(x,z) > 3/4 for all x € X (which can be achieved by adding
a holding probability of 3/4), results in Sinclair (1992) give the following
bounds on the mixing time 7 of the Markov chain T’

1 -1 * 8 -1 -1
(1) om0 <7 g@[ln(mgxw(w) )+In(e )]

The lower bounds in (4) and Corollary 4.1 on the mixing times 7 of the
Markov chain and 7. of the adaptive sampler are of the same order as a
function of ®7. Combining with results in Lawler and Sokal (1988) we have:
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CONVERGENCE OF ADAPTIVE MCMC 13

COROLLARY 4.2. For general X and T geometrically ergodic, if the con-
ductance of T' decreases exponentially in the problem size d (so T is slowly
mixing) then any MRAM process based on T of the type described in Corol-
lary 4.1 is also slowly mizing.

COROLLARY 4.3. For finite X, if In(max, 7(x)~1) grows polynomially
as a function of the problem size, then slow mizing of the Markov chain with
transition kernel T implies slow mizing of any MRAM process as described
in Corollary 4.1.

Corollary 4.2 proves in particular the conjecture of Atchadé (2009) that
the single-chain sampler defined in that paper is never qualitatively more
efficient than the Markov chain on which it is based.

The condition on max, 7(x)~! in Corollary 4.3 means that the smallest
probability 7(x) can decrease exponentially in the problem size, but not,
e.g., doubly-exponentially, and comes from the consideration of worst-case
(over initial distributions) mixing time. This condition is satisfied by the
mean-field Potts model example of Section 5. When it does not hold for a
particular example, it is often possible to remove the low-probability states
from the state space without significantly altering either the mixing time of
the sampler or the Monte Carlo estimates. Moreover, if the original chain is
slowly mixing due to initialization arbitrarily far away, the MRAM process
would be expected to suffer similarly.

5. Examples of Slow Mixing.

5.1. MRAM Samplers on a Mizture of Normals. Consider sampling from
a target distribution given by a mixture of two multivariate normal distri-
butions in R?, with density:

1 1
(5) m(z) = §Nd(x; —ulg,0%1y) + §Nd(x; ply, o3ly)

where Ny(x;v, %) denotes the multivariate normal density for 2 € R? with
mean vector v and d X d covariance matrix X, and 14 and I; denote the vector
of d ones and the d x d identity matrix, respectively. This can be expected
to reasonably approximate many multimodal posterior distributions arising
in Bayesian statistics.

Restrict to any convex K C R such that 7(K) 423 1 and such that
In(sup,e 7(z)~1) increases polynomially in d; it is under such conditions
that Frieze et al. (1994) show rapid mixing of Metropolis-Hastings with
local proposals on log-concave target densities in RY. (X unrestricted leads
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14 SCHMIDLER & WOODARD

to 7. = oo due to the presence of starting states arbitrarily far from the
modes.)

Let S be the proposal kernel that is uniform on the ball of radius d*
centered at the current state. When o1 = o9, Woodard et al. (2009a) have
given an explicit construction of parallel and simulated tempering chains
that is rapidly mixing. However, when o; > o3, Woodard et al. (20090)
set Ag = {x € R?: Y, 2; > 0} and show that if the target distributions
7 are tempered versions of 7, then max; (Ao, i)®@1, (Ap) is exponentially
decreasing for any choice of I temperatures whenever [ is polynomial, and
that consequently parallel tempering is slowly mixing. Since m(A4g) > 1/2
for all d large enough, it follows immediately from Theorem 4.1 that

COROLLARY 5.1.  Any MRAM process based on proposal S and tempered
densities, with any number of chains I1(d), is slowly mizing on distribution
(5) for o1 > o9 unless P a,(d) grows exponentially in d.

This shows that the class of samplers discussed after Definition 4.1, including
the single-chain sampler of Atchadé (2009), is slowly mixing on the target
(5). It also leads us to the following slow mixing result for the equi-energy
and IR-MCMC samplers:

THEOREM 5.1.  Any equi-energy or IR-MCMC sampler based on pro-
posal S, any number of chains I(d), tempered densities with any inverse

temperatures {B,-(d)}i]g), and any energy bin thresholds, is slowly mizing on

distribution (5) for any fized values of (u,01,02) such that o1 > o9, u > 201
and 0'1/0'2 < \/E

We expect that the result in fact holds for any fixed values of u, o1, and
o2. One could prove Theorem 5.1 by applying Corollary 5.1 and bounding
) a,(d); however, we prove it directly (Appendix B) by adapting the proof
of Theorem 6.1. A nearly identical proof (not provided here) yields Theo-
rem 5.2.

