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We develop the first algorithmic approach to compute provably good ordering policies for a multiperiod, capacitated,
stochastic inventory system facing stochastic nonstationary and correlated demands that evolve over time. Our approach
is computationally efficient and guaranteed to produce a policy with total expected cost no more than twice that of an
optimal policy. As part of our computational approach, we propose a novel scheme to account for backlogging costs in a
capacitated, multiperiod environment. Our cost-accounting scheme, called the forced marginal backlogging cost-accounting
scheme, is significantly different from the period-by-period accounting approach to backlogging costs used in dynamic
programming; it captures the long-term impact of a decision on system performance in the presence of capacity constraints.
In the likely event that the per-unit order costs are large compared to the holding and backlogging costs, a transformation
of cost parameters yields a significantly improved guarantee. We also introduce new semimyopic policies based on our
new cost-accounting scheme to derive bounds on the optimal base-stock levels. We show that these bounds can be used to
effectively improve any policy. Finally, empirical evidence is presented that indicates that the typical performance of this
approach is significantly stronger than these worst-case guarantees.
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1. Introduction

The periodic-review, capacitated inventory control problem
for systems facing stochastic, nonstationary (time-depen-
dent) demands that are correlated and evolve over time is
an important classical problem that is widely recognized to
be computationally challenging. We develop a new algo-
rithmic approach to compute the order quantity for such
a system. We build on the work of Levi et al. (2007),
who used a marginal holding cost accounting scheme and
cost-balancing techniques to derive the first policies with
worst-case performance guarantees for uncapacitated mod-
els. In this paper, we introduce a novel marginal back-
logging cost-accounting scheme that, in combination with
their techniques, leads to analogous results for the much-
harder capacitated model. We believe that our new cost-
accounting scheme will have applications in many other
settings. Our algorithm is guaranteed to compute a solution

of total expected cost of no more than twice that of an
optimal policy for any instance of the problem. The algo-
rithm is computationally efficient and implementable with-
out having to exhaustively enumerate future scenarios and
corresponding future decisions. In particular, the decision
made in the current period is unaffected by any future deci-
sion. Thus, it can be implemented efficiently even in the
presence of complex demand structures.

Specifically, we consider single-item models with one
location and a finite planning horizon of T discrete time
periods. The demands over the T periods are random vari-
ables that can be nonstationary and correlated. The costs
consist of a per-unit, time-dependent ordering cost, a per-
unit holding cost for carrying excess inventory from period
to period, and a per-unit backlogging cost, which is a
penalty incurred, in each period, for each unit of unsatisfied
demand (where all shortages are fully backlogged). There
is a time-dependent capacity constraint on the number of
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units ordered in each period and a lead time between the
time that an order is placed and the time that it actually
arrives. The capacity constraints and lead times may be
stochastic.

Capacitated problems are inherently more difficult com-
putationally compared to their uncapacitated counterparts.
The constraint on capacity makes future costs heavily
dependent on current decisions. Myopic policies, which do
not consider the impact of a decision made in the current
period on the costs incurred in future periods, seem to per-
form well for some scenarios in uncapacitated systems and
are even optimal in some settings (see Veinott 1965, Ignall
and Veinott 1969, Iida and Zipkin 2006, Lu et al. 2006).
However, when applied to capacitated problems, they usu-
ally perform very poorly because they do not consider pos-
sible capacity limitations in future periods.

In this work, we introduce a look-ahead backlogging
cost-accounting scheme, called the forced marginal back-
logging cost-accounting scheme, to capture the long-term
impact of current decisions on future costs in the presence
of capacity constraints. Our new cost-accounting scheme
assigns to the decision in each period all of the expected
backorder costs that, once this decision is made, become
inevitable; that is, they are unaffected by any decision
made in future periods, and are dependent only on future
demands. The forced marginal backlogging cost reduces to
the traditional backlogging cost when the capacity is infi-
nite; thus, it is a generalization of the traditional backlog-
ging cost. Finally, as discussed in §3.1, it is straightforward
to compute in most common scenarios.

The key feature distinguishing the algorithms presented
in this paper from those previously studied for capacitated
systems is the treatment of correlation in demand across
time, as well as nonstationarity. Moreover, we allow obser-
vations of the past to change demand forecasts for the
future. Our model also captures other important character-
istics of a nonstationary environment: the parameters are
fully time dependent, including cost parameters and sys-
tem capacity. An important application of demand correla-
tion and nonstationarity is in the use of dynamic demand
forecasts. These forecasts and the way they evolve over
time provide vital information that can be used to find
effective inventory control policies in dynamic and highly
volatile demand environments. The assumptions that we
make on the demand distributions in this work are mild
enough to generalize all of the currently known approaches
in the literature to model correlation and nonstationarity of
demand over time. These include classical approaches such
as the martingale model of forecast evolution (MMFE),
exogenous Markovian demand, time series, order-one auto-
regressive demand, and random walks. For an overview of
the different approaches and models, and for relevant ref-
erences, we refer the reader to lida and Zipkin (2006) and
Dong and Lee (2003) and Ozer and Wei (2004).

High correlation between demands across different peri-
ods in nonstationary and dynamic environments presents

a considerable challenge to computing, or even approxi-
mating, optimal inventory control policies. The dominant
paradigm in almost all of the existing literature has been
to formulate multiperiod capacitated models using dynamic
programming. The optimization problem is defined recur-
sively over time by using subproblems for each possible
state of the system. The state usually consists of a given
time period, the level of inventory at the beginning of
the period, the resulting conditional distribution of future
demands over the rest of the horizon, and possibly more
information that is available by that period. For each sub-
problem, an optimal solution is computed to minimize the
expected overall discounted cost from the current point to
the end of the horizon. This framework has turned out
to be very effective in characterizing the structure of the
optimal policy of the overall system. Assuming station-
ary linear costs and independent and identically distributed
(i.i.d.) demands, Federgruen and Zipkin (1986a, b) showed
that a modified, base-stock policy is optimal under infinite-
horizon average cost and discounted cost criteria. They
established the existence of a target inventory level such
that the optimal policy aims to keep inventory levels as
close as possible to that target. When the inventory level
at the beginning of the period is above the target level, the
optimal policy does not order. When the inventory level
at the beginning of the period is below the target level,
it might not be possible to order up to the target level
because of the capacity constraint. In this case, the order
placed would be up to capacity. Tayur (1992), Kapuscinski
and Tayur (1998), and Aviv and Federgruen (1997) derived
the optimal policy in the same settings, but for indepen-
dent cyclical demands. More recently, Ozer and Wei (2004)
showed the optimality of modified base-stock policies in
single-item periodic-reviewed capacitated inventory control
models with advance demand information.

Axsiter (1990) is the first to introduce the notion of
matching between pairs of demand and supply units.
Specifically, he observes that in a distribution system with
a single depot and multiple retailers, a supply unit ordered
by a retailer can be used to fill a corresponding demand
unit following a certain order. He matches this pair of units
and evaluates the corresponding expected holding cost.
Katircioglu and Atkins (1996) have used this observation
to analyze the optimal policies in unit demand inventory
systems. For the uncapacitated periodic-review stochastic
inventory control problem, Muharremoglu and Tsitsiklis
(2008) have proposed an alternative approach to the
dynamic programming framework. They have observed that
this problem can be decoupled into a series of unit supply-
demand subproblems, where each subproblem corresponds
to a single unit of supply and a single unit of demand
that are matched. This novel approach enabled them to
substantially simplify some of the dynamic-programming-
based proofs on the structure of optimal policies, as well
as to prove several important new structural results. In
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particular, they have established the optimality of state-
dependent base-stock policies for the uncapacitated model
with general Markov-modulated demand. Using this unit
decomposition, they have also suggested new methods to
compute the optimal policies. However, their computational
methods are essentially dynamic programming approaches
applied to the unit subproblems; hence, they suffer from
similar problems in the presence of correlated and non-
stationary demand. Although our approach is very differ-
ent from theirs, we use some of their ideas as technical
tools in some of the proofs. Janakiraman and Muckstadt
(2003) have extended this approach to capacitated mod-
els and established the optimality of state-dependent modi-
fied base-stock policies for models with Markov-modulated
demand.

