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Abstract

While Distance Weighted Discrimination (DWD) is an appealing approach to classifica-

tion in high dimensions, it was designed for balanced data sets. In the case of unequal costs,

biased sampling or unbalanced data, there are major improvements available, using appropri-

ately weighted versions of DWD. A major contribution of this paper is the development of

optimal weighting schemes for various nonstandard classification problems. Several alterna-

tive classification criteria and the corresponding weighting choices are discussed. The second

major contribution is substantial asymptotic study of weighted DWD. Let n be the sample

size and d be the dimension of the data. Both high dimension low sample size asymptotics

(d-asymptotics) and Fisher consistency of DWD are studied. The performance of weighted

DWD is evaluated by simulated examples and two real data examples. The theoretical results

are also confirmed by simulations.
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1 Introduction

Support Vector Machine (SVM) (Vapnik 1995; Cristianini et al. 2000; Duda, Hart

and Stork 2001; Schölkopf and Smola 2002) is a powerful tool for classification in

machine learning statistical research. Distance Weighted Discrimination (DWD) is a

more recent classification method specifically designed for high dimension, low sample

size (HDLSS) data settings, where the dimension d is greater than the sample size n.

The main idea behind SVM in the separable case is to find the separating hyperplane

maximizing the total distance between the hyperplane and the closest data point of

each class. Although SVM gives good performance in many real applications, it may

suffer from a loss of generalization ability in HDLSS settings, as noted in Marron et

al. (2007), due to the data-piling property, that is, the support vectors tend to pile up

on top of each other at the boundaries of the margin when projected on the normal

vector of the separating hyperplane. To overcome this data-piling issue, Marron et

al. (2007) proposed DWD, which finds the hyperplane by minimizing the sum of the

reciprocals of ri, the distance from each data point to the hyperplane (min
∑

i r
−1
i ).

The improvement comes from the fact that DWD allows all the data vectors to have

a direct impact on selecting the separating hyperplane, instead of only the support

vectors as done by the SVM.

Although standard DWD (stdDWD) effectively avoids the data-piling problem in

HDLSS settings, it was originally designed for balanced data, i.e., the case where the

sample proportions for the two classes are similar. It has inefficient generalization

ability under nonstandard situations, e.g., unequal costs or biased sampling (Lin, Lee

and Wahba 2002), or when the two populations are seriously unbalanced (Qiao and Liu

2009). In particular, uneven class proportions can lead to a poor classifier which ignores

the minority class. In this paper, we propose Weighted Distance Weighted Discrimina-

tion (wDWD) to incorporate class proportions as well as prior costs to improve upon
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standard DWD. In particular, wDWD uses the new objective function, min
∑

i wir
−1
i ,

where wi is the weight for the ith training data point. Note that weighted DWD is more

flexible than standard DWD by allowing flexible choices of weights. With appropriate

choice of the weighting scheme, better generalization ability of weighted DWD follows

under nonstandard situations. Optimal weighting schemes under different situations

will be developed in Section 2.

Figure 1 shows a two-dimensional simulated example and the classification bound-

aries of the Bayes optimal classifier, wDWD and stdDWD. This example has unbal-

anced class proportions and unequal misclassification costs for the two classes. The

boundary for wDWD is much closer to the Bayes optimal boundary than that of std-

DWD. More details on this simulated example are provided in Section 3.2.
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Figure 1: Two-dimensional unbalanced classification example: Comparison of stdDWD
(dotted line) and wDWD (dashed line). Here the wDWD boundary is much closer to
the Bayes optimal decision boundary (solid line).

Figure 2 shows the classification results for a high-dimensional simulated example

(d = 1000; see more details in the constant signal case in Section 3.1.1). In the

projection plot of all the data points on the stdDWD direction (top row of Figure 2),

the stdDWD boundary (the vertical dashed line) works well for the training set (shown
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as triangles). However, a potential problem is that it is too close to the positive class

(on the right) because of the unbalanced class proportions. The test data (the + and

× signs) in Figure 2 show that stdDWD does not have good generalization ability.

In the bottom row of Figure 2, note that the wDWD boundary provides a dramatic

improvement over stdDWD for the test set.
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Figure 2: High-dimensional simulated example: Projection plots of data points on the
stdDWD (top) and wDWD (bottom) directions. The separating hyperplanes intersect
the wDWD and stdDWD directions at the two dashed vertical lines respectively. These
plots show much better performance of wDWD in this HDLSS setting.

We develop asymptotic properties of the wDWD classifier in HDLSS settings in

Section 4.1. Ge and Simpson (1998) analyzed the high-dimensional asymptotics of

some classifiers. HDLSS data have a special structure which gives insight into the

classification problem. Hall et al. (2005) showed that under certain conditions, there

exists a geometric representation of HDLSS data, which implies that the pairwise

distances between the n+ (n− resp.) data points from the same class “+1” (“−1” resp.)

are approximately constant as d → ∞ with n+ (n− resp.) fixed. As a consequence,

each sample from one class (of size n+ or n−) can be viewed as an regular (n+ − 1)

((n− − 1) resp.)-simplex. The results in Hall et al. (2005) assume the entries of each
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data vector to be nearly independent, in the sense that when they are viewed as a time

series with the time index d, these entries must satisfy a ρ-mixing condition. Ahn et al.

(2007) extended their work by showing that the conditions can be relaxed to asymptotic

properties of the sample covariance matrix and its eigenvalues. However, a counter-

example due to John Kent (discussed in Section 4.1.1) suggests that an additional

Gaussian assumption is needed. A much broader set of assumptions for geometric

representation has been developed in Jung and Marron (2008). In this article, our

theory makes use of this broader framework.

To study asymptotic properties of wDWD, we develop a geometric representation

for two data samples from two classes as in Hall et al. (2005) but under milder assump-

tions. Using the framework built in Section 4.1.2, we study the asymptotic properties

of two aspects of wDWD as d → ∞ with the sample size n fixed. Both properties follow

from the geometric representation described above. First, we study the classification

error of wDWD. Second, we explore the relationship between the wDWD direction

and the optimal linear classification direction. Both aspects are driven by appropri-

ate notions of signal to noise ratios, defined in terms of class means and within-class

variances. These properties are verified by simulations in Section 4.2.

As another theoretical contribution, we prove Fisher consistency for wDWD in

Section 4.3 through an equivalent formulation of the optimization problem for wDWD.

The rest of this article is organized as follows. We propose weighted DWD in

Section 2, focusing on optimal weighting schemes under different scenarios. Numerical

studies are given in Section 3 based on simulated and real data examples. In Section

4.1, we provide the geometric representation of two HDLSS data samples from two

classes and study the HDLSS asymptotic properties of wDWD, followed by a simulation

confirmation in Section 4.2. Fisher consistency of weighted DWD is provided in Section

4.3. Some concluding remarks are given in Section 5. Proofs of the theoretical results

are included in the Appendix.
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2 Weighted DWD

2.1 General Classification Problems

Consider the problem of classifying subjects associated with the covariate vector

X ∈ X ⊆ R
d (d predictors) into one of two classes with the class label Y ∈ {±1}.

Assume the target population has an unknown probability distribution P (X, Y ), and

the examples are independently generated from P (X, Y ). Let the marginal class proba-

bilities of the populations be π+ = Pr(Y = +1) and π− = Pr(Y = −1), and g+(x) and

g−(x) the conditional densities of X given Y = +1 and Y = −1 respectively. Then the

conditional (posterior) probability of a subject belonging to Class “+1” given X = x

is

p(x) = Pr(Y = +1|X = x) =
π+g+(x)

π+g+(x) + π−g−(x)
. (1)

A linear classifier φ(x) can be obtained from φ(x) = sign(f(x)), where f(xi) = fi =

x′
iω + b. The data vector with covariate xi is classified to Class “+1” if sign(fi) = +1

and Class “−1” otherwise.