THEOREM 5.2.  Any AMIS sampler with rotationally symmetric mizing
kernel K is slowly mizing on distribution (5) for any fixed values of (u, o1, 02)
such that o1 > o9, pu > 201 and o1/02 < \/e.

5.2. MRAM Samplers on the Mean-Field Potts Model. Potts models are
Gibbs random fields defined on graphs, which arise in statistical physics
(Binder and Heermann, 2002), image processing (Geman and Geman, 1984),
and spatial statistics (Green and Richardson, 2002). The mean-field Potts
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CONVERGENCE OF ADAPTIVE MCMC 15

model is the special case of a complete interaction graph, which admits sim-
pler analysis but nonetheless retains the important characteristics of general
Potts models, namely a first-order phase transition at a critical temperature
(for ¢ > 3). A mean-field Potts model with d sites has distribution on z € Zg

given by:
A
7(z) x exp {ﬁ E 1(z = zj)}

i.J
and we will be concerned with the “ferromagnetic” case A > 0. We consider
the standard single-site (Glauber) dynamics as the base Metropolis kernel,
which proposes changing the color of a single site chosen uniformly at ran-
dom at each time. The convergence rate of single-site dynamics on Potts
models exhibits a phase transition, slowing down dramatically at a criti-
cal value A\, of the interaction parameter. For the mean-field ferromagnetic
Potts (¢ > 3) model with A > A, the Metropolis chain is slowly mixing,
as is the Swendsen-Wang algorithm (Gore and Jerrum, 1999) and parallel
and simulated tempering (Bhatnagar and Randall, 2004). Define the subset
Ap = {z: 3, 1(z=1) > %} of the Potts model state space. From Theo-
rem 4.1, we have the following:

COROLLARY 5.2.  Any MRAM process based on single-site dynamics and
using tempered densities is slowly mixing on the mean-field Potts model with
A > A unless Y4, (d) grows exponentially in d.

This shows that the class of samplers discussed after Definition 4.1, including
the single-chain sampler of Atchadé (2009), is slowly mixing on the mean
field Potts model. We suspect that Corollary 5.2 holds for A = A, but this
cannot be proven using Theorem 4.1 due to the term (7(A) — ¢).

PrOOF. Woodard et al. (2009b) show that for A > A, and any choice of a
polynomial number [ of temperatures, the quantity max; {v(Ap,?)®7, (Ap)}
decreases exponentially as a function of d. Appendix C shows that, for A > A,
and d sufficiently large, m(Ap) > b for some positive constant b. Then from
Theorem 4.1 the mixing time increases exponentially in d for any e € (0,b),
i.e. the process is slowly mixing. O

6. Bounds for IAMC Processes. While in MRAM methods the tran-
sition kernel is a mixture of a fixed transition kernel 7; and a resampling
kernel, in IAMC samplers the parameters 6 of the transition kernel Ty de-
pend on the entire history of the sampler. This makes it harder to obtain
general bounds on the mixing time of IAMC algorithms. Instead we show
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16 SCHMIDLER & WOODARD

how to obtain bounds for two IAMC methods on the example (5). Our
proof technique bounds the hitting time of a set A that has low conduc-
tance ®7,(A) for “most” #. We expect that this approach can be used to
obtain lower bounds on mixing time for other examples and other TAMC
techniques.

THEOREM 6.1.  The Adaptive Metropolis method of Haario et al. (2001)
and the Inter-chain Adaptation method of Craiu et al. (2009) are slowly
mixing in d for the mizture of normals (5) with any fized values of u, o1,
and o9 such that o1 > o9, p > 201 and o1/09 < +/e.

We expect this result in fact holds for any fixed values of u, o1, and 3.

PRrROOF. Take any ¢ € (exp{—1/4},1) and define the sets:

Nd(x;uld,agld) d}
6 A= {x cR?: )
(6) Ny(w; —ply,03ly)

By ={z e R?: ||z 4 ply| < o1V2d}
By = {z € R?: ||z — ply|| < 200Vd}.