Unfortunately, the rather simple forms of these policies
do not always lead to efficient algorithms for computing the
optimal policies. Complex demand structures, such as the
one we consider in this work, cause the state space of the
corresponding dynamic programs to explode (see lida and
Zipkin 2006, Dong and Lee 2003 for relevant discussions
on the MMFE model). There does not exist at present, nor
is there likely to be developed, an efficient algorithm to
solve these dynamic programs to optimality, even for the
uncapacitated model. The difficulty comes from the fact
that we need to solve “too many” subproblems, a phe-
nomenon known as the curse of dimensionality. To date,
computational procedures have been made tractable only
under assumptions of simple demand structures. If the
demands in different periods are independent, the corre-
sponding dynamic programs are relatively straightforward
to solve. Dynamic programming can still be tractable for
uncapacitated models with Markov-modulated demand, but
under rather strong assumptions on the structure and the
size of the state space of the underlying Markov process
(see, for example, Song and Zipkin 1993, Chen and Song
2001). Tayur (1992) uses the shortfall distribution and the
theory of storage processes to derive an efficient computa-
tional method for computing the optimal policy in the sta-
tionary cost, i.i.d. demand, average cost case. Roundy and
Muckstadt (2000) showed how to obtain approximate base-
stock levels, also for the stationary cost and i.i.d. demand
case, by approximating the distribution of the shortfall pro-
cess. Kapuscinski and Tayur (1998) proposed a simulation-
based technique using infinitesimal perturbation analysis
to compute the optimal policy for capacitated problems
with independent, cyclical demands. Finally, Ozer and Wei
(2004) developed an exact dynamic programming approach
for the model with advance demand information when the
forecast horizon exceeds the lead time by two periods, and
so the state space is only two dimensional.

There have been heuristic approaches to compute order
quantities for capacitated problems. However, we are aware
of very few attempts to analyze the worst-case perfor-
mance of heuristics and most bounds derived are depen-
dent on the particular input (see, for example, Lu et al.

2006). To the best of our knowledge, there are no other
policies for stochastic inventory control models with con-
stant worst-case performance guarantees. Metters (1997)
found heuristics for capacitated, lost-sales problems with
independent, cyclical demands. Chan (1999) have consid-
ered heuristics for uncapacitated and capacitated multi-item
models. Instead of solving the one-period problem (as in
the myopic policy), they have added a penalty function to
the one-period problem, which they called the Q-function.
This function accounts for the holding cost incurred by the
inventory left at the end of the period over the entire hori-
zon. Their look-ahead approach with respect to the holding
cost is somewhat related to our approach, although signifi-
cantly different.

As we have already mentioned, this paper builds on the
work of Levi et al. (2007). They give the first algorithms
with a constant performance guarantee for the uncapacitated
stochastic inventory control model with correlated, nonsta-
tionary demands; specifically, their algorithms always find
solutions of total expected cost no more than twice the
optimal. Their algorithms are based on two main ideas.
First, they construct a look-ahead holding-cost accounting
scheme, called the marginal holding-cost accounting
scheme, to compute the additional holding costs incurred
by units ordered in the current period throughout the entire
horizon. Second, they use cost-balancing techniques in that,
in each period, they order exactly to balance the follow-
ing two opposing costs: the conditional expected marginal
holding cost against the conditional expected period back-
logging cost a lead time ahead. Their approach relies heav-
ily on the ability of the system to order in each period a
“balancing quantity” that equalizes the expected marginal
holding cost and the expected backlogging cost in the
period. In capacitated systems, the approach fails because
this balancing quantity might not be attainable due to
capacity constraints. Our forced marginal backlogging cost-
accounting scheme is designed to remedy this problem by
reassigning backlogging costs more appropriately to the
decisions that create them, enabling us to find a “balanc-
ing order quantity” for capacitated systems. Suppose that
in the current period the order placed was not up to capac-
ity; we wish to account for the potential backlogging cost
in future periods incurred directly by the decision not to
use the full available capacity. Assume temporarily that
we order up to capacity in each one of the periods. Sup-
pose now that in the current period we do not order up
to capacity. Then, the expected marginal backlogging cost
associated with the current period is the overall increase
in the expected backlogging cost over the entire horizon
resulting from this decision. In this way, our balancing pol-
icy for a capacitated system is able to achieve the same
worst-case performance guarantee of two, with surpris-
ingly little additional computational effort. When applied to
uncapacitated models, the policies described in this paper
are identical to the dual-balancing policies described by
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Levi et al. (2007). Thus, they can be viewed as generaliza-
tions of the original dual-balancing policies to capacitated
inventory models.

We also use the marginal holding and forced marginal
backlogging cost-accounting schemes to derive additional
semimyopic policies called the lower-myopic and upper-
myopic policies. The policies provide lower and upper
bounds on the optimal base-stock levels, respectively, that
can be used in conjunction with any policy to achieve lower
expected cost.

Furthermore, in §4.2 we show how to use standard cost
transformations to improve the performance of the algo-
rithms in many important settings (see also Levi et al.
2007). These transformations yield a modified instance of
the problem that is equivalent to the original one from
an optimization perspective, but models only holding and
backlogging costs. If the per-unit ordering cost is constant
over time, then applying our algorithms to the modified
instance yields an approximation algorithm with a worst-
case guarantee of two with respect to the holding and
backlogging costs, and which has the same total per-unit
ordering cost as the optimal policy. More generally, when
the ordering costs are large, the worst-case performance
guarantee of the modified cost dual-balancing policy will
be much better than two.

In §6, we test the typical empirical performance of the
balancing algorithms in two settings. We consider an inven-
tory system that has i.i.d. demand (no correlations), and a
demand distribution with an exponential tail, because the
optimal policy can be computed analytically. (The motiva-
tion is to test the balancing policies at least in one envi-
ronment, in which the optimal policy and cost are known.)
However, balancing policies are most attractive in scenarios
with complex demand structures, whereas optimal policies
cannot be computed and no provable good heuristics or
reasonable lower bounds are known. Thus, we also con-
sider the same set of test scenarios tested in Hurley et al.
(2006), in which the uncapacitated versions of these algo-
rithms were evaluated computationally. In these scenarios,
the demands and forecasts evolve according to the mul-
tiplicative MMFE model. Optimal policies are not com-
putable, and strong lower bounds on the optimal cost do
not exist, so we used the myopic policy as a benchmark for
evaluating performance. The performance of the balancing
policies is very robust. It was within 11% of optimal, on
average, in the first test (always within 25%), and consis-
tently improved upon myopic by over 27%, on average,
and by over 50% in many scenarios.

This paper is organized as follows. In §2, we present
the mathematical formulation of the periodic-review, capac-
itated, stochastic inventory control problem. In §3, we
describe the forced marginal backlogging cost-accounting
scheme for the capacitated model. In §4, we describe
the balancing policy and its worst-case analysis. We also
extend the approximation results to the case of discrete
demand and stochastic lead times (see Appendix C in the

online appendices, which are available as part of the online
version that can be found at http://or.pubs.informs.org/.).
In §5, we develop lower and upper bounds on the optimal
inventory levels, and show how to use them to improve any
policy. Section 6 contains our computational results. Online
Appendix A contains a very simple, illustrative example for
the case of integer-valued demand. In Online Appendix B,
we present a detailed description of the scenarios tested in
the computational results.

2. Capacitated Periodic-Review
Stochastic Inventory Control Problem

In this section, we provide the mathematical formulation of
the capacitated periodic-review stochastic inventory prob-
lem and introduce some of the notation used throughout the
paper. As a general convention, we distinguish between a
random variable and its realization using capital letters and
lower-case letters, respectively. Script font is used to denote
sets. We consider a finite planning horizon of T periods
numbered ¢t =1,..., T (note that r and T are both deter-
ministic, unlike the convention above). The demands over
these periods are random variables, denoted by D, ..., D;.

As part of the model, we assume that at the beginning
of each period s we are given what we call an infor-
mation set that is denoted by f,. The information set f;
contains all of the information that is available at the
beginning of time period s. More specifically, the informa-
tion set f, consists of the realized demands (d|, ..., d,_;)
over the interval [1,s), and possibly some more (exter-
nal) information denoted by (w,...,w,). The informa-
tion set f, in period s is one specific realization in the
set of all possible realizations of the random vector F, =
(Dyy...,D,_,W,,...,W,). This set is denoted by %..
In addition, we assume that in each period s there is a
known conditional joint distribution of the future demands
(D, ..., Dy), denoted by I, :=1(f,), which is determined
by f, (i.e., knowing f,, we also know I (f,)). For ease
of notation, D, will always denote the random demand in
period ¢ according to the conditional joint distribution I, for
some s < t, where it will be clear from the context to which
period s we refer. We will use ¢ as the general index for
time, and s will always refer to the current period. The only
assumption on the demands is that for each s=1,..., T,
and each f, € 7|, the conditional expectation E[D, | f,] is
well defined and finite for each period ¢ > s. In particu-
lar, we allow nonstationarity and correlation between the
demands of different periods.