2.2 Formulation for Weighted DWD

Suppose the classification boundary is represented as a separating hyperplane,

x′ω + b = 0. The standard DWD proposed in Marron et al. (2007) seeks to find

a separating hyperplane minimizing a notion of inverse distance between each point

and the hyperplane (details below). As mentioned in Section 1, standard DWD has

some limitations for unbalanced data. For example, in Figure 1, the stdDWD clas-

sification boundary is pushed away from the Bayes boundary, mainly caused by the

dramatic difference between two class proportions. Our proposed weighted DWD aims

to address this problem by allowing flexible weights for data points from different

classes. In particular, wDWD solves (ω, b) via the following optimization problem,

min
ω,b,ξ

n∑

i=1

W (yi)
( 1

ri
+ Cξi

)

, (2)
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s.t. ri = yi(x
′
iω + b) + ξi, ω′ω ≤ 1, ri ≥ 0, ξi ≥ 0 for i = 1, 2, · · · , n. (3)

Here we assign different weights to data vectors from different classes. Note that the

solution to (2) is totally determined by the ratio of W (+1) and W (−1), instead of the

exact values of the two weights. The standard DWD is a special case of the weighted

DWD with equal weights, W (+1) = W (−1).

To have a better understanding of (2), we first consider a simple separable setting

with a choice of C where all ξi’s are 0. Then wDWD minimizes the total weighted

inverse distances of all points to the decision boundary. When the perfect separation

is not possible, (2) allows violation with amount ξi for training data point i.

The constant parameter C in (2) controls the penalty on the variable ξi, the amount

of violation of classification. Note that C plays the similar role as the tuning parameter

in the SVM (see eq. (54) in Chen et al. 2005; also see Vapnik 1995, Schölkopf and

Smola 2002). This optimization problem in (2) can be reformulated as a second-order

cone programming (SOCP) problem (Alizadeh and Goldfarb 2003), as shown in Marron

et al. (2007).

Define W (−1)I[y = −1]I[φ(x) = +1] + W (+1)I[y = +1]I[φ(x) = −1] as the

weighted 0-1 loss function corresponding to problem (2). The Bayes optimal decision

rule for this weighted 0-1 loss is

φ∗(x) = sign
[
p(x) − W (−1)

W (−1) + W (+1)

]
. (4)

More details will be provided in Section 4.3.

2.3 Optimal Weighting Schemes

In this section, we discuss two nonstandard classification situations which are com-

monly encountered in practice, and study the choices of optimal weights for each situa-

tion. We consider the situation of unequal costs in Section 2.3.1 and the biased sampling

situation in Section 2.3.2. An alternative classification criterion, Mean Within Group

Error (MWGE), is also discussed.
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2.3.1 Unequal Costs

For some real applications, it is more proper to use different costs for different

types of misclassification, say, classifying a “+1” subject as “−1” represents a more

serious error than classifying a “−1” subject as “+1”. For example, failing to diagnose

a potentially fatal illness may be viewed as substantially more costly than concluding

that the disease is present when it is not. We use c+ for the false-positive cost and c−

for the false-negative cost. Table 1 shows these costs.

Classify as
+1 −1

True population:
+1 0 c−

−1 c+ 0

Table 1: Unequal costs for different types of misclassification.

Using the Overall Misclassification criterion (OM), for any classifier φ, where either

φ(x) = +1 or φ(x) = −1, its loss function for classifying a pair (x, y) is defined as

L[φ] = c+I[y = −1]I[φ(x) = +1] + c−I[y = +1]I[φ(x) = −1]. Given x, the risk,

i.e., the expected loss of φ given X = x, is E[L(φ)|X = x] = c+[1 − p(x)]I[φ(x) =

+1] + c−p(x)I[φ(x) = −1]. The Bayes optimal decision rule φ∗ for this loss function

minimizes the risk and is given by

φ∗(x) =







+1 if
p(x)

1 − p(x)
>

c+

c−

−1 if
p(x)

1 − p(x)
<

c+

c−
,

or φ∗(x) = sign[p(x) − c+

c+ + c−
]. (5)

Comparing this to (4), by defining W (+1) = c− and W (−1) = c+, we have the two

Bayes rules identical with each other.

Our discussions so far assume the classic Overall Misclassification rate criterion

(OM). This criterion has some limitations. For example, if the two classes are ex-

tremely unbalanced, a naive classifier, which classifies all the data vectors to the ma-

jority class, can still be regarded as a good one by this criterion. Alternatively, one

can use the Mean Within Group Error (MWGE) criterion (Qiao and Liu 2009). This

criterion considers the average of the within-class errors. Under MWGE, the modified
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0-1 loss function becomes c+

π−
I[y = −1]I[φ(x) = +1] + c−

π+ I[y = +1]I[φ(x) = −1]. The

corresponding Bayes rule φ∗ is given by φ∗(x) = sign[p(x)− c+/π−

c+/π−+c−/π+ ], which implies

that the choice of the weighting scheme under MWGE is W (+1) = c−

π+ , W (−1) = c+

π−
.

Discussion on several other alternative criteria will be given in Section 2.4.

2.3.2 Biased Sampling

In some real situations, the proportions in the sample may not reflect those in the

target population due to sampling bias. For example, if the two classes have very

different proportions in the population, the smaller class may be over-sampled, while

the larger class may be under-sampled in order to achieve more balance in the sample.

Because we build the classification model on the sample while we predict a future data

vector from the population, the discrepancy of the class proportion ratios between the

sample and the population could lead to a problematic classifier. Lin, Lee and Wahba

(2002) discussed nonstandard situations for the SVM.

Proportions +1 class −1 class
in population π+ π−

in sample π+
s π−

s

Table 2: Proportions in the target population and the sample.

Assume the proportions are labeled as in Table 2. Let (Xs, Ys) be a random pair

that has the same distribution as the sample. Note that the conditional densities g+
s

and g−
s are the same as g+ and g−. Then the conditional probability of a case from

the sample belonging to the +1 class given that Xs = x is

ps(x) = Pr(Ys = +1|Xs = x) =
π+

s g+
s (xs)

π+
s g+

s (xs) + π−
s g−

s (xs)
=

π+
s g+(x)

π+
s g+(x) + π−

s g−(x)
. (6)

Comparing (1) and (6), the relationship of the odds ratio of p(x) from the population

and that of ps(x) from the sample is
p(x)

1 − p(x)
=

π+g+(x)

π−g−(x)
=

π+
s g+(x)

π−
s g−(x)

π+π−
s

π−π+
s

=
ps(x)

1 − ps(x)

π+π−
s

π−π+
s

.

8



Then the Bayes rule in (5) can be expressed in terms of ps(x) as

φ∗(x) =







+1 if
ps(x)

1 − ps(x)
>

c+π+
s π−

c−π−
s π+

−1 if
ps(x)

1 − ps(x)
<

c+π+
s π−

c−π−
s π+

,

or φ∗(x) = sign[ps(x) − c+π−/π−
s

c+π−/π−
s + c−π+/π+

s

].

Note that because the calculation of a classifier is based on the sample, instead of

the population, when biased sampling exists, ps(x) should be used in the classification

rule φ(x) whereas p(x) in (5) is not useful, since p(x) 6= ps(x). Again, using the

formulation in (4), we can see that the choice of weights becomes W (+1) = c−π+

π+
s

and

W (−1) = c+π−

π−

s
.

Now we consider the situation where the MWGE criterion is used. The Bayes rule

φ∗ under MWGE is then given by

φ∗(x) =







+1 if
ps(x)

1 − ps(x)
>

c+π+
s

c−π−
s

−1 if
ps(x)

1 − ps(x)
<

c+π+
s

c−π−
s

.

Accordingly, we can define the weights W (+1) = c−

π+
s
, W (−1) = c+

π−

s
.

In summary, the optimal weighting scheme is displayed in Table 3.

Criterion OM MWGE

W (+1) c−π+

π+
s

c−

π+
s

W (−1) c+π−

π−

s

c+

π−

s

Table 3: Optimal weighting schemes under two criteria.

2.3.3 Parameter Tuning for wDWD

Marron et al. (2007) discussed the choice of C and suggested that C should be a

large constant (for example 100 in their work) divided by a notion of typical squared

distance of the training points (for example squared median of the pairwise interclass

Euclidean distances). The usage of typical squared distance will result in a choice of C

that is essentially “scale-invariant”. From the simulation results in Section 3.1, where

we tune for the best parameter C using a grid search on the tuning set, we find that

the tuned C values are reasonable close to their suggestion.

It is worth noting that careful tuning needs to be done for DWD when the data
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are unbalanced and the signal (denoted by the distance between the two population

means) is small. In particular, a small C should be avoided. For unbalanced data, a

small value of C tends to yield undesired results for stdDWD, with most data vectors

classified into the majority class. This is because DWD optimization avoids large values

of reciprocal distances 1/ri by sacrificing the data from the minority class. Thus C

needs to be large enough to increase the misclassification cost. Weighted DWD, on the

other hand, alleviates this problem in tuning since the adverse effect of the unbalanced

proportion ratio on standard DWD can be greatly reduced if the weighting scheme is

appropriately chosen.