By and By are hyperspheres centered at the mean vectors of the compo-
nents of 7 respectively, with By € A° and By C A (Proposition A.2 in
Appendix A). Standard concentration inequalities for sub-Gaussian ran-
dom variables (Ledoux, 2001) yield Pr(||Z — ulq| > 209vd) < 2% for
Z ~ Ng(plg,031y) and Kk = ﬁg@); hence for all d large enough (d > 7),
we have Ny(Ba; ulg,0314) > 2/3 and thus w(A) > 7(By) > 1/3. Moreover,
7w concentrates in By and By as d — 0o, and we will see that the Adaptive
Metropolis and Inter-chain Adaptation algorithms have increasing difficulty
moving between B; and Bs, causing slow mixing.

Initialize Xéi) ) Ny(—ply,021y), and recall that H, is the hitting time
of A. As in the proof of Theorem 4.1, define n.(A) = min{n : Pr(H4q <
n) > w(A) — e} and recall that 7. > n.(A). Lemma A.1 (Appendix A) shows
3¢ < 1 such that Pr(Hy < n) < nIé? by a coupling construction. Since
m(A) > 1/3, for any € < 1/6 we therefore have 7. > 1/(61¢). Unless I
grows exponentially in d (which yields slow mixing by definition), we have
that 7. grows exponentially in d. O

Theorem 6.1 says that these JAMC samplers do not qualitatively improve
the convergence rate over their simpler, non-adaptive counterparts. Instead,
in multimodal target distributions the chain adapts to the local shape of
the distribution, and may actually prevent it from exploring more globally,
decreasing the rate of convergence.
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CONVERGENCE OF ADAPTIVE MCMC 17

7. Conclusions. These results appear to be the first non-asymptotic
bounds on convergence for adaptive MCMC samplers. Our results for some
commonly used adaptive samplers show that they perform no better than
their non-adaptive counterparts on multimodal target distributions. We then
use this to show that current methods can converge exponentially slowly
on simple multimodal target distributions, suggesting that some caution is
needed in applying these methods.

Our results for the MRAM class formalize the intuitive notion that jump-
ing back to locations already visited cannot speed exploration of unseen
regions of the target distribution (convergence rate), although it may im-
prove mixing among previously visited regions (autocorrelation). Thus for
the multimodal problems where sophisticated MCMC methods are most
needed, the adaptive MRAM methods are slowly mixing when the underly-
ing non-adaptive chain is, and so do not provide a qualitative improvement
over simpler methods. Our lower bounds indicate that qualitative improve-
ments in convergence to equilibrium may not be attainable under the type of
adaptivity utilized in MRAM algorithms, emphasizing the need to develop
algorithms that encourage exploration of new regions in addition to speeding
mixing among previously visited regions. Thus an adaptive sampling algo-
rithm must achieve both of two criteria: it must (i) adapt to mix efficiently
among previously visited regions, and (ii) adapt to encourage exploration of
unseen regions. Trading off these desiderata will require further exploration,
and may be thought of as a standard bandit (exploration/exploitation) type
problem. Our results also emphasize the importance of adapting the target
distribution, not just the proposal kernel, to achieve improved mixing. This
suggests consideration of other classes of adaptation schemes, such as those
which encourage movements away from previous samples. Examples of the
latter have received significant interest in recent years especially in statis-
tical physics (Wang and Landau, 2001), and have recently been introduced
in statistics (Liang and Wong, 1999; Liu et al., 2001; Wang and Schmidler,
2012a). A framework for designing sampling algorithms that achieve both
(i) and (ii) above has been provided by Wang and Schmidler (2012b).
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APPENDIX A: RESULTS FOR PROOF OF THEOREM 6.1
We first establish some simple properties of the sets A, By, and Bsy. Let

~1
e=n(F-3%) (Fra)md

—1
r(d) = \/leog T (iz - %) +d(c? — p?).

doy \o5  0f
PROPOSITION A.1. A is an open ball of radius r(d) centered at c1g.

PrOOF. For x € A, rearranging the definition gives
o1 de du? (1 1
L) expld 2 (2 —
009 P 2 a% a%
d
1 9 (1 1 1 1
> - 2 (i R P [

Taking the logarithm and completing the square then gives

d —1 2
o1 /(1 1 ,/1 1 11
2dlog T- —dp? (= — = S .
wpe-dt(Z-2)+ Yt (z-%) (H+m
2

=

which is the desired ball. O
PROPOSITION A.2. B; C A® and By C A.
Proor. For z € By we have by the triangle inequality:

2 = plall = |pla + plall = o + plall = 2pv/d — 01v/2d > pv/d

d
Using (Ul) < eg, we then have for x € By

o2

Na(; pla, 03la) _ expd — L |z — plal + e
Na(x; —plg, 031g) ~ 203 )