In the periodic-review stochastic inventory control prob-
lem, our goal is to supply each unit of demand while
attempting to avoid ordering it either too early or too late.
In period t (t =1, ..., T), three types of costs are incurred,
a per-unit ordering cost ¢, for ordering up to u, units,
where u, > 0 is the available order capacity in period ¢;
a per-unit holding cost /4, for holding excess inventory from
period ¢ to t 4 1; and a per-unit backlogging penalty p,
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that is incurred for each unsatisfied unit of demand at the
end of period ¢. Unsatisfied units of demand are usually
called backorders. Backorders accumulate fully over time
until they are satisfied. That is, each unit of unsatisfied
demand will stay in the system and will incur a backlog-
ging penalty in each period until it is satisfied. In addition,
there is a lead time of L periods between the time an order
is placed and the time at which it actually arrives. We first
assume that the lead time is a known integer L. In Online
Appendix C, we show that our policy can be modified to
handle stochastic lead times under the assumption of no
order crossing (i.e., any order arrives no later than those
placed later in time). In §4.1, we show that extensions to
the case of random capacities are straightforward.

There is also a discount factor « < 1. The cost incurred
in period ¢ is discounted by a factor of a'. Because the hori-
zon is finite and the cost parameters are time-dependent, we
can assume without loss of generality that o = 1. We also
assume that there is no speculative motivation for holding
inventory or having backorders in the system. To enforce
this, we assume that for each r =2, ..., T — L, the inequal-
ities ¢, <c¢,_; +h,;_; and ¢, < ¢, | + p,,, are maintained
(where ¢, = 0). (If there is a discount factor, we require
that ac, < ¢, +ath,,, | and ¢, < ac,y; +afp,,.) We
also assume that the parameters h,, p,, and c, are all
nonnegative. Note that the parameters 4, and p, can be
defined to take care of excess inventory and backorders at
the end of the planning horizon. In particular, p; can be
set sufficiently high so as to ensure that there are very few
backorders at the end of period 7.

The goal is to find a feasible ordering policy (i.e., one
that respects the capacity constraints) that minimizes the
overall expected discounted ordering cost, holding cost, and
backlogging cost. We consider only policies that are nonan-
ticipatory, i.e., at time s, the information that a feasible
policy can use consists only of f, and the current inventory
level.

Throughout the paper, we will use Dy, ,; to denote the
accumulated demand over the interval [s, t], i.e., D 4 :=
Z;:S D;. We will also use superscripts P and OPT to refer
to a given policy P and an optimal policy, respectively.

Given a feasible policy P, we describe the dynamics of
the system using the following terminology. We let NI,
denote the net inventory at the end of period ¢, which can be
either positive (in the presence of physical on-hand inven-
tory) or negative (in the presence of backorders). Because
we consider a lead time of L periods, we also consider the
orders that are on the way. The sum of the units included in
these orders, added to the current net inventory, is referred
to as the inventory position of the system. We let X, be the
inventory position at the beginning of period ¢ before the
order in period ¢ is placed, ie., X, :== NI, , + >'~!

j=t—L

(for t=1,...,T), where Q; denotes the number of units
. . . . . —1
ordered in period j (we will sometimes denote Z;=,_ L9

by O, [_1]). Similarly, we let Y, be the inventory posi-
tion after the order in period ¢ is placed, i.e., ¥, =X, + O,.

Note that once we know the policy P and the information
set f, € F,, we can easily compute ni,_,, x,, and y,, where
again these are the realizations of NI,_,, X,, and Y, respec-
tively.

3. Marginal Cost Accounting Scheme

In this section, we present a marginal cost accounting
scheme for stochastic inventory control problems with
capacity constraints on the size of the order in each
period. This extends and generalizes the marginal cost
accounting discussed by Levi et al. (2007). Because this
cost-accounting approach is central for our approximation
results, we explain it in detail, repeating some of the ideas
of that paper. Our approach differs significantly from the
traditional cost-accounting approaches, which are based on
standard dynamic programming.

We start by reviewing their cost-accounting approach,
which is called marginal cost accounting. The main idea
underlying this approach is to account for all the expected
costs associated with the decision of how many units to
order in period ¢ when this decision is made. More specif-
ically, the decision in period ¢ is associated with all the
expected costs that, after that decision is made, become
unaffected by any future decision, and are only dependent
on future demands. In Levi et al. (2007), it was shown that
in uncapacitated models, these costs are relatively easy to
compute already in period #, even though they may include
costs that are going to be incurred only in future periods.
Taking this approach, Levi et al. have proposed a marginal
holding-cost accounting scheme. Their approach is based
on the convention that units in inventory are consumed on
a first-ordered-first-consumed basis. This implies that the
overall holding cost of the g, units ordered in period s
(i.e., the holding cost they incur over the entire horizon
[s, T]) is a function only of future demands, and is indepen-
dent of any future decision. Based on the assumption that
inventory is consumed on a first-ordered-first-consumed
basis, the g, units on order will be used to satisfy demand
only when the x, units presently in the system have been
completely consumed. Among these ¢, units, the number
of those still remaining in inventory at the end of period j
(where j > s + L) is precisely (g, — (D ;;—x,)")".
Each of these units incurs a cost of h;. More specif-
ically, conditioning on an information set f, € ¥, the
marginal holding cost is defined to be (assuming again
that a = 1) Z;:s+L hi(q, — (D, j— x;)")*. Observe again
that for each nonanticipatory policy P, if conditioned on
some f, € F,, the inventory position at the beginning of
period ¢, denoted by x7, is known deterministically. In addi-
tion, once the order in period s is determined, the back-
logging cost a lead time ahead in period s + L, i.e.,
Ps+r(Dys, 5411 — (X, +¢;))*, is also dependent only on the
future demands. This leads to a marginal cost accounting.
For each feasible policy P, let H® be the ordering and
holding cost incurred over the interval [z, T] by the QF
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units ordered in period 7 (for t =1,...,T), and let IT
be the backlogging cost incurred a lead time ahead in
period r+L (t=1—L,...,T—L). That is, H® =c,0" +
Z;:H—L hj(Qf - (D[t,j] - le))+)+ and Hf = pt+L(D[z, +L]
(Xf,, + OF))" (where D; :=d; with probability one and
QF = g; is given as an input, for each j <0). Let €(P) be
the cost of the policy P. Clearly,

0 T—-L
€P):= ) I +H o+ ) (H +II), M

t=1-L =1

where H_,, 71 denotes the total expected holding cost
incurred over the interval [1, T] by units ordered before
period 1. We note that the first two expressions >.0_, , TIP
and H_, 7 are not affected by our decisions (i.e., they
are the same for any feasible policy and each realization
of the demands). Note that, without loss of generality, we
can assume that Q¥ = HY =0 for any policy P and each
period t=T—L+1,..., T, because nothing that is ordered
in these periods can be used within the given planning
horizon.

In models with no capacity constraints, there is a fun-
damental difference between holding cost and backlogging
cost. In particular, any mistake of ordering “too little” can
be fixed in the next period to avoid further backlogging
cost. In particular, the decision of how many units to order
affects the backlogging cost in a single period. However,
the effect of this decision, if we have ordered “too much,”
may last for a number of periods depending on the real-
ized future demands. That is, no future decision can fix this
mistake because we cannot order a negative quantity. Con-
sequently, IT" only accounts for costs incurred in a single
period, namely, backlogging cost in period 7 + L, and HF
accounts for holding costs incurred over multiple periods.
By way of contrast, in models with capacity constraints on
the size of the order in each period, the above observa-
tion is no longer valid. More specifically, because of the
capacity constraints, it is no longer true that a mistake of
ordering “too little” in the current period can always be
fixed by decisions made in future periods.

3.1. Marginal Backlogging Cost Accounting

We now present a new backlogging cost accounting that
associates with the decision of how many units to order in
period s what we shall call forced backlogging cost result-
ing from this decision in future periods.