2.4 Alternative Criteria and Adaptive Weighting

In Section 2.3, we introduced the optimal weighting schemes under the OM and

MWGE criteria (Table 3). Recall that the OM criterion aims to minimize the OM cost.

Qiao and Liu (2009) pointed out that this criterion may result in a high error for the

minority class when the proportions are unbalanced. In addition to MWGE, they intro-

duced Mean Square Within Group Error (MSWGE). In this paper, we also consider the

criterion of Maximal Within Group Error (MaxWGE). Let ej = E[I(φ(X) 6= j)|Y = j]

be the conditional error for class j. We reformulate the minimization of these criteria

equivalently as follows:

(i) OM: arg minφ π+e+ + π−e−;

(ii) the alternatives:

arg min
φ

(ep
+ + ep

−)
1

p =







arg minφ
1
2
(e+ + e−) (MWGE), if p = 1,

arg minφ

√
1
2
(e2

+ + e2
−) (MSWGE), if p = 2,

arg minφ max(e+, e−) (MaxWGE), if p = ∞.

(7)

The alternative criteria focus on |e|p, the Lp norm of the within-class error vector

e = [e+, e−]T . An important feature of MWGE, MSWGE and MaxWGE is that they

do not require knowledge of, or even specification of, the prior proportions π+ and π−.

10



Thus, these criteria overcome the severe limitations of OM in the unbalanced case. The

three alternative criteria provide different summaries of the error. The MWGE (L1)

criterion tends to minimize the mean of the within-class errors while the MSWGE

(L2) criterion minimize the mean and variation at the same time. The MaxWGE

(L∞) criterion controls the worse class error. Choice among these will depend on the

statistical context at hand.

To demonstrate these different criteria, we consider a one-dimensional toy example

with two classes, the density curves of which are two triangles as shown in Figure 3.

Note that the OM Bayes rule is sensitive to the change of the class proportions and is

not desirable when the class proportions are unknown. On the other hand, the Bayes

rules for the alternative criteria do not change with proportions. Different alternative

criteria provide different Bayes cut-off points in this example.
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Figure 3: One-dimensional density curves for two populations and the Bayes rules for
OM (dotted), MWGE (dashed), MSWGE (solid) and MaxWGE (dot-dashed) criteria
when the population proportion ratio is 5:1, 3:1, 1:1, 1:3 or 1:5. Shows OM is very
sensitive to class proportions, and compares the three alternative criteria.

Qiao and Liu (2009) showed that there exist closed forms for the OM and MWGE

Bayes rules, which lead to the optimal DWD weighting schemes introduced in Section
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2.3. However, the Bayes rules under the other alternative criteria do not seem to

have simple closed forms. Therefore, in order to achieve better results based on the

alternative criteria, we propose a two-step procedure to adaptively choose the weights

using the sample within-class errors. The proposed adaptive procedure is implemented

as follows:

(i) Train wDWD with the MWEG optimal weights (Table 3), W (±1). Calculate

the within-class errors ê+ and ê− for the combined dataset including both training and

tuning sets.

(ii) Update weights for class j as W (j) · exp(êj), for j ∈ {+,−}, and calculate

wDWD using the new weights. We call the resulting classifier the adaptive weighted

DWD (awDWD).

The adaptive weighting adjustment at the second step gives a bigger weight to the

class with larger error. We will show in Section 3.1.2 that awDWD can provide addi-

tional improvement over wDWD.

3 Numerical Study

In this section, we compare wDWD with stdDWD and several other classification

methods, based on two simulation studies (two high-dimensional examples (indepen-

dent predictors and correlated predictors) in Section 3.1 and a low-dimensional example

in Section 3.2) and two real data examples (Section 3.3).

We consider L1 SVM (Fung et al. 2004), weighted SVM (wSVM), standard SVM

(stdSVM), the L1 penalized logistic regression (L1 Logit; Lokhorst 1999, Shevade and

Keerthi 2003) and the L2 penalized logistic regression (L2 Logit; Lee and Silvapulle

1988, Le Cessie and Van Houwelingen 1992). L1 SVM and L1 Logit use the L1 penalty

for variable selection. Weighted SVM is the weighted version of standard SVM, where

we use the same weighting scheme as that of weighted DWD. In Section 3.1.1, we

also implement awDWD to show its performance. For comparison purpose, we apply
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the same adaptive weights for wSVM, namely awSVM. As a remark, we note that the

results for the L1 and L2 Logit are not available for some examples due to numerical

difficulties.

3.1 Simulation: High-dimensional Example

Let the dimension d = 1000, and the sample size of the training data n = 200.

Assume that the data are balanced with π+ = π− = 50% and equal costs c− = c+, but

with a biased sampling, π+
s = 20% and π−

s = 80%. For simplicity, we denote w+ and

w− as the two weights W (+1) and W (−1). The weights for this data set are w+ = 2.5,

and w− = 0.625. Note that because π+ = π−, the two weighting schemes given by

Table 3 and the two Bayes rules for the two criteria (OM and MWGE) are the same.

3.1.1 Independent Predictors

We consider three settings of high-dimensional simulated data, namely constant sig-

nal, proportional signal and sparse signal. In the constant signal setting, the variable-

wise mean differences are equal for all 1000 variables, while in the sparse signal setting,

only the first 10 variables have nonzero mean differences. One intermediate setting is

the proportional signal where the squared mean difference for each variable is propor-

tional to the variable index ({1, . . . 1000}). The data vectors from the positive class fol-

low d-dimensional normal distributions Nd(u11d, 0.752Id), Nd(u2(1, 2, . . . , d)T , 0.752Id)

and Nd(u3(1
T
10, 0, . . . , 0)T , 0.752Id) corresponding to the three settings, where 1k =

[1, 1, · · · , 1]T is the k-dimensional vector of 1’s. The negative data vectors are gen-

erated in a similar manner except with negative means −u11d, −u2(1, 2, . . . , d)T and

−u3(1
T
10, 0, . . . , 0)T in the normal distributions. The positive constants u1, u2 and u3

are chosen so that the Euclidean distances of the two population means for the three

settings are all equal to 3. For tuning and testing purposes, we generate a tuning set

with size 200 and a test set with size 600. We replicate this simulation 100 times.

From Table 4, we first compare the non-adaptive methods for the three settings.
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Type Constant Proportional Sparse
Criteria OM/MWGE MSWGE MaxWGE OM/MWGE MSWGE MaxWGE OM/MWGE MSWGE MaxWGE
Bayes 2.07(0.18) 2.12(0.17) 2.43(0.15) 2.38(0.25) 2.45(0.25) 2.83(0.3) 1.93(0.24) 1.96(0.24) 2.2(0.25)

wDWD 13.52(0.89) 14.96(1.46) 19.23(2.36) 17.62(3.76) 21.7(5.78) 29(8.49) 16.42(1.04) 20.62(1.77) 28.57(2.72)
awDWD 12.57(0.57) 13.04(0.71) 15.2(1.31) 13.7(0.93) 15.04(1.52) 19.23(2.43) 13.38(0.4) 14(0.49) 16.73(0.97)
stdDWD 45.8(0.46) 64.72(0.69) 91.53(0.97) 46.05(0.34) 65.1(0.48) 92.07(0.68) 45.1(0.42) 63.78(0.59) 90.2(0.84)
L1 SVM 35.07(0.9) 35.4(0.9) 39.37(1.09) 32.72(0.93) 38.57(1.77) 52.37(3.03) 7.38(0.31) 9.08(0.36) 12.63(0.5)
wSVM 22.62(0.95) 30.93(1.5) 43.7(2.13) 24.55(1.59) 33.41(2.45) 47.17(3.5) 19.63(1.38) 25.66(2.14) 36(3.12)
awSVM 16.82(0.95) 21.44(1.54) 29.93(2.3) 17.25(0.91) 22.16(1.53) 31.03(2.25) 15.15(0.74) 17.8(1.23) 24.2(1.94)
stdSVM 29.3(0.51) 41.11(0.74) 58.13(1.04) 30.22(0.73) 42.15(1.07) 59.6(1.51) 30.42(0.77) 42.25(1.16) 59.73(1.64)

Table 4: Summary statistics of the simulation results for the three simulation settings:
Averaged OM/MWGE, MSWGE, and MaxWGE (in percentage) over 100 runs. The
numbers reported in the parentheses are the standard error.