2d  3d 3d
< exp{—;T% + 7} < exp{—2d+ 7} 5.
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Similarly, for x € By we have || + ulg|| > pv/d and

L exp{—2d} > % exp{—p°d/(207)}

1
— exp {—|lz — plq)*/(203)} > —
09 01 1

1
> —gexp{=lle + plal*/(207)}
1

s0 Ny(z; ply, 031g) > Ny(x; —ply, o?1y). O

We now use these properties to establish the following lemma used in the
proof of Theorem 6.1:

LEMMA A.1.  There is some £ < 1 such that Pr(Hy < n) < nI¢? for all
d large enough and all n.

To prove Lemma A.1 we will need the following results.

PROPOSITION A.3. Let W = Wy, W1q,... be an Adaptive Metropolis
chain with target distribution v(x) = Ny(x;—ply,021;) and Wy ~ v. Let
vn(+) denote the marginal distribution of W,,, and P,(-) the marginal distri-
bution of the proposed state W, at iteration n. There exists n < 1 such that
for all d sufficiently large and all n we have max{v,(A), P,(A)} < n.

PROOF. Recall that By is the ball of radius o1v/2d centered at — ulg, that
A is the ball of radius r(d) centered at c1; (Prop. A.1), and that B; and A
are disjoint (Prop. A.2). So r(d) + 01v2d < || — plg — clg|| = (1 + ¢)Vd,
yielding 7(d) < (u+c—+/201)v/d. Let b be the angle of a right triangle with
hypotenuse length (1 + ¢)v/d and opposite side length (pu 4 ¢ — v/201)Vd; b
does not depend on d. A simple geometric argument shows that there is an
infinite (circular) cone with apex —ul, and fixed aperture angle 2b < 7 that
entirely contains the set A. The distribution v, is symmetric with respect
to rotations about the point —pul, (since the sampler’s initial distribution,
target distribution, and construction are symmetric with respect to such
rotations). Hence v,,(A) is bounded above by 31, (%5, 1) where I,(a,b)
is the regularized incomplete beta function, which is the proportion of the
surface area of a hypersphere centered at —u14 that lies inside of the cone of
angle 2b (Li, 2011). Since I 2,(%5*, ) decreases exponentially in d, v,(A)
is bounded above by a quantity that does not depend on n and decreases
exponentially in d. The same holds for P, (A).

To see that I decreases exponentially in d, note that I, (%52, %) is the

d—1 1

2
cumulative distribution function of X ~ Beta(%;1, 1), evaluated at sin®b <
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1. So for d > 2,
d—1 1\ _ [0 (1 —2)"bde _ (sin?b) T (1 — sin?b) "2
Linz 2 72 = 1 -3d = d-1\%> (1\3
Jima T (1-2)"2da (7)) 7 (3)°
which decreases exponentially in d. O

A.1. Proof of Lemma A.1. Here we give the proof for the Adaptive
Metropolis algorithm; the case of the Inter-chain Adaptation algorithm is
nearly identical. The proof technique is inspired by that of Roberts and
Rosenthal (2007), Theorem 1.

Let TéX (x,-) be the Metropolis kernel with normal random walk pro-
posal Ny(z,0) and target density 7(-) defined in (5), and let T," (z,-) be the
Metropolis kernel with proposal Ny(z,0) and target Nd(—,uld,a%Id). For a
chain W let 0}V = g(Wy.,_1), where g is the covariance adaptation function
for Adaptive Metropolis.

Let 6,7 < 1 be defined as in (6) and Prop. A.3, respectively. We claim
(“Claim A”) that for all d, we can construct stochastic processes Wy, W1, ...
and Xo, X1,... such that Wy = Xy ~ Ny(—ply, O’%Id) and such that, for all
n < (8% +25%) 71,

1. Xn‘XO:n—l ~ TG),% (Xn—la ) and Wn‘WO:n—l ~ Tg‘/i/&// (Wn—h )
2. Pr(Wom = Xon) > 1 —n(4n? + 69).

This says that Xg., is the Adaptive Metropolis process of interest, having
target distribution (-); that Wy., is the Adaptive Metropolis process de-
scribed in Prop. A.3 having target distribution Ny(—ply, 07l,); and that
the two processes, when initialized in the same state, remain equal for time
exponential in d with high probability.