Consider some period s. Suppose that x, is the inventory
position at the beginning of period s and that the number of
units ordered in the period is g, < u,. Let g, be the result-
ing unused slack capacity in period s, i.e., g, = u, —q, > 0.
Focus now on some future period ¢ > s+ L when this order
arrives and becomes available. Suppose that for some real-
ization of the demands, we have that d|, ,; — (x, + ¢, +
> je(s, -1 #;) > 0. This implies that there exists a shortage
in period 7, and moreover, even if in every period after
period s and until period ¢t — L the orders had been up to

the maximum available capacity, this part of the shortage
in period ¢t would still exist and incur the corresponding
backlogging cost. The actual shortage may be even big-
ger and equal to d}, ; — (X, + g, + X je(s, -7 ¢;) > O (recall
that g; < u; for each period j). In other words, given our
decision in period s, this part of the shortage could not be
avoided by any decision made over the interval (s, — L]
(clearly, any order placed after period ¢+ — L will not be
available by time ¢). We conclude that if more units had
been ordered in period s, then at least some of the short-
age in period ¢ could have been avoided. More precisely,
the maximum number of units of shortage that could have
been avoided by ordering more units in period s is equal
to min{g;, (d;, ) — (%, + ¢, + Xje(s. i~ #;)) ). The intu-
ition is that by ordering more units in period s, we could
have averted part of the shortage in period ¢, but clearly not
more than the unused slack capacity g, because we could
not have ordered in period s more than additional ¢, units.
In this case, we would say that this part of the backlogging
cost in period ¢t was forced by the decision in period s, and
hence period s is associated with a backlogging penalty
of P: min{‘js’ (d[s, ] (xx +4s+ Zje(s, t—L] u;))+} This is
significantly different from the fraditional backlogging cost
accounting, in which this cost would be associated with
period ¢t — L.

We let W, be the shortage in period ¢ that is forced by
the decision in period s (where again s <t — L), i.e.,

+
el (e 3.2 |
je(s,1—L]

An alternative way to express W,,, using min(a, (b)*) =
()t —(b—a)t foraecR,_ and beR, is

+
W, = (D[M]—<Xs+Qs+ > uj))
]

je(s,t—L

_ (D[S, q— <XS +je[§_L] u j>)+. ()

Now using the equalities, NI, = X, + O, + 3> ;c(; ,-1) @, —
Dy, (for each s <t —L) and u; = Q; + Q; (for each j =

s,...,t— L), we conclude that Equation (2) can be writ-
ten as
N\t N\
(Dt_NII_ Z Q]) - (Dt_NIr_ Z Q]> NE)
je(s,t—L] J€ls, t—L]

To see why (2) (and hence, (3)) holds, observe that
(D[x, I (Xs + Qs + Zje(s,th] uj))+ > Qs lf and Only lf
(Dyy.) — (X + Xjefsi—ry ;)" > 0. Next, we describe sev-
eral properties of the parameters W,,. Clearly, if Q, =0
(ie., O, =u,), then W, =0 for each r > s+ L. It is also
readily verified from (3) that if W,, > O for some s < r—L,

then we have W, = Q; for each j € (s, t — L].
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For each s=1—-L,...,T — L, let ﬁf be the overall
forced backlogging cost in periods s+ L, ..., T associated
with period s, i, IIF =Y/ p,WP (we again assume
that D; = d; with probability one for each j < 0). Let
q_;, =0, and g_, = o0, and also define, for each
, T,

Uu_; =00,
t=1,...

+
W_, = <D[1—L, 1= (xl—L + Z "‘j))
jell-L,1—L]

+
= (D,—NI,— > Qj) ,
je[l-L,1—L]

and TI°, =T_, :=Y"_ p,W_, ,. The last definition of
II_, is meant to account for the forced backlogging cost,
which is independent of any decision, and is forced by
the demands on any feasible policy. It is now readily
verified that, for each r = 1,...,T and for each pol-
icy P, we have II}_, = p,(D, —NI})* = p, /"% W} (the
sum Z;;L_ . W, is telescopic). This implies the following
theorem.

THEOREM 1. Let P be a nonanticipatory policy. Then, the
cost of policy P can be expressed as ‘€(P) := 2?27 LI+
H_o.p)+ 2o (H +1I).

Note that the first two terms of ‘¢(P) in Theorem 1,
Z?z_ . ﬁf and H_, 7), are independent of any decision we
make and are common to all feasible policies. Recall that
Z?:—L ﬁf represents the forced backlogging penalty that
is forced on any feasible policy. Because these two terms
are also nonnegative, we omit them from the analysis. This
does not impact our approximation results. From now on,
we will write the cost of a feasible policy P as €(P) =
> ""(HP + II"). In Online Appendix A, we provide an
illustrative example of our new cost-accounting approach.

The intuition is that once a shortage is incurred in
period ¢, it is allocated to past periods s < # — L in which
the orders were below the available capacity. More specif-
ically, the shortage and the resulting backlogging cost in
period ¢ are charged to periods s < ¢t — L with posi-
tive unused slack capacity going backward in time from

Figure 1. Period-by-period backorder cost accounting.
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Figure 2. Forced marginal backorder cost accounting.
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period ¢t — L. Each period s < r — L can be charged with a
part of the backlogging cost in period ¢ for up to g, units,
the unused slack capacity in period s.

Figures 1, 2, and 3 graphically illustrate the difference
between classical period-by-period accounting and forced
marginal accounting for backlogging costs. All three figures
reflect a single sample path of demands and orders. The
total backlogging cost over the horizon is the area above the
cumulative supply curve (thick line) and below the cumu-
lative demand curve (thin line). Classical period-by-period
accounting assigns to period s the difference between the
curves at s (see Figure 1). Forced marginal accounting of
backlogging costs assigns to period s all of the backlog-
ging costs that were “forced,” or made inevitable, because
we did not order to capacity in period s. This corresponds
to the area inside of the trapezoid shown in Figure 2. This
trapezoid is created by extending the cumulative supply
curve, starting at s — 1 and at s, to the right at a slope equal
to the capacity of the system. These lines represent what
the supply curves would look like if our policy consistently
ordered at full capacity from s — 1 and s onwards, respec-
tively. In fact, consider the thick short bars in the trape-
zoid in Figure 2. The first and second terms of (2) are the
vertical coordinates of the end points of these bars. Conse-

Figure 3. Allocation of a period backorder to ordering

decisions.
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quently, each W, for ¢ > s is the length of one of these bars.
Figure 3 takes a different point of view. It considers the
backlogging costs incurred in period s, and illustrates how
those costs are allocated to periods s, s —1,...,1,..., —L.

In Levi et al. (2007) it is shown that the marginal hold-
ing cost consists of a sum of partial expectations. Once
x, is known at time s, the summands are expectations
of simple piecewise-linear functions. If the accumulated
demand Dy, ;, (for each j, s) has any of the distributions
that are commonly used in inventory theory (e.g., Normal,
Gamma, Lognormal, Laplace, etc.) (Zipkin 2000), then it
is extremely easy to evaluate these terms. If the distribution
of D[s, il is discrete, these functions can be computed recur-
sively in efficient ways using the c.d.f.s. More generally,
the complexity of evaluating the marginal holding cost can
vary depending on the level of information we assume on
the demand distributions and their characteristics. In all of
the common scenarios, there exist straightforward meth-
ods to solve this problem efficiently (see also Hurley et al.
2006 for more details). Because in the presence of positive
lead times even computing a simple myopic policy requires
the same knowledge on the distribution of the accumu-
lated demand over the lead time, the computational effort
involved with computing the marginal holding cost is of
the same order of magnitude as for the myopic policy.
Evaluating the marginal backlogging costs based on the
scheme developed in this paper is analogous to the marginal
holding cost. It is a sum of partial expectations of simple
piecewise-linear functions, and therefore is no more diffi-
cult to compute.

Finally, observe that for uncapacitated models with
u, = oo for each s (and hence ¢, = ), our backlogging
cost accounting is in fact identical to the traditional back-
logging accounting discussed above. This implies that the
cost-accounting scheme proposed in this paper is a gener-
alization of the one introduced in Levi et al. (2007). There-
fore, the preceding discussion is also a generalization of the
corresponding algorithm and analysis in Levi et al. (2007).

4. Dual-Balancing Policy

In this section, we describe a new policy for the capaci-
tated periodic-review stochastic inventory control problem.
As in Levi et al. (2007), we call it a dual-balancing pol-
icy. We shall show that this policy has a worst-case per-
formance guarantee of two, i.e., for each instance of the
problem, the expected cost of the policy is at most twice the
expected cost of an optimal policy. Recall the assumption
discussed in §2, that the cost parameters imply no motiva-
tion for holding inventory or backorders. This implies that,
without loss of generality, for each t =1,...,7T, ¢, =0
and h,, p, 2 0. Moreover, we first describe the algorithm,
its analysis, and several extensions under the latter assump-
tion. Then in §4.2, we discuss in detail the generality of
this assumption.

The dual-balancing policy presented in this paper is
based on a balancing idea similar to the one used in

Levi et al. (2007) for the uncapacitated model. That dual-
balancing policy balances, in each period s and conditioned
on the observed information set f,, the expected marginal
holding cost of the units ordered in the period against the
expected (traditional) backlogging cost in period s + L,
a lead time ahead of s. However, it is readily seen that this
approach does not work in the case where there is a capac-
ity constraint on the size of the order in period s. For one,
the order size ¢, that balances these two costs might not be
reachable when ¢, > u,.