In each setting, wDWD works much better than stdDWD. In addition, wDWD works

better than all the other non-adaptive methods in the constant signal and proportional

signal settings. For the sparse signal case, both L1 SVM and L1 Logit are better than

wDWD. This is expected since our current wDWD does not attempt to handle sparsity

by variable selection. A potential approach to improving wDWD for the sparse signal

setting is to design a classification algorithm combining wDWD and some sparse penalty

such as the L1 (Tibshirani 1996) or SCAD (Fan and Li 2001) penalty to implement

variable selection.

Table 4 also indicates that adaptive weighted DWD introduced in Section 2.4 works

very well. In all three signal settings, awDWD dominates all the other methods except

L1 SVM in the sparse setting. It seems that the advantage of awDWD comes from

the fact that it prevents wDWD from overweighting by incorporating both class propor-

tions and within-class performance in the weights. Moreover, both adaptive weighting

methods (awDWD and awSVM) provide further improvement on wDWD and wSVM

in these examples, in terms of the MSWGE and MaxWGE criteria, in addition to the

MWGE criterion.

We note that for the non-adaptive weighting methods, even though their OM error

or MWGE seem to be fine, their MSWGE and MaxWGE are not satisfactory (e.g.,

wDWD for proportional signal has MaxWGE of 29%). Adaptive weighting methods

usually lead to lower MSWGE and MaxWGE as shown in Table 4.
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Figure 4: Projection plots of all the data vectors to the two-dimensional space spanned
by the Bayes optimal classification direction (Bayes drn) and the wDWD direction (in
the left panels) or the L1 SVM direction (in the right panels) for simulated data from
the constant signal setting (the first row) and the sparse signal setting (the second
row).

Among these different methods, L1 SVM is the one that performs much better than

wDWD under the sparse signal setting. To further compare them, we consider their

classification directions. Figure 4 contains four projection plots which study the angles

between the optimal linear classification direction and the classification direction from

wDWD (in the left panel) or from L1 SVM (in the right panel) for the constant signal

setting (in the first row) or the sparse signal setting (in the second row). We can

see that the angles for wDWD are comparable between the two settings, whereas the

angles for L1 SVM are larger than those for wDWD in the constant signal setting but

smaller in the sparse signal setting. These angles help to explain the difference between

classification performances of these two methods. Note that there is severe data-piling

for L1 SVM, as shown in the right column of Figure 4.
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3.1.2 Correlated Predictors

We modify the high-dimensional example in Section 3.1.1 by adding correlations

among the predictors. Instead of assuming i.i.d. Gaussian noise, we let the noise

term be an autoregressive process of order 1 (AR(1)) with marginal variance 0.752.

We use several choices of the autocorrelation parameter, ρ =0.05, 0.35, 0.65 and 0.95.

Before adding the three types of variablewise mean difference (which was chosen for

each case to give good separation between the classifiers, while conveying the challenge

of highly correlated errors), we permute the order of the variables to break down the

AR structure. We plot the OM test errors in Figure 5.
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Figure 5: Simulation results of wDWD (solid), stdDWD (wide-dotted), wSVM
(dashed), stdSVM (dotted) and L1 SVM (dot-dashed) for three 1000-dimensional set-
tings (constant, proportional and sparse signals) with AR(1) noise where ρ =0.05, 0.35,
0.65 and 0.95.

For all three signal settings, wDWD works the best when ρ = 0.05 and 0.35 except

for L1 SVM in the sparse setting. For larger ρ, such as 0.65 and 0.95, wDWD and

wSVM are comparable. In the sparse setting, L1 SVM is the best as expected. An

important point is that wDWD is less efficient in the highly correlated case, which was

also noted by Ahn and Marron (2009).

In these studies, we choose the tuning parameter C based on a search grid of
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10{−4,−3.5,...3.5,4}. In all the three settings, we observe that our tuning parameter search

procedure tends to choose 10−1.5 for weighted DWD, while the recommendation of C

by Marron et al. (2007) turns out to be about 10−1.05. Based on our limited experience,

their recommendation appears to work reasonably well.

3.2 Simulation: Low-dimensional Example

In this section, we consider a two-dimensional simulated example. The underlying

population has unbalanced class proportions with π+ = 10% and π− = 90%. The

sampling distribution is based on 400 observations with proportions π+
s = 40% and

π−
s = 60%. For the purpose of tuning, we randomly divide each dataset into two

halves: one for training and the other for tuning. Thus we have n+ = 80, n− = 120

for each set. As in Section 3.1, we choose the tuning parameter by a grid search.

Suppose that the data vectors from the positive class follow a bivariate normal

distribution N2((0, 0)T , I2), whereas the negative class is N2((1.5, 1.5)T , I2). The size

of the test dataset is 600 (n+ = 60, n− = 540). Furthermore, we set the cost of a

false negative classification to be twice of the cost of a false positive one, i.e., c− =

2c+. We replicate this simulation 100 times. Due to the extreme unbalanced class

proportion ratio (1:9), we choose to use the MWGE criterion (Qiao and Liu 2009) and

the weighting scheme under the MWGE given by Table 3. Here the Bayes rule φ∗ is

sign[1.5 + 1
3
log 2 − x1 − x2].

Training Data Test Data
Classifier False negative False positive False negative False positive MWG cost

(%) c− = 2 c+ = 1 c− = 2 c+ = 1
Bayes 11.29(0.34) 17.87(0.378) 11.73(0.438) 18.71(0.186) 21.00(0.449)

wDWD 7.2(0.218) 24.95(0.558) 7.92(0.417) 26.49(0.485) 21.16(0.388)
stdDWD 18.95(0.401) 9.78(0.242) 20.87(0.580) 10.61(0.203) 26.17(0.543)
wSVM 6.99(0.239) 25.14(0.530) 7.68(0.403) 26.69(0.428) 21.03(0.387)
stdSVM 18.65(0.445) 10.11(0.249) 20.65(0.562) 10.81(0.239) 26.05(0.523)

Table 5: Training and test error for the low-dimensional simulation: mean misclassi-
fication rates for each class and the Mean Within Group cost (MWG cost), on both
training and test data, over 100 replications. The numbers in the parentheses are
standard error.
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The results of the simulation are reported in Table 5. Both weighted algorithms

(wDWD and wSVM) are better than their standard counterparts. However, in contrast

to the better performance of wDWD in high-dimensional settings, here wDWD and

wSVM perform similarly. We have shown an illustrating plot in Figure 1 (Section 1),

where the wDWD boundary is much closer to the Bayes boundary than that of the

stdDWD.

3.3 Real Data Examples

In this section we demonstrate the improved performance from weighting DWD on

two data examples, the Human Lung Carcinomas Micro-arrays Dataset (Lung can-

cer data) (Bhattacharjee et al. 2001; http://www.broad.mit.edu/mpr/lung/) and the

Gisette data (http://www.nipsfsc.ecs.soton.ac.uk/).

The Lung cancer data set has six classes: adenocarcinoma, squamous, pulmonary

carcinoid, colon, normal and small cell carcinoma, with sample sizes of 128, 21, 20,

13, 17 and 6 respectively. Liu et al. (2008) used this data as a test set to demonstrate

their proposed significance analysis of clustering. We combine the last four and the

first two subclasses to form the positive and negative classes respectively. We randomly

split the data into training (n+ = 100 and n− = 40) and test (49+16) sets.

The context of the Gisette dataset is a handwritten digit recognition problem to sepa-

rate the highly confusable digits ‘4’ and ‘9’. The original dataset has 6000 (3000+3000)

cases in the training set and 1000 (500+500) in a separate test set. We randomly choose

600 and 200 cases for each class from the original training set, and equally split them

to form the new training and tuning set. There are 5000 predictors in all, where 2500

predictors have true predictive power and the rest of them are deliberately irrelevant.