Claim A is trivially true for n = 0. Suppose that it is true for some value
n—1, where 0 < n < (877d+25d)_1. Then, conditional on Wy.,,_1 = Xg.n1 We
have 0!V = 6:X | so the proposal distributions in the nth iteration for the two
chains X and W are identical. Let X and W)’ be the respective proposed
states; we can define them jointly to satisfy W = X, with probability one.
If Wo.n—1 # Xon—1, generate X' and W' independently. Let px (X,—1, X}")
and pw (Wp—1, W) be the acceptance probabilities of the two proposals.
Draw U ~ Uniform(0,1); if U < px(X,—1,X,;) then let X,, = X and
otherwise X,, = X,_1. f U < pw(Wy—1, W)) then let W,, = W) and
otherwise W,, = W,,_1. This construction yields X,,|Xo.,—1 ~ Té} (Xn-1,")

and Wy, |[Wo.—1 ~ ngv (Wh-1,-).
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Now applying Prop. A.3) gives
(7)
PI‘(Wn_l € Aor W; S A‘Xo;n_l = WO:n—l) < 1_

d

21 < 477d.

(n—1)(4nd +6%) —

Conditional on Xg.,—1 = Wo.p—1, on Wj,—1 € A¢, and on X} =W € A
px(Xn_1,X}) and pw (W,,_1, W) are within a factor of 14 of each other,
since for x,y € A°

m(y) c 1 Na(y; —plg, oily) (1+5d)Nd(y§ —ply, 03ly)
1 +(5d Nd(x; —uld,d%ld)7 Nd(x; —uld,d%ld) '

So for any Xo.,—1 = Wo.p—1 for which W, € A° and any W, € A€,
Pr(X, # Wyl Xon—1, Won_1, W) < 6%. This yields

Pr(X, # Wil Xon-1 = Woin—1)
<Pr(Wy—1 € Aor W) € Al Xon—1 = Wopn—1)

4 Pr(Xn # WalXomo1 = Wom—1, Wa_1 € A%, W € A°)
< (4n® + 6%,

Hence Claim A is proven by induction.
Therefore for n < (8¢ + 2§%)~! (using Prop. A.3)

Pr(Ha <n) <Pr(3j<n:W; e A)+Pr(3j <n:X; #W))
< n(5n? + 6% < n(8n? + 209).

Notice that the same inequality, Pr(Ha < n) < n(8n? +26%), holds trivially
for any other value of n > (8¢ + 26%)~!. So taking & = max{n, 5}% <1 we
have that for all d large enough (8n? 4+ 209) < €9, so Pr(Ha < n) < ng&?
for all n. Recalling that I = 1 for Adaptive Metropolis, this is the desired
result. O

APPENDIX B: PROOF OF THEOREM 5.1

We phrase the proof in terms of EES but the proof for IR-MCMC is nearly
identical. We will use the definitions and results from the proof of Theo-
rem 6.1. Recall that 8; € (0,1] is the inverse temperature for chain ¢ in the
equi-energy sampler. Define v(z) = Ny(z; —ply, O'%Id), and let % be short-
hand for the density proportional to v(z)% (which is Ny(x; —ply, ﬁi_lo*%Id)).
Initialize the chains as XO(Z) ~ 1P As in the proof of Theorem 6.1, we will
show that there is some ¢ < 1 such that Pr(H4 < n) < nI¢? for all d large
enough and all n. We first require a result analogous to Prop. A.3:
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ProrosITION B.1.  Let W = Wy, W1, ... be an equi-energy sampler based
on Metropolis proposal kernel S, with I chains having target densities v =
VP and W() S UBi | Let I/y(L)() denote the marginal distribution of Wn).
There exists n < 1 (independent of I, {B;}._,, and the energy bin thresholds)

such that for d sufficiently large, V,(f) (A) < n? for all i and n.

PRrROOF. The initial, target, and proposal distributions are symmetric
(4)

about —ulg, so by definition of the equi-energy sampler vy, is also symmet-
ric about —p 1, for all n. The result follows from the proof of Prop. A.3. [

Next we prove that Pr(H < n) < nI¢?. Let KZXn =aTX+(1 —a)Ri(n for
i < I be the equi-energy transition kernel with target density proportional to
7(x)% for (-) in (5), where TX is a Metropolis kernel with proposal S, and
Ri{n resamples the history Xg.,_1. K an = TIX since there is no resampling
in chain I. Let KZV[:L = aTiW +(1-— oz)RZZL be analogously defined for target
densities 7, using the same energy bins and proposal S as X. We claim
(“Claim B”) that for all d we can construct stochastic processes Wy, W1, ...

and Xg, X1,... such that Wéi) = Xéi) " uPi for each i and such that, for
all n < I71(8n? + 664) 1,

LX) | Xomo1 ~ KX (X1,) and W) Woor ~ KV (WY, ) inde-

pendently across i = 1,...,1
2. Pr(Wo., = Xom) > 1 — nI(4nd + 304).