In turn, we consider the forced marginal backlogging
cost accounting and the corresponding cost it associates
with period s as described in §3 above. Conditioned on the
observed information set f,, we now balance the expected
marginal holding cost of the units ordered in period s
against the expected marginal backlogging costs associated
with period s. We will use the superscript B to refer to the
dual-balancing policy. For each period s=1,...,T — L,
conditioning on the observed information set f;, let I5(g®)
be the expected holding cost incurred over [s, T] by the
units ordered by the dual-balancing policy in period s.
That is, [(¢®) :=E[HB(¢®) | f.]. In §3, we have defined
HE =30 hi(QF — (D, — XB)")* (recall that we
assume ¢, = 0). In addition, let 72 := E[II®(¢®) | f,] be
the expected backlogging cost associated with period s by
the forced marginal backlogging cost-accounting scheme
described above, again conditioned on the observed infor-
mation set f,. Recall that in §3 we have defined ﬁlf =
i P:WE, where

st?

.
we=minf@? (0, - (x2+02+ ¥ w)) |

je(s, 1]

+

je(s, t—L]

+
(oa- (s 2 W)
JEls, t—L]

If we condition on f;, the inventory position at the begin-
ning of period s, x?, is known deterministically. That is,
it is clear that [®(¢®) and 7P (¢®) are both indeed functions
of q?, the number of units ordered in period s.

We first discuss the case where the orders are
allowed to be fractional. This implies that the functions
13(¢®) and 78(q®) are continuous. In each period
s=1,...,T—L, given the observed information set f,,
the dual-balancing policy will order ¢® = ¢/ < u, units
such that the expected marginal ordering and holding cost
incurred by these units over [s, T] is equal to the expected
forced marginal backlogging cost associated with period s.
In other words, we order ¢, units such that [8(q)) =
E[HP(q)) | f,] = 72(q) = E[TI?()) | f,]. Next, we show
that this policy is well defined. It is readily verified that
IB(¢P) is a convex increasing function of ¢® that is equal to
zero for ¢® =0 and goes to oo as ¢® goes to oco. Similarly,
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one can verify that 72 (¢®) is a decreasing convex function
of ¢® that has a nonnegative value at ¢g® =0 and that is
equal to zero for ¢® = u, (in this case there is no unused
slack capacity at s and ¢g® = 0). Our assumption that these
functions are continuous implies that g/, as defined above,
always exists.

Computationally, ¢, is the minimizer of the function
2,(g®) .= max{lB(¢®), @2 (¢®)}, which is a convex func-
tion of ¢®, because it is the maximum of two convex func-
tions. Hence, in each period s, we need to solve a convex
minimization problem of a single variable. In particular, if
for each j = s, Dy, ; is distributed according to any of those
distributions that are commonly used in inventory theory,
then it is extremely easy to evaluate the functions /8(g®)
and 72(¢®). More generally, the complexity of the algo-
rithm is of order T (i.e., number of time periods) times the
complexity of solving the single variable convex minimiza-
tion defined above. The complexity of this minimization
problem can vary depending on the level of information
we assume on the demand distributions and their char-
acteristics. In all of the common scenarios, there exist
straightforward methods to solve this problem efficiently.
In particular, ¢, is determined by the intersection of two
monotone convex functions, which suggests that bisection
methods can be effective in computing g,. We note that the
dual-balancing policy is not a state-dependent base-stock
policy. However, it can be computed in an online man-
ner, i.e., computing the policy action in period s does not
require any knowledge of the future decisions to be made
in the next periods. Moreover, unlike the myopic policy, the
dual-balancing policy does use available information about
long-term future demands.

4.1. Analysis

Next we show that, for each instance of the problem, the
expected cost of the dual-balancing policy described above
is at most twice the expected cost of an optimal policy.
We will use the marginal cost-accounting scheme described
in §3 and amortize the period cost of the dual-balancing
policy with the cost of the optimal policy.

Using the marginal cost-accounting scheme discussed
in §3, the expected cost of the dual-balancing policy can
be expressed as E[€(B)] = X" F E[HP + TI®]. For each
t=1,...,T — L, let Z, be the random balanced cost by
the dual-balancing policy in period 7, i.e., Z, =E[H} | 7,].
Note that Z, is a function of the observed information set
in period f. In the next lemma, we obtain an expression
for the expected cost of the dual-balancing policy using
the Z, variables. The proof is identical to the proof of
Lemma 4.1 in Levi et al. (2007).

LEmMA 1. The expected cost of the dual-balancing policy
is equal to twice the expected sum of the Z, variables, i.e.,
E[€(B)] =23 EIZ,].

In the next two lemmas, we show that the cost of OPT
can be amortized against some of the cost of the dual-
balancing policy. In particular, they imply that the expected
cost of OPT is at least ./ E[Z,]. For each realization
of the demands Dy, ..., Dy, let I, be the set of periods
t=1,...,T—L in which the optimal policy had inventory
position higher than that of the dual-balancing policy, i.e.,
the set of periods 1 <7< T — L such that Y? < YOFT.
Let J; be the set of periods in which the dual-balancing
had inventory position at least as high as that of OPT, i.e.,
the set of periods t =1,...,T — L such that Y? > Y°FT.
(We consider only the periods t = 1,...,T — L because
the effective ordering decisions are made in these periods.
Specifically, each order placed after period 7 — L will arrive
after period 7.) Observe that 7, and J}; are random sets
that induce a random partition of the horizon.

The next lemma shows that, with probability one, the
marginal holding cost incurred by the dual-balancing pol-
icy in periods ¢t € J is at most the total holding cost
incurred by OPT, denoted by H°'T, i.e., ieq, HE < HOPT
with probability one. The proof is identical to the proof of
Lemma 4.2 in Levi et al. (2007).

LEMMA 2. For each realization f € F, the total marginal
holding cost incurred by the dual-balancing policy for all
of the periods t € I is at most the total holding cost
incurred by OPT, denoted by H°™", i.e., 3_,. H} <H"
with probability one.

The next lemma shows that, with probability one, the
marginal backlogging cost of the dual-balancing policy
associated with periods 7 € Jy; is at most the total backlog-
ging penalty incurred by OPT, denoted by I1°FT.

LeEmMA 3. For each realization f; € Fr, the total marginal
backlogging cost of the dual-balancing policy associated
with all of the periods t € Iy is at most the total back-
logging penalty incurred by OPT, denoted by I°FT, jee.,
Y e, TP <TIOFT with probability one.

The forced marginal backlogging cost associated with
the periods in Jy; is equal to

2 2 pWi=Xp X W
t

s€T t:t2s+L seT:s<t—L

Therefore, it is sufficient to show that for each t = L +
1,..., T, the traditional backlogging cost incurred by OPT
in that period is at least as much as the forced backlogging
costs incurred by the dual-balancing policy in period ¢ as
a result of decisions made in periods {s € Ij;: s <t —L}.
In other words, it is sufficient to show that for each t =
L+1,...,T, we have

(D, =NI"H* > 3 Wy,

s€T i s<t—L

with probability one. (Recall that the backlogging costs
over the periods 1, ..., L are the same for all policies.)
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Consider now a specific realization f;, € 9; and
some period ¢t = 1,...,T. If there is no period in
{s€Ty: s <t—L} with w® > 0, then there is nothing to
prove. Assume that such a period s exists, and let s, and s,
be the latest and the earliest periods in the set {s € Tp;: s <
t— L, w8 > 0}, respectively (it is possible that s, =s,). We
note again that here we abuse our notation and consider the
set I as the realized set of periods according to the spe-
cific realization f;. In particular, s, and s, are the respective
realizations of random variables S, and S,. We have already
seen (in the discussion in §3) that for each s € (s,, s,], we
have w = g7 and wf | <dj, 4—(x;, +q2 + e, —1) 4))-

Indeed,
d,—ni®"=d, - (ygl’TJr > - d[w))

Jje(sy 1—L]

zdy, g — (ys,+ > “j)

je(s;, t—L]

=d[s,,,]—(ys'i+ > a4

Je(se,s1]

=d[se,,]—<x2+qﬁ+ > ”j)+ > a

(s, 1=L] J€(ses 81

—di, .t 2 u,»)

Jje(s; t—L]

B
wst *

N
=

Jj€lse. s1] JElse. s;1NT

The first equality is again based on the fact that for each
feasible policy and for each s < 7, we have NI, = Y, +
> iets,i—1) @ — Dy, 1y» applied to OPT and periods s; < 7 — L.
The first inequality follows from the assumption that
s, € Iy; and so y(]’PT <y, and from the capacity constraints
that imply ¢9"" < . The second equality follows from
the fact that (for each s<S) Yy =Y+ 26019 — Dy sy
applied to the dual-balancing policy and periods s, < s,.
The last equality is achieved by adding and subtracting
2 jets, ] c]? and from the fact that u; = Q; + 19) ;- The proof
then follows.