For the choice of the tuning parameter C, we use 5-fold cross validation for the Lung

cancer data and use the tuning set for the Gisette data. For computational simplicity,

we use the MWGE weighting scheme in Table 3.
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Lung cancer data Gisette data
OM MWGE MSWGE MaxWGE OM/MWGE MSWGE MaxWGE

wDWD 5.11(0.25) 4.88(0.28) 5.66(0.29) 7.26(0.38) 11.48(0.45) 12.86(0.53) 17(0.88)
stdDWD 7.49(0.26) 10.93(0.43) 13.21(0.57) 18.03(0.83) 15.54(0.5) 20.16(0.76) 28.36(1.09)
L1 SVM 7.88(0.25) 9.43(0.39) 10.68(0.46) 13.87(0.66) 12.74(0.66) 14.37(0.74) 19.3(1.04)
wSVM 4.91(0.25) 5(0.29) 5.75(0.3) 7.4(0.39) 11.49(0.44) 13.03(0.66) 17.32(1.15)
stdSVM 6.03(0.25) 7.64(0.41) 8.94(0.51) 11.78(0.72) 14.12(0.69) 17.22(1.02) 23.92(1.49)

Table 6: Summary statistics of the classification errors in the Lung cancer data and the
Gisette data: Mean classification errors (OM, MWGE, MSWGE, and MaxWGE) for
the test sets over 100 random splitting of training and test sets. The numbers reported
in the parentheses are the standard error.

We run the random splitting 100 times and report the mean of the errors for the

test data, and the associated standard error, in Table 6. For both data, weighted DWD

appears to be better than stdDWD, L1 SVM, stdSVM, and L1 Logit for all types of

criteria. For the Lung cancer data, the weighted DWD works better than wSVM for

the MWGE, MSWGE and MaxWGE, although not for the OM error. For the Gisette

data, the weighted DWD works slightly better than weighted SVM for all criteria.

4 Theoretical Results

In this section, we study several theoretical aspects of wDWD. HDLSS asymptotics

are discussed in Section 4.1, followed by simulation validation in Section 4.2. Fisher

consistency for wDWD is discussed in Section 4.3.

4.1 HDLSS Asymptotics for Weighted DWD

In this section, we explore the HDLSS asymptotics of wDWD. We will first improve

the theory of Ahn et al. (2007) using a much broader set of assumptions. In addition,

we geometrically represent two data samples under the new assumption.

4.1.1 Geometric Representations for One Sample under Mild Conditions

First consider the positive class X+(d) = {x+
1 (d),x+

2 (d), . . . ,x+
n+(d)} with n+ data

vectors and d variables. We have a d × n+ data matrix X+
d = [x+

1 ,x+
2 , · · · ,x+

n+ ] with

d > n+, where x+
j = (x+

1j , x
+
2j , · · · , x+

dj)
T ∈ R

d, j = 1, 2, · · · , n+, are independent and

identically distributed from a d-dimensional multivariate distribution with positive def-
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inite covariance matrix Σ+
d . Without loss of generality, we assume that each x+

j has

zero mean. Denote the d×d sample covariance matrix of X+
d as S+

d = n−1
+ X+

d X+
d

T
. The

eigenvalue decomposition of Σ+
d is Σ+

d = V +
d Λ+

d V +
d

T
, where Λ+

d = diag{λ+
1 , · · · , λ+

d } is

the diagonal matrix of eigenvalues. Furthermore, we define the average of the eigenval-

ues σ2
d = 1

d
Σd

i=1λ
+
i,d. We can write X+

d = V +
d Λ+

d
1/2

Z+
d , where Z+

d = Λ+
d
−1/2

V +
d

T
X+

d is a

d×n+ random data matrix from a distribution with zero mean and identity covariance

matrix. The n+ × n+ dual sample covariance matrix is defined as S+
D,d = d−1X+

d
T
X+

d ,

reversing the roles of rows and columns in the data matrix. Denote the n+×n+ matrix

W+
i,d as (Z+

i,d)
T Z+

i,d, where Z+
i,d, i = 1, 2, · · · , d, are the row vectors of Z+

d . It was noted

in Ahn et al. (2007) that dS+
D,d has a simple Wishart representation,

dS+
D,d =

d∑

i=1

λ+
i,dW

+
i,d. (8)

Note that if X+
d is Gaussian, then each W+

i,d follows the Wishart distribution Wn+(1, In+)

independently.

Assumption 1. For a fixed n+, consider a sequence of random data matrices X+
1 , · · · ,X+

d , · · · ,
indexed by the number of rows d. Assume each X+

d comes from a multivariate distri-

bution with dimension d. Let λ+
1,d ≥ · · · ≥ λ+

d,d be the eigenvalues of the covariance

matrix Σ+
d , and let S+

D,d be the corresponding n+ × n+ dual sample covariance matrix.

We assume the following,

(i) Each column of X+
d has zero mean and positive definite covariance matrix Σ+

d .

(ii) The fourth moment of each entry of each column is uniformly bounded by M+ > 0

and also the representation in (8) holds for each X+
d .

(iii) Entries of Z+
d = Σ

− 1

2

d X+
d = Λ+

d
− 1

2 V +
d

T
X+

d (as defined above) are independent.

(iv) The eigenvalues of Σ+
d are sufficiently diffused, in the sense that

ǫ+
d =

Σd
i=1(λ

+
i,d)

2

(Σd
i=1λ

+
i,d)

2
→ 0 as d → ∞. (9)

(v) The sum of the eigenvalues of Σ+
d is the same order as d, in the sense that

σ2
d = O(1) and 1/σ2

d = O(1).
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Condition (9) can be viewed as a measure of the sphericity of the data matrix.

This restricts the underlying distribution to be not too close to the extreme case of

a few dominant eigenvalues. The spherical Gaussian is an example which has perfect

sphericity, i.e., ǫd = 1
d
. As mentioned in Ahn et al. (2007), the ρ-mixing condition in

Hall et al. (2005) is also a special case that satisfies Assumption 1.

One main result of Ahn et al. (2007) is that under their weaker version of As-

sumption 1 (in particular, condition (iii) did not appear there), the sample eigenvalues

behave as if they follow an identity covariance matrix, in the sense that 1
σ2 SD,d → In,

as d → ∞. Based on this theory they claim that the pairwise squared distance between

the data vectors from X+(d), rescaled by 1
d
, is approximately constant. However, John

Kent pointed out that an additional assumption is needed, using a counter-example.

Kent’s example is a mixture of normals, which is Nd(0, Id) with probability 1/2 and

Nd(0, 10Id) also with probability 1/2. This example satisfies conditions (i), (ii), (iv) and

(iv). But the pairwise distances have a non-degenerate discrete limiting distribution.

The theory in Ahn et al. (2007) goes through if additional assumptions are added.

A simple strengthening is to assume Gaussianity. Our (iii) is weaker than Gaussianity,

assuming only a set of underlying independent entries, Z+
d . We restate the theorem as

follows.

Theorem 1. Under Assumption 1, the dual sample covariance matrix, rescaled by σ2
d,

becomes approximately the identity matrix In, as d → ∞.
1

σ2
d

SD,d → In in probability, as d → ∞.

A direct consequence of Theorem 1 is that the pairwise squared distance rescaled

by d−1 is approximately constant as d → ∞.

Corollary 2. Under Assumption 1, the pairwise distances between the n+ data vec-

tors are approximately the same. In particular, scaled by 1/dσ2
d, the squared distance
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satisfies
1

dσ2
d

‖x+
k − x+

l ‖2 → 2, in probability, as d → ∞.

Thus these n+ data vectors form a regular (n+ − 1)-simplex in R
d.

4.1.2 Geometric Representations for Two Samples

The n−-point sample X−(d) = {x−
1 (d),x−

2 (d), . . . ,x−
n−(d)} is defined similarly to

X+(d). In particular, the average of the eigenvalues is defined as τ 2
d = 1

d
Σd

i=1λ
−
i,d.

When the eigenvalues for the negative class data matrix are sufficiently diffused, i.e.,

ǫ−d =
Σd

i=1
(λ−

i,d
)2

(Σd
i=1

λ−

i,d
)2

→ 0 as d → ∞, in the same manner, the pairwise squared distances

between the n− data vectors are approximately the same,
1

dτ 2
d

‖x−
k − x−

l ‖2 → 2, as d → ∞. (10)

Now we generalize the two classes to allow different means. We assume that the

squared distance between the population means, rescaled by 1/d, is a constant µ2,
1

d
‖E(x+) − E(x−)‖2 → µ2. (11)

For convenience, we assume that the limiting average eigenvalues exist,

σ2
d → σ2 and τ 2

d → τ 2 as d → ∞. (12)

Theorem 3. Assume two independent data samples X+(d) and X−(d) satisfy Assump-

tion 1, (11) and (12). Then the squared distance between a data vector in X+(d) and

a data vector in X−(d), divided by d, converges in probability to l2 := σ2 + τ 2 +µ2, i.e.,

Pr[|1
d
‖x+

k − x−
l ‖2 − l2| ≥ ε] → 0, as d → ∞, for any ε > 0.