Claim B is trivially true for n = 0. Suppose that it is true for some
value n — 1, where 0 < n < I"1(8n? + 66¢)~1. If X transitions accord-
ing to T;X, it proposes X ()% according to S and accepts with probability
PX7T(X7(21 X0 = min{1, 7(XO*)% /m (X @) 7 )P}, If it instead transitions
according to RX then the acceptance rate is

W(X(i)*)ﬁi W(Xr(le)ﬁiﬂ }

(@) (D)%) — i
px.r(X,” 1, XW*) =min{ 1, . :
1 r(XD )8 m(X O

Similarly, chain W will accept proposal W (* with probability pva(W( )1, W= ) =
min{1, (W®*)8 /(W )iy or

i 0) 6,
PWR(W(i)l, W(Z)*) — min 1’ V(W( ) ) (W )B i
A (W )Bs (W (@)%)Bita

Conditional on Wy.,_1 = Xg.,_1 the proposal distributions for X (% and
W®H* are identical; only the acceptance probabilities differ. We can define
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X@* and W®* jointly to satisfy X®* = W®* and ensure that the same
move type (Metropolis or equi-energy) is proposed, for each i. Doing this
(and applying Prop. B.1) gives
9) Pr(W', € A or WO* € A|Xgp_1 = Woen_1)
21" d
< < 4n“.
=1 (n— D)I(4n? +357) ="

Conditional on Xg.,,—1 = Wy.n_1, on W,EZ_)l € A¢, and on XO* = W O* ¢
A¢, the acceptance probabilities of the proposals X (0* and W®* are within
a factor of 1+ 36 of each other, shown as follows. Using (8), for x,y € A°
and any 7/

So conditional on Xg.,—1 = Wy.n_1, o0 VV,(LZ_)1 € A¢, and on X0* = W)= ¢
A, the acceptance rates PX7T(XT(21, X®*) and pW7T(W7(f_)1, W %) are within
a factor of (1 + %)% < 1+ 369 of each other, as are the acceptance rates
pxp(X,L XD*) and puw p(W, 2, W),

Claim B, and therefore Pr(H4 < n) < nI¢? for all n, then follows by

an identical argument to that of Lemma A.1 using Prop. B.1 in place of
Prop. A.3. I

APPENDIX C: PROOF THAT =(Ap) IS BOUNDED FOR POTTS
MODEL

Letting o(z) = (01(2),...,04(2)) denote the sufficient statistic vector
or(z) =Y, 1(z = k), we have

() xewn { 5 iamz}

k=1

and the marginal distribution of ¢ is given by
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2(g—1)In(g—1)
q—2 ’

) in terms of

For ¢ > 3 the critical value of the interaction parameter is A\, =

Using Stirling’s formula, Gore and Jerrum (1999) write (

01,0
a=(ay,...,aq) = o0/d (the proportion of sites in each color): ’
d q
( > :exp{—dZaklnak—l—A(a)}

O1,...,0q —

where A(a) satisfies sup |A(a)| = O(Ind), and apply this to obtain:

plo) xexp {fa(a)d + M@} where fu(a) =Y | Jat ~ axlna
k=1

Note fy does not depend on d, and for A > \. has global maxima at permu-

1—x 1—x
7q_17"'7q_1

1999; Woodard et al., 2009b).

Consider subsets A; = {z coi(z) > %}, and observe that when ¢ = 3
we have 7(A;1) = w(Ay) = m(As) by symmetry. The distribution 7 con-
centrates near the global maxima of fy, in the sense that for any ¢ > 0,
Pr{mingeg, ||a(z) — sall2 < ¢} — 1 as d — oo (Gore and Jerrum, 1999),
where S5 is the symmetric group of 3 elements. If mingeg, ||a(z)—salls < 1/6
then z € AU AyU A3, so m(A1 UAsUA3) — 1 as d — oo, and there is some
d* such that 7(A4;) > % for d > d*. For ¢ > 3, the same argument yields
some d** such that 7(Ap) > q% for d > d**.

tations of a = (a: for some x € [%, 1) (Gore and Jerrum,
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