As a corollary of Lemmas 1, 2, and 3, we get the fol-
lowing theorem.

THEOREM 2. The dual-balancing policy has a worst-case
performance guarantee of two, i.e., for each instance of
the capacitated periodic-review stochastic inventory control
problem, the expected cost of the dual-balancing policy is
at most twice the expected cost of an optimal solution, i.e.,
E[€(B)] < 2E[€(OPT)].

From Lemma 1, we know that the expected cost of the
dual-balancing policy is equal to twice the expected cost of
the sum of the Z, variables, i.e., E[¢(B)] = X._ " E[Z,].
From Lemmas 2 and 3 we know that, with probabll—
ity one, the cost of OPT is at least as much as the hold-
ing cost incurred by units ordered by the dual-balancing
policy in periods t € J plus the forced marginal back-
logging cost of the dual-balancing policy that is associated

with periods 7 € Jy;. In other words, with probability one,
HO"' + TI°T > ¥, HE + Y, TIP. Again using con-
ditional expectations and the deﬁmtlon of Z,, this implies
that indeed,

E[€(OPT)]
E[; a9 ﬁ?}

=Y E[H? - 1(t€Ty) + 117 -1(t € Tpy)]
=Y E[E[H} - 1(t € T,) + TP - 1(r € Ty) | 7,]]

= El((r € Ty) +1(r € Ty)Z,] = }_E[Z]

We note that if the optimal policy is deterministic (i.e.,
it makes deterministic decisions in each period ¢ given the
observed information set f;), then if we condition on %,,
then yB and y©PT are known deterministically, and so are the
indicators 1(¢f € 7,) and 1(¢ € I;). If the optimal policy is
random, then the same arguments above still work. We now
need to condition not only on Z,, but also on the decisions
made by the policies. Because the inventory control policy
does not have any effect on the evolution of the demand, the
arguments above are still valid. This concludes the proof
of the theorem.

We note that the examples discussed in Levi et al.
(2007) show that the above analysis is tight. However, the
analysis hints that in a typical scenario, the performance
would be significantly better. Hurley et al. (2006) present a
thorough empirical analysis of the typical performance of
dual-balancing policies in uncapacitated models. In §6, we
present empirical results that confirm that this phenomenon
extends to the capacitated case.

Finally, we note that the dual-balancing policies and the
worst-case analysis can be extended to models where the
capacities in each period are generated by some exogenous
random process, and the exact capacity available in period ¢
is observed only at the beginning of the period. Thus,
the dual-balancing policies provide a worst-case guaran-
tee of two for this important extension as well. In this
case, the expectations of the marginal backlogging costs
are taken with respect to both the random future demands
and random future capacities. In Online Appendix C, we
consider two extensions of the dual-balancing policy and
the worst-case analysis. Specifically, we discuss the exten-
sions to models where orders must be integral and the
demands are integer-valued random variables, and to mod-
els with stochastic lead times under the no-order-crossing
assumption.

4.2. Cost Transformation

In this section, we discuss in detail the cost transformation
that enables us to assume, without loss of generality, that
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for each period r=1,..., T, we have ¢, =0 and h,, p, > 0.
Consider any instance of the problem with cost parameters
that imply no speculative motivation for holding inventory
or backorders (as discussed in §2). Following Levi et al.
(2007), we use a simple transformation of the cost param-
eters to construct an equivalent instance, with the property
that for each period t =1,...,T, we have ¢, =0 and 4,
p, 2 0. More specifically, the modified instance has the
same set of optimal policies. Applying the dual-balancing
policy to that instance, we obtain a policy that is differ-
ent from the original dual-balancing policy, and which also
has a performance guarantee of at most two with respect
to the original problem. We shall show that this cost trans-
formation can improve the performance guarantee of the
dual-balancing policy in cases where the ordering cost is
the dominant part of the overall cost. In practice, this is
often the case.

We now describe the transformation for the case with
no lead time (L =0) and a = 1; the extension to the case
of arbitrary lead time is straightforward. Recall that any
feasible policy P satisfies, foreachr=1,..., 7T, Q, =NI, —
NI,_, + D, (for ease of notation, we omit the superscript P).
Using these equations, we can express the ordering cost in
each period ¢ as ¢,(NI, —NI,_, + D,). Now replace NI, with
NI — NI, its respective positive and negative parts.

This leads to the following transformation of cost param-
eters. We let ¢ =0, h, :==h, + ¢, — ¢ (e = 0),
and p, := p, — ¢, + ¢,,,. Note that the assumptions on the
cost parameters c,, h,, and p, discussed in §2, and in partic-
ular the assumption that there is no speculative motivation
to hold inventory or backorders, imply that iz, and i)t above
are nonnegative (f =1,...,T). Observe that the parame-
ters IA1t and lA9t will still be nonnegative even if the param-
eters ¢,, h,, and p, are negative and as long as the above
assumption holds. Moreover, this enables us to incorpo-
rate into the model a negative salvage cost at the end of
the planning horizon (after the cost transformation we will
have nonnegative cost parameters). It is readily verified that
the induced problem is equivalent to the original one. More
specifically, for each realization of the demands, the cost
of each feasible policy P in the modified input decreases
by exactly ZIT=1 ¢,d, (compared to its cost in the original
input). Therefore, any optimal policy for the modified input
is also optimal for the original input.

Now apply the dual-balancing policy to the modified
problem. We have seen that the assumptions on c,, h,,
and p, ensure that iz, and p, are nonnegative, and hence the
analysis presented above is valid. Let opt and opt be the
optimal expected cost of the original and modified inputs,
respectively. Clearly, opt = opt + E[Y./_, ¢,D,]. Now the
expected cost of the dual-balancing policy in the modified
input is at most 2opt. Its cost in the original input is then
at most 2opt + E[Y"_, ¢,D,] = 2opt — E[Y_, ¢,D,]. This
implies that if E[Y."_, ¢,D,] is a large fraction of opt, then
the performance guarantee of the expected cost of the dual-
balancing policy might be significantly better than two.

For example, if E[Y."_, ¢,D,] > 0.50pt, then we can con-
clude that the expected cost of the dual-balancing policy
is at most 1.5opt. It is indeed the case in many real-life
problems that a major fraction of the total cost is due to the
ordering cost. The intuition of the above transformation is
that ZLI ¢,D, is a cost that any feasible policy must pay.
As a result, we treat it as an invariant in the cost of any
policy and apply the approximation algorithm to the rest of
the cost.

In the case where we have a lead time L, we use the
equations Q, :=NI,,; —NI,,;_, + D, ;, for each ¢ =
1,...,T — L, to get the same cost transformation. The
transformation for a > 1 is also straightforward. Also, it is
not hard to see that the cost transformation can be modified
to remove, say, Y% of the per-unit ordering costs, where
0 < y < 100. This leads to a continuum of dual-balancing
policies, all of which are two-approximations.

5. Improved Policy and Bounds on
the Optimal Inventory Levels

In this section, we consider two semimyopic (modified)
base-stock policies that are easy to compute in an online
manner and provide, respectively, lower bounds and upper
bounds on the inventory levels of an optimal policy y°F', in
each period t =1, ..., T. We believe that these bounds can
be used effectively to improve existing algorithms for com-
puting inventory control policies for the capacitated model
discussed in this paper and other capacitated stochastic
inventory models. Moreover, as in Hurley et al. (2006), we
shall show that these policies provide bounds that are strong
in the following sense: each policy that for some period ¢
and some state f, has inventory level outside the range
defined by the respective lower and upper bounds can be
improved. In particular, there is another (modified) policy
that in period ¢ and state f, admits an inventory level within
the specified range, with expected cost no greater than the
expected cost of the original policy. In other words, any
policy that violates these respective bounds is dominated
by another policy. We then follow Hurley et al. (2006)
and construct an improved dual-balancing policy that incor-
porates these bounds. This policy also has a performance
guarantee of two, and as the computational study for the
uncapacitated model in Hurley et al. (2006) suggests, we
expect that it will have a better typical performance.