Theorem 3 says that, if both samples satisfy Assumption 1, then the pairwise

rescaled distance between all pairs of data vectors from the two samples is approxi-

mately constant. Theorem 3 gives the interclass distances in the d-limit, while Corollary

2 and (10) give the intraclass distances. From these results, one can organize the linear

discrimination possibilities as follows.

1. If µ2 is so large that σ2+τ 2+µ2 is significantly greater than 2σ2 and 2τ 2, then the

two simplices are far from each other, and thus as discussed in Section 4.1.3 and Section
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4.1.4, there is a natural separating hyperplane, that will give good classification, i.e.,

good generalization ability.

2. If µ2 is so small that σ2 + τ 2 + µ2 < 2 max(σ2, τ 2), then it is much harder than

above to classify by linear discrimination as shown in Section 4.1.3 and the generaliza-

tion ability is weak as discussed in Section 4.1.4.

4.1.3 Asymptotic Properties of the wDWD Intercept

In this section, we illustrate the asymptotic properties of the wDWD intercept in

the HDLSS data settings. Let O+ be the centroid of the (n+ − 1)-simplex X+(d) and

O− the centroid of the (n− − 1)-simplex X−(d). As noted in Hall et al. (2005), an

important corollary of Corollary 2 and Theorem 3 is,

Corollary 4. In the d-asymptotic limit, the DWD hyperplane is orthogonal to the

line O+O− joining the two centroids.

Let P be any point on the interval O+O−. In Figure 6, let α and β be the distances

from P to the centroids. P lies on the weighted DWD hyperplane only when

α

β
=

(
w+n+

w−n−

)1/2

. (13)

This determines the DWD hyperplane, which is orthogonal to the line O+O− and

passes through the point P which satisfies condition (13). The larger w+n+

w−n−
is, the

closer the cut-off point P will be to O−, and thus it will be more likely that a new data

point will be classified to X+. Theorem 5 shows the conditions under which a future

data point is always correctly classified or misclassified.

O+ P O−

α β

Figure 6: Simplex centroids O+, O− and the candidate DWD cut-off point P
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Theorem 5. Assume that σ2/[n
3

2

+w
1

2

+] ≥ τ 2/[n
3

2

−w
1

2

−]; if needed, interchange X+ and

X− to satisfy this assumption.

• For a new data point X+
0 from the X+-population,

1. If µ2 > (n−w−/n+w+)
1

2 σ2/n+ − τ 2/n−, then

Pr(X+
0 is correctly classified by weighted DWD) → 1, as d → ∞.

2. If µ2 < (n−w−/n+w+)
1

2 σ2/n+ − τ 2/n−, then

Pr(X+
0 is wrongly classified by weighted DWD) → 1, as d → ∞.

• For a new data point X−
0 from the X−-population, for any µ > 0,

Pr(X−
0 is correctly classified by weighted DWD) → 1, as d → ∞.

An intuitive interpretation of Theorem 5 is that the intraclass average variances σ2

and τ 2, the sizes n+ and n− and the interclass squared distances µ2, jointly control the

ability to classify the new data point from X+ and X−. Large interclass distance will

lead to better accuracy in general. When one class has a smaller intraclass variance or

a larger sample size, standard DWD will give a more accurate classification rule. This

comes at a cost of worse classification performance for the other class. Weighted DWD

helps to offset the effect of unbalanced sample size to some extent.

Theorem 5 is the weighted extension to Theorem 3 in Hall et al. (2005). Compared

to its original version, Theorem 5 extends DWD by the introduction of w+ and w−

into the assumptions. For example, in the case of unbalanced data with equal cost and

unbiased sampling, for relatively small n− and large n+, we have the weight ratio w+

w−
=

n−

n+ under MWGE. In Theorem 5, the main condition in Hall et al. (2005), σ2/n
3

2

+ ≥
τ 2/n

3

2

−, is relaxed to σ2/n+ ≥ τ 2/n−. This condition is more easily satisfied so that, as

shown in Theorem 5, one can classify a new data point from X− correctly by weighted

DWD in contrast to standard DWD. However, the condition in Hall et al. (2005), under

which the data point from X+ is correctly classified, µ2 > (n−/n+)
1

2 σ2/n+ − τ 2/n−,

becomes µ2 > σ2/n+ − τ 2/n− now, which is not as easily attained as before.
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To summarize, for standard DWD in the asymptotic setting of Theorem 5, mis-

classifying some future points is unavoidable, because this is totally controlled by the

relative magnitudes of µ2, n+, n−, σ2, τ 2, which are all aspects of the underlying distri-

butions. However for weighted DWD, we can adaptively choose the weights to adjust

those relevant quantities, which can reduce the misclassified region and lead to better

classification accuracy. In the ideal (but unrealistic) case, where the values µ2, n+,

n−, σ2, τ 2 are known in advance, we can choose the weights intelligently such that the

scenario (2) in Theorem 5 can be avoided as much as possible.

4.1.4 Asymptotic Properties of the wDWD Direction

Theorem 5 gives a sufficient condition under which new data are correctly classified.

However, it holds under the assumption that the intraclass average variances σ2 and

τ 2, i.e., the noise levels, are not very large. When the noise level is not negligible

with respect to the signal (the interclass distance µ2), Theorem 5 does not indicate

the performance of wDWD. Instead, in this case, the relationship between the wDWD

direction (the vector orthogonal to the separating hyperplane) and the direction of

the line joining the two population means is more useful. If the angle between the

above two directions is close to 0, the classification can be generalizable, in the sense

of performing well for new data.

Theorem 6. Assume that X+(d) and X−(d) satisfy Assumption 1. As d → ∞,

with probability converging to 1, the angle between the direction joining the two pop-

ulation means and the direction joining the centroids of the two simplices becomes

θ = cos−1
(

µ2

µ2+σ2/n++τ2/n−

) 1

2

.

Recall from Corollary 4, the weighted DWD direction coincides with the direction

which joins the two centroids d-asymptotically. The asymptotic property of the angle

θ between the wDWD direction and the optimal linear classification direction is then
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implied by Theorem 6. In particular,

θ ≈







90◦, if µ2 ≪ σ2

n+ + τ2

n−
,

0◦, if σ2

n+ + τ2

n−
≪ µ2,

(14)

in the sense that limγ→0 θ = 90◦ and limγ→∞ θ = 0◦ for γ = µ2/( σ2

n+ + τ2

n−
). Theorem

6 and (14) imply that wDWD tends to give the optimal linear classification direction

when the signal level µ2 is much higher than the noise levels σ2 and τ 2, and on the

other hand tends to give a direction which is orthogonal to the desired direction, i.e.,

is strongly inconsistent, when the noise is significantly greater than the signal. The

second implication of Theorem 6 is that the angle goes to 0 if n+ and n− → ∞, giving

another notion of consistency of wDWD from the d-asymptotic point of view.

4.2 Simulation Confirmation

In this section, we verify the asymptotic results for weighted DWD by simulations.

To verify Theorem 1, Corollary 2 and Theorem 3, which provide the interclass and intr-

aclass pairwise distances, in Section 4.2.1, we calculate the corresponding distances for

the high-dimensional simulated example discussed in Section 3.1.1. To verify Theorem

5 and Theorem 6, we perform a new simulation study in Section 4.2.2.

4.2.1 Pairwise Distances

We calculate the pairwise squared distances (scaled by d−1) within each class and

between classes for the constant signal simulation described in Section 3.1.1. Table

7 shows the summary statistics. In Table 7, note that all 3 of the mean rescaled

squared distances fall reasonably close to the theoretical predictions. Moreover, the

small standard deviation of the observed distance is consistent with Theorem 1 and

Theorem 3, which imply that the distance should be constant in the large d-limit.