The policies we consider are called lower-myopic
(denoted by LM) and upper-myopic (denoted by UM),
respectively. In the lower-myopic policy, in each period s,
conditioning on the observed information set f,, we mini-
mize the sum of the expected marginal holding cost of the
units ordered in that period and the traditional expected
backlogging costs a lead time ahead. That is, in each
period s, we minimize

gg‘M(qs) = l.Is‘M(qs) + E[ps+L(D[s, s+L] (xs + qs))+ | f:v]
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under the constraint g, < u,. This is a convex function of g,.
This policy was first proposed for the uncapacitated model
by Levi et al. (2007), who called it the minimizing policy.
They have shown that this is a base-stock policy that pro-
vides lower bounds on the optimal base-stock levels. How-
ever, in the capacitated model it is possible that the actual
minimizer will not be attainable. In this case, we order up
to capacity, and this provides a modified base-stock pol-
icy. In this paper, we extend and generalize their proof for
the capacitated model. In the upper-myopic policy, in each
period s, again conditioning on f;, we minimize the sum of
the expected period holding cost and the expected forced
marginal backlogging. Thus, we minimize

g?M(qs) = 7’i::JM(qs) + E[hs+L(xs + qs — D[s,s+L])+ | fs]?

subject to 0 < ¢, < u,, which is also convex in g,. We shall
show that this policy provides upper bounds on the inven-
tory levels of an optimal policy. By arguments similar to
the ones used by Levi et al. (2007), it can be shown that
this gives rise to yet another modified base-stock policy.
(In particular, g™ (q") — g"(4*) depends only on y' =
x; +¢' and y* = x, + ¢*.) To the best of our knowledge,
this is a new way for deriving upper bounds on the inven-
tory levels of an optimal policy in the capacitated model.
We note that it is not clear whether the classical myopic
policy, where we minimize the expected period cost, pro-
vides any bounds for capacitated models. Another similar
open question is how the policy that, in each period, min-
imizes the sum of the expected marginal holding cost and
expected forced marginal backlogging cost is related to an
optimal policy.

Let Y™ and Y™ be the respective inventory position
(after orders are placed) of the lower-myopic and the upper-
myopic policies in period ¢t = 1,...,T. Specifically, we
assume that Y™ is the smallest minimizer of the corre-
sponding period problem being solved (see above), and that
Y™ is the largest minimizer of the corresponding period
problem. Note that the inventory position levels depend on
the specific state (f,, x,), but for ease of notation we omit
the indication of the state. The two semimyopic policies
described above can be implemented in an online manner,
i.e., regardless of the action control in future periods. We
shall show that for each evolution f;, these two policies
provide lower and upper bounds on the inventory levels of
any optimal policy, i.e., Y™ < YT < Y™, with probabil-
ity one, for each r =1, ..., T. Moreover, we shall show that
each nondominated policy P must have Y'M < YP < Y™
foreacht=1,...,T.

The next two lemmas show that each policy P that has,
for some period s and state f,, inventory position y¥ ¢
[y™M, yM], can be strictly improved by a modified pol-
icy P’ with y* e [yM, yUM] and expected cost at most the
expected cost of P. For the sake of simplicity, we consider
a model with no lead time (the extensions to the case with
L > 0 are straightforward).

LEMMA 4. Consider a feasible policy P, and suppose that
for some period s and information set f,, we have y* < yM
Further assume that s is the earliest such period. Then,
the policy P’ that follows P until period s — 1, then orders
up to y*™ in period s and again imitates P over the inter-
val (s, T], has expected cost no larger than the expected
cost of P.

Because P’ follows P over [1, s), we conclude that they
incur exactly the same cost over that interval, and that they
have the same inventory position x, < y¥ < y™. Because
s is the first such period, we conclude that P’ can indeed
order up to y'™. Now over (s, T], P’ imitates P; that is, it
orders nothing if X? > Y} and orders up to Y} otherwise
(for each j € (s, T]) Moreover the policy P’ has ordered
g" units in period s. Consider the overall expected marginal
holding cost of these units and the expected (traditional)
backlogging cost incurred by P’ in period s. By the def-
inition of g, it is clear that this is no greater than the
expected marginal holding cost and expected (traditional)
backlogging cost incurred by the policy P in period s. For
each period j € (s, T], we know that with probability one,
le” > YjP and that Qf’ < Q}) . This implies that the backlog-
ging incurred by policy P’ over that interval is no greater
than the backlogging cost incurred by policy P, and simi-
larly, the marginal holding-cost policy that P’ incurs over
that interval is no greater than the respective marginal hold-
ing cost of policy P. The lemma then follows.

LEMMA 5. Consider a feasible policy P, and suppose
that for some period s and information set f,, we have
Y >y Further assume that s is the earliest such period.
Then, the policy P’ that follows P until period s — 1, then
orders up to y™ in period s and again imitates P over
the interval (s, T], has expected cost no larger than the
expected cost of P.

By arguments identical to the ones in Lemma 4, we con-
clude that P’ and P incur the same cost over [1, s) and that
they have the same inventory position x, < y'™ < yP. The
first inequality follows from the fact that s is the first period
in which P has more inventory than the upper-myopic pol-
icy. Thus, P’ can order up to Y"™, and assume that it
orders ¢”'. Consider the overall expected forced marginal
backlogging cost and expected period holding cost incurred
in period s by policy P'. By the definition of ¢*', we con-
clude that this expected cost is smaller than the respective
expected cost incurred by policy P in period s. Now over
(s, T] P’ again tries to imitate P, i.e., for each j € (s, T], it
will order up to YJP or up to the capacity u;. Now let S’ be
the earliest (random) period after period s in which P’ has
reached Y§. Clearly, over (S, T] the policies P’ and P are
again identical, and hence incur the same cost. Observe
that for each j € (s, S’], we have YjP/ < YjP and Qf < Qf,
with probability one. This implies that the expected holding
cost and the expected forced marginal backlogging penalty
incurred by policy P’ over that interval are each no greater
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than the respective expected cost incurred by policy P. The
lemma then follows.
Lemmas 4 and 5 imply the following corollary.

COROLLARY 1. For any optimal policy and for each com-
plete evolution f;, the lower-myopic and upper-myopic
policies provide respective lower and upper bounds on
the inventory levels of the optimal policy, ie., Y™<

YOPT < Y™ with probability one for each t =1, ..., T

Now consider the improved dual-balancing policy
denoted by superscript IB. In each period s, given the
observed information set f, and the inventory position at
the beginning of the period, we still consider balancing
the expected marginal holding cost against the expected
marginal backlogging cost, and compute g, as described
in §4. (That is, given the observed information set f, and
the inventory position at the beginning of period s, order-
ing g, will balance the expected marginal holding cost and
the expected marginal forced backlogging costs associated
with period s.) However, in each case where the original
balancing quantity brings the inventory position below y-M
(ie., xB+g. < y™) or above y™ (ie., xB+4q. > y™), we
fix this decision by instead increasing the order up to y-M
or decreasing it down to y"™, respectively. It can be readily
verified that for each evolution f; and each period s, we
have yM < yB < yIM,

We next prove the following theorem.

THEOREM 3. The improved dual-balancing policy has a
performance guarantee of two.

Observe that in the improved dual-balancing policy it
is no longer true that in each period ¢, the expected mar-
ginal holding cost is equal to the expected forced marginal
backlogging cost. Now let Z, be the maximum among the
expected marginal holding cost and expected forced
marginal backlogging cost, i.e., Z, = max{E[H,*(0}®) | 7],

E[TIB(Q™) | 7,1}, where Q™ is the order quantity placed
by the improved dual-balancing policy in period s. (As
already mentioned, Q'® can be either larger or smaller than
the balancing quantity Q;.) Similar to Lemma 1, we now
conclude that E[6€(IB)] <2Y,E[Z,].

Next, we modify the definition of the sets J, and I
in §4. The set I, will consist of periods r=1,...,T — L
such that (i) Y™ < ¥Y® < y"™ and Y™ < Y°"T; or
(11) YIB YLM YUM or (111) YIB YLM YUM YOP’T
and the 1mproved dual balancmg pohcy orders more than
the balancing quantity Q). (That is, X®*+ Q, <YM =y™M
and Q™ > Q/.) The set J;; will consist of all the other
periods in t =1, ..., T — L. Specifically, J}; contains peri-
ods such that (i) Y'M < Y® < Y™ and Y > Y°FT; or
(11) YtLM YIB YUM or (111) YIB YLM YUM — YOPT
and the 1mproved dual balancmg pohcy orders less than
the balancing quantity Q). (That is, X/® + Q, > Y'"M =

t

Y™ and Q™ < Q!.) Note that for each ¢ € 7, we have

Y < YPPT, and for each 1 € Iy, we have Y'® > YOFT.