# of pairs mean S.D. theoretical formula
within positive class 72010 1.1241 0.0489 1.1250 2σ2

within negative class 191890 1.1242 0.0491 1.1250 2τ 2

between classes 235600 1.1339 0.0491 1.1340 σ2 + τ 2 + µ2

Table 7: Summary statistics for the rescaled pairwise squared distances. The standard
deviation of the distance is small relative to the mean.
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4.2.2 DWD Classification Performance

To verify Theorem 5 and Theorem 6, we consider three simulated examples similar

to the constant signal setting in Section 3.1.1. Here we fix the same noise level (σ2 =

τ 2 = 1) and the sample sizes (n+ = 60, n− = 150), but assign different signal levels

(µ2) over the three examples. With the assumption of equal costs and equal class

proportions, the optimal weights from Table 3 are w+ = 1
n+ and w− = 1

n−
. Standard

DWD is a special case of weighted DWD with w+ = w− = 1. Theorem 5 gives a

threshold for µ2,

(n−w−/n+w+)
1

2 σ2/n+ − τ 2/n−. (15)

According to the theorem, standard/weighted DWD correctly classifies X+
0 with prob-

ability 1 if µ2 is greater than the threshold. Here, the value of (15) for standard DWD

is (n−/n+)
1

2 σ2/n+−τ 2/n− = 0.020, and that for weighted DWD it is σ2/n+−τ 2/n− =

0.010. We explore the possible cases, by choosing

• µ2 = 0.005, where neither correct classification probability takes to 1;

• µ2 = 0.011, where only the wDWD correct classification probability takes to 1;

• µ2 = 0.059, where both wDWD and stdDWD correct classification probabilities

take to 1.

Case 1 weak Case 2 intermediate Case 3 strong
µ2 = 0.005 < 0.01 0.01 < µ2 = 0.011 < 0.02 µ2 = 0.059 > 0.02

Class + Class − Class + Class − Class + Class −
error wDWD 43.91(1.714) 33.76(1.674) 29.41(1.368) 25.3(1.244) 2.4(0.148) 0.71(0.078)
error stdDWD 78.04(0.381) 8.63(0.233) 67.06(0.432) 4.67(0.148) 13.17(0.291) 0.05(0.015)

theoretical angle 65.16 55.43 32.15
obs. angle wDWD 65.41(0.208) 55.59(0.189) 32.56(0.139)
obs. angle stdDWD 66.86(0.193) 57.5(0.189) 34.06(0.127)

Table 8: Simulation results for theorem verification: The top rows investigate Theorem
5; they display the average misclassification errors for both classes over 100 simula-
tions and the standard error (in parentheses). The bottom rows validate Theorem 6,
by showing that the theoretical angle between the DWD direction and the optimal
classification direction given by the theorem, and the average observed angles for both
wDWD and stdDWD together with the standard error (in parentheses).
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In Table 8, note that when the signal is weak enough (µ2 = 0.005), both weighted

and standard DWD fail to classify future data vectors from the X+ population. How-

ever, when the signal is strong enough (µ2 = 0.059), both methods succeed. If the data

have intermediate signal strength (µ2 = 0.011), then weighted DWD works reasonably

well (error< 30%) while the standard DWD does not (error> 60%). These observa-

tions are consistent with Theorem 5. Secondly, we find that the observed angles in

the simulation for both weighted and standard DWD are in line with the theoretical

angles based on the d-asymptotic results given by Theorem 6. Note that the angle

between the optimal direction and the weighted DWD direction will often be closer to

the theoretical angle (from Theorem 6), than that of the standard DWD.

4.3 Fisher Consistency of DWD

This section studies Fisher consistency of weighted DWD. As noted in Bartlett et

al. (2006), many of the classification algorithms, developed in the machine learning

literature, can be viewed as minimum contrast methods that minimize a convex sur-

rogate of the 0-1 loss function. The weighted DWD (2) minimizes a surrogate of the

corresponding weighted 0-1 loss function, W (−1)I[y = −1]I[φ(x) = +1]+W (+1)I[y =

+1]I[φ(x) = −1]. We first demonstrate the convex surrogate loss function for DWD

(Section 2.2). This is similar to the Hinge loss function for SVM (Wahba 1999) through

an equivalent formulation of the DWD optimization. A binary classifier with loss

V (yf(x)) is Fisher consistent if the minimizer of E[W (Ys)V (YSf(Xs))] has the same

sign as ps(x)− W (−1)
W (−1)+W (+1)

. Liu (2007) studied Fisher consistency for multicategorical

SVM and its various extensions. To our knowledge, Fisher consistency of DWD has

not been studied.
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4.3.1 Equivalent Formulation

For each i = 1, ..., n, we define fi = f(xi|ω, b) = x′
iω + b. The weighted DWD

optimization problem (2) can be shown to be equivalent to the following problem.

min
{ω,b: ω′ω≤1}

min
ξ≥0

n∑

i=1

W (yi)
( 1

yifi + ξi
+ Cξi

)

. (16)

It can be shown that the optimal solution for the inside optimization part of (16) is

given by ξ∗ = (ξ∗1, · · · , ξ∗n)T , where ξ∗i = 1√
C
−yifi if yifi ≤ 1√

C
; ξ∗i = 0 otherwise. Then

the DWD optimization problem amounts to

min
ω,b

n∑

i=1

W (yi)
(

[2
√

C − C · yifi

]
I[yifi ≤

1√
C

] +
1

yifi

I[yifi >
1√
C

]
)

, s.t. ω′ω ≤ 1.

If we define the DWD loss function as

V (yf) =







2
√

C − C · yf if yf ≤ 1√
C

1

yf
otherwise,

(17)

then the weighted DWD optimization is min
ω,b

n∑

i=1

W (yi)V (yifi(ω, b)), s.t. ω′ω ≤ 1.

This representation provides some insights into DWD as a modification of the Hinge

loss of SVM, H(yf) = (1 − yf)+. Actually, the first expression for the DWD loss is

similar to the Hinge loss, while the second expression 1
yf

is positive, rather than 0 for

the Hinge loss when yf > 1.

4.3.2 Fisher Consistency

For any classification function f , the expected DWD loss, i.e., the risk, is R(f) =

E[W (Ys)V (Ysf(Xs))]. Fisher consistency of the classifier f can be proved by showing

that the sign of the global minimizer of the unconditional risk arg minf R(f), is equal

to the Bayes optimal decision rule φ∗ given in (4). Theorem 7 proves this relationship

and thus shows Fisher consistency of weighted DWD under the OM criterion.

Theorem 7. Let f ∗ be the global minimizer of E[W (Ys)V (Ysf(Xs))], where V (·) is

the DWD loss function given in (17). Then sign[f ∗(x)] = φ∗(x), where φ∗(x) is the

Bayes decision rule under the OM criterion given in (4), or equivalently, sign[f ∗(x)] =

sign[ps(x) − W (−1)
W (+1)+W (−1)

].
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Similarly, under the MWGE criterion, with the weighting scheme W (·) given by

Table 3, weighted DWD can also be shown to be Fisher consistent.

5 Conclusion

In this article, we have proposed weighted DWD to improve standard DWD for

unbalanced data and various nonstandard situations. We have made the following

contributions. First of all, we have provided the optimal weighting schemes for several

nonstandard situations, using one of the two criteria, OM rate and MWGE. Secondly,

we represent data sets from two classes geometrically in HDLSS settings. Thirdly,

we develop the HDLSS asymptotic properties of weighted DWD. Lastly, we show

Fisher Consistency for wDWD. Our numerical studies demonstrate the effectiveness

of weighted DWD and verify the asymptotic results.

The results on the tuning parameter C from our simulations suggest that the recom-

mendation for the tuning parameter C = 100/(dt)2 proposed by Marron et al. (2007),

which was originally designed for balanced data, also works well in unbalanced and

nonstandard situations as long as we use weighted DWD instead of standard DWD.

Thus their recommendation of tuning parameter C can be used for weighted DWD as

a simple alternative of cross validation.

The simulation results show that in the sparse signal setting, our current version of

weighted DWD does not work as well as some sparse methods, for example L1 SVM.

One possible future research direction is to study weighted DWD with built-in sparse

penalty for variable selection.

Appendix

For Theorem 1, Corollary 2 and Theorem 5, we only outline the main steps of the

proofs. Readers can refer to Qiao et al. (2008) for technical details.
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Proof of Theorem 1:

Let Z+
d = Λ+

d
−1/2

V +
d

T
X+

d = [z+
1 , · · · , z+

n+], where z+
k = [z+

1k, · · · , z+
dk]

T is the k-

th column. Each column of Z+
d is independently and identically distributed as an

underlying d-dimensional distribution with identity covariance matrix Id, where Λ+
d

and V +
d form the eigenvalue-decomposition of the covariance matrix, Σ+

d = V +
d Λ+

d V +
d

T
.