Thus, the arguments used to prove Lemmas 2 and 3 are

still valid. It is then sufficient to show that for each ¢t € 7,
we have E[HB(Q™®) | %,] = Z,, and for each 1 € Ty;, we
have E[TT®(Q™) | 7,] = Z,. This will imply that the argu-
ments in the proof of Theorem 2 are still valid and the
performance guarantee of the policy then follows.

Assume now that for some f, € 7,, such that t € 7, we
have E[H®(¢™®) | f,] < z,. However, this can happen only
if in that period the improved dual-balancing policy orders
below Q) and Y/® = Y™, (The improved dual-balancing
policy orders Q™ < Q) only when X® + Q) > Y™, and
then it decreases the order until ¥® = Y,"™.) This leads to
a contradiction because by deﬁmtlon t € Iy (see cases (ii)
and (iii) in the definition of I above)

Similarly, assume that for some f, € 7,, such that t € I,
we have E[TII"®(Q™) | 7,] < z,. This can happen only if
in that period the improved dual-balancing policy orders
0% >0 (ie, X®+ Q0 < Y"™) and Y® = Y'M. However,
we again get a contradiction because by deﬁnltlon teJy
(see cases (ii) and (iii) in the definition of 7, above). This
concludes the proof of the lemma.

6. Computational Experiments

As we mentioned in the introduction, due to state space
explosion, the corresponding inventory control models are
very difficult from a computational perspective. Conse-
quently, we study the typical performance of the balancing
policies in two settings. In the first setting, the optimal solu-
tion of the capacitated inventory system is easily computed,
but there is no evolution of forecasts (i.e., demands are
independent over time). This enables us to see how close to
optimal the balancing policy is in at least one setting. The
second experiment is more realistic, in that the demand and
forecast evolution processes are governed by the multiplica-
tive MMFE model. In fact, these are the settings in which
balancing policies are most attractive because optimal poli-
cies are inaccessible and no provably good heuristics or
even reasonable lower bounds are available. As a result, we
benchmark the performance of the balancing policies using
the myopic and the other semimyopic policies developed
in this paper in §5. In these experiments, the balancing
policies were very robust. For the model with independent
demands, the dual-balancing policy came within 11% of
the optimal cost on average, within 17% of optimal in 95%
of the trials, and never exceeded the optimal cost by more
than 25%. Moreover, the balancing policies outperform the
myopic policy by 49% in the first experiment and by 27%
in the second, on average. (In many scenarios, the balanc-
ing policies improve upon myopic by more than 50%.) This
indicates that the typical performance of the balancing poli-
cies is significantly better than the worst-case guarantees.

6.1. Experiments with Translated-Mass
Exponential Demand Distributions

In this experiment, we consider infinite-horizon prob-
lems with i.i.d. demand, i.e., the distribution of (D, |%,)
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Figure 4. Sensitivity of performance to capacity, back-
order costs, and demand variance.
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is independent of both 7, and ¢t. We assume that D,
has a translated-mass exponential distribution, meaning
that P(D, > x) =1 if x < a, and otherwise, P(D, > x)
= ge %097 where 0 < g <1, >0, a>0, and
a-(1—¢q)=0. If g =1, then D, has an exponential dis-
tribution, translated to the right by a units. If ¢ < 1, then
a =0, D, =0 with probability 1 —g, and with probability g,
D, follows an exponential distribution. For every positive
mean and variance, there is a unique translated-mass expo-
nential distribution.

For infinite-horizon problems with translated-mass expo-
nential demand, a stationary order-up-to policy is optimal.
The optimal policy and its cost are easily obtained, using
the following observation: for translated-mass exponential
demand, the lower and upper bounds in Theorem 2 of
Glasserman (1997) coincide.

The demand D, has mean one. We start with a base case,
in which D, has variance one, the capacity is 1.5, and the
backorder cost per day is eight times larger than the hold-
ing cost. Figure 4 illustrates what happens when we fix
two of these parameters and vary the third one. On the
vertical axis we show the ratio of the cost of the balanc-
ing policy to the optimal cost, and the ratio of the myopic
cost to the optimal cost. Note that the scale on the vertical
axis is not uniform. For the solid lines, the horizontal axis
displays the excess capacity (i.e., the capacity minus the
mean demand, or “capacity — 1”’). For the dashed lines, the
horizontal ordinate is the ratio of the backorder cost per
day to the holding cost. For the dotted lines, the horizontal
ordinate is the variance of the demand.
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Figure 5. Histogram of cost, as a fraction of optimal
cost.
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In addition, we randomly generated 1,000 problem
instances, using a mean demand of one. The capac-
ity, the backorder-to-holding-cost ratio, and the standard
deviation of the demand are all randomly generated
from translated beta distributions. For the capacity, the
distribution has minimum, maximum, mean, and stan-
dard deviation equal to (1.05,3.3,1.61,0.32). For the
backorder-to-holding-cost ratio and the standard devi-
ation of the demand, the corresponding values are
(1, 101, 26.00, 14.43) and (0.1,3.6,0.98,0.51). The com-
putations were done using JAVA on a standard PC, and
computing the balancing decision in each period took
0.00015 seconds on average.

Figure 5 shows histograms of the ratio of the balanc-
ing policy’s cost and the optimal cost, and the ratio of the
myopic policy’s cost and the optimal cost. Figure 6 is a
restricted view of Figure 5, with a finer grid, limited to
the neighborhood around one. The ratio of the balancing
policy’s cost to the optimal cost is 1.11 on average, with
a standard deviation of 0.049, a 95th percentile of 1.17,
and a maximum of 1.58. For the myopic, the correspond-
ing ratio has mean 1.60, standard deviation 0.92, 95th per-
centile 3.38, and maximum 8.61. This indicates that the

Figure 6. Detailed histogram of cost, as a fraction of
optimal cost.
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balancing policy is very robust compared to the myopic
policy.

6.2. Experiments with Multiplicative-MMFE-Based
Demand and Forecast Evolution

This test uses the experimental design of Hurley et al.
(2006), in which the uncapacitated version of the balancing
algorithm was tested. In all of our experiments, the holding
and backorder costs are #, =1 and p, = 10. A horizon of
length T =40 was used, and forecasts of demand evolve
according to the multiplicative MMFE model (Graves et al.
1986, Heath and Jackson 1994). The mean demand per
period, averaged over the 40 periods in the time horizon,
is 400 in all cases. The capacity is 460 units per period.

The experimental design consists of 82 scenarios. For
each scenario, we tested 1,000 random problem instances.
The scenarios were designed to capture a variety of set-
tings and characteristics. Demand and forecast variability
can be either high or low, and lead times can be short or
long. Some scenarios study different types of seasonality in
the demand. Others consider product launches and product
phaseouts. Some scenarios account for the fact that many
forecasting systems generate accurate forecasts that extend
many time periods into the future, whereas other systems
can only forecast accurately in the near term. In addition,
shifts in forecasts can demonstrate either no correlation,
positive correlation, or negative correlation. The scenarios
are described in detail in Online Appendix B and in Hurley
et al. (2006).

We study five policies: myopic, lower myopic, upper
myopic, dual-balancing, and improved balancing. For each
of the 82 scenarios constructed and for each policy, we
examine the average per-period cost of the policy over
1,000 runs. Note that because we consider a complex envi-
ronment and relatively long horizon (7 = 40), it is not pos-
sible to compute the optimal expected cost. Moreover, to
the best of our knowledge, it is not even known how to
compute reasonable lower bounds in this setting. Instead,
we use as our benchmark the myopic policy and the other
semimyopic policies discussed in §5. The policies were
computed using MATLAB on a standard PC. The aver-
age times to compute the period ordering decisions were
0.0031, 0.0738, 0.0412 seconds for the myopic, the mini-
mizing, and balancing policies, respectively.

In Figure 7, we provide histograms of the ratio of the
cost of each policy, divided by the cost of myopic. Both
dual-balancing and improved balancing outperform myopic
in every one of the 82 scenarios. Relative to myopic, they
provide an average saving of 27.2% and 32.4%, respec-
tively. Lower myopic is very close to myopic (the ratio is
usually close to one), and is sometimes worse than myopic.
The trend is not unexpected because myopic often under-
orders in capacitated systems, and lower myopic always
orders less than myopic. Upper myopic is virtually identical
to improved dual-balancing, which truncates the balancing

Figure 7. Performance of four policies relative to
myopic under forecast evolution.
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order quantities using the order-up-to levels of upper and
lower myopic.

In all of our computational experiments, the perfor-
mance of the balancing policy is both strong and consistent.
Improved balancing is better than balancing.

7. Electronic Companion

An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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