Define the relative eigenvalue by λ̃+
i,d = λ+

i,d/(Σd
i=1λ

+
i,d). The sphericity condition in

Assumption 1 is equivalent to Σd
i=1(λ̃

+
i,d)

2 → 0, as d → ∞. Note that relative eigenvalues

sum up to 1, i.e., Σd
i=1λ̃

+
i,d = 1.

From the representation in (8), 1
σ2

d

S+
D,d = 1

Σd
i=1

λ+

i,d

Σd
i=1(λ

+
i,dW

+
i,d) = Σd

i=1(λ̃
+
i,dW

+
i,d).

The k-th diagonal element of 1
σ2 S

+
D,d can be expressed as Σd

i=1λ̃
+
i,d(z

+
ik)

2, where the z+
ik’s

(i = 1, · · · , d) are independent distributed with mean 0 and unit variance. And the

(k, l)-th off-diagonal element of 1
σ2

d

S+
D,d can be expressed as Σd

i=1λ̃
+
i,d(z

+
ikz

+
il ), where all

z+
ik’s and z+

il ’s are independent (i = 1, · · · , d), with mean 0 and unit variance.

Chebyshev’s inequality is then used twice (one for the diagonal elements, one for the

off-diagonal elements) to show that each element of 1
σ2

d

S+
D,d converges to the counterpart

of the identity matrix In in probability as d → ∞.

Note that when each column of X+
d follows the multivariate Gaussian distribution,

so does z+
k , the k-th column of Z+

d . Hence, with identity covariance matrix of z+
k , its

entries, z+
ik(i = 1 · · ·d), are independent, which satisfies the independence condition.

Proof of Corollary 2

Let x+
j = (x+

1j , · · · ,x+
dj)

T , j = 1, · · · , n+, be the jth column of the data matrix X+.

Let x−
j = (x−

1j , · · · ,x−
dj)

T , j = 1, · · · , n−, be the jth column of the data matrix X−.

The squared distance between x+
k and x+

l , rescaled by (dσ2
d)

−1 is 1
dσ2

d

‖x+
k − x+

l ‖2 =

1
dσ2

d

Σd
i=1(x

+
ik − x+

il )
2 = 1

dσ2
d

Σd
i=1(x

+
ik)

2 + 1
dσ2

d

Σd
i=1(x

+
il )

2 − 2
dσ2

d

Σd
i=1xikxil. The first and

second terms on the right hand side are the k-th and l-th diagonal elements of 1
σ2

d

S+
D,d

respectively, which were proved to converge to 1 in probability as d → ∞ in Theorem
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1. The third term is the (k, l)-th off-diagonal element of 1
σ2

d

S+
D,d, which converges to 0

in probability as d → ∞. Thus 1
dσ2

d

‖x+
k − x+

l ‖ → 2, in probability as d → ∞.

Lemma 8. Assume that Σd
i=1(λ

+
i,d)

2, Σd
i=1(λ

−
i,d)

2 → 0, as d → ∞ and that Σd
i=1λ

+
i,d =

Σd
j=1λ

−
j,d = 1. Denote by U = [uij ]i,j=1,··· ,d as an arbitrary d × d orthogonal matrix.

Then it holds that Σd
i=1Σ

d
j=1u

2
i,jλ

+
i,dλ

−
j,d → 0, as d → ∞.

Note that sum of squared entries in each column and row of U is 1. Lemma 8 can

be proved using the Cauchy-Schwarz inequality.

Proof of Theorem 3

Let x+
j = (x+

1j , · · · ,x+
dj)

T , j = 1, · · · , n+, be the jth column of the data matrix X+.

Let x−
j = (x−

1j , · · · ,x−
dj)

T , j = 1, · · · , n−, be the jth column of the data matrix X−.

The squared distance between x+
k and x−

l is

‖x+
k − x−

l ‖2 = Σd
i=1

{
[x+

ik − E(x+
i· )] − [x−

il − E(x−
i· )] + [E(x+

i· ) − E(x−
i· )]

}2
(18)

= Σd
i=1(ẋ

+
ik)

2 + Σd
i=1(ẋ

−
il )

2 − 2Σd
i=1(ẋ

+
ik)(ẋ

−
il ) (19)

+Σd
i=1[E(x+

i· ) − E(x−
i· )]

2 + 2Σd
i=1[E(x+

i· ) − E(x−
i· )][ẋ

+
ik − ẋ−

il ]. (20)

Here ẋ+
ik = x+

ik − E(x+
i· ) and ẋ−

il = x−
il − E(x−

i· ) are the ith entries on the kth and lth

columns of the de-meaned data matrices Ẋ+ and Ẋ−.

The first two terms in (19), rescaled by (dσ2
d)

−1 and (dτ 2
d )−1 respectively, are the

kth and lth diagonal entries of 1
σ2

d

S+
D and 1

τ2
d

S−
D. By the proof of Theorem 1, both

converge to 1 in probability as d → ∞. Thus, for any ε > 0, Pr(|1
d
Σd

i=1(ẋ
+
ik)

2 − σ2| ≥
ε) → 0, as d → ∞ and Pr(|1

d
Σd

i=1(ẋ
−
il )

2 − τ 2| ≥ ε) → 0, as d → ∞.

The third term, Σd
i=1(ẋ

+
ik)(ẋ

−
il ), is the inner product of ẋ+

k and ẋ−
l , the k-th column of

the de-meaned data matrix Ẋ+, and the l-th column of the de-meaned data matrix Ẋ−.

Recall that we can write ẋ+
k = V +Λ+1/2

z+
k , where z+

k = (z+
1 , · · · , z+

d )T is a d dimensional

vector from a distribution with the identity covariance matrix and zero mean. So is

ẋ−
l = V −(Λ−)1/2z−l , where z−l = (z−1 , · · · , z−d )T . Let U = [uij]i,j=1,··· ,d = V +T

V −.

Define the relative eigenvalues by λ̃+
i,d = λ+

i,d/Σd
i=1λ

+
i,d and λ̃−

j,d = λ−
j,d/Σd

j=1λ
−
j,d. Then
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(dσdτd)
−1Σd

i=1(ẋ
+
ik)(ẋ

−
il ) becomes

(dσdτd)
−1[z+

1 , · · · , z+
d ](Λ+)

1

2 V +T
V −(Λ−)

1

2 [z−1 , · · · , z−d ]T

= (Σd
i=1λ

+
i,d)

− 1

2 (Σd
j=1λ

−
j,d)

− 1

2 Σd
s=1Σ

d
t=1us,tz

+
s z−t

√

λ+
s,dλ

−
t,d

= Σd
s=1Σ

d
t=1us,tz

+
s z−t

√

λ̃+
s,dλ̃

−
t,d

The expectation of Σd
s=1Σ

d
t=1us,tz

+
s z−t

√

λ̃+
s,dλ̃

−
t,d is 0. Thus by Chebyshev’s inequality,

Pr[|Σd
s=1Σ

d
t=1us,tz

+
s z−t

√

λ̃+
s,dλ̃

−
t,d| ≥ ε]

≤ ε−2E(Σd
s=1Σ

d
t=1us,tz

+
s z−t

√

λ̃+
s,dλ̃

−
t,d)

2

= ε−2Σd
s=1Σ

d
t=1u

2
s,tλ̃

+
s,dλ̃

−
t,d

Since U is the product of two orthogonal matrix U = V +T
V −, U is itself orthogo-

nal. The relative eigenvalues satisfy the condition in Lemma 8. Thus by Lemma 8,

Pr[|Σd
s=1Σ

d
t=1us,tz

+
s z−t

√

λ̃+
s,dλ̃

−
t,d| ≥ ε] → 0, as d → ∞. Thus (dσdτd)

−1Σd
i=1(ẋ

+
ik)(ẋ

−
il )

converges to 0 in probability as d → ∞. Further, since σ2
d → σ2 < ∞ and τ 2

d → τ 2 < ∞,

1
d
Σd

i=1(ẋ
+
ik)(ẋ

−
il ) → 0 in probability as d → ∞.

The fourth term is the squared distance between means, which is defined as dµ2.

The last term can be decomposed into two components: Σd
i=1[E(x+

i· ) − E(x−
i· )]ẋ

+
ik

and Σd
i=1[E(x+

i· ) − E(x−
i· )]ẋ

−
il . Let δi = E(x+

i· ) − E(x−
i· ). Note that Σd

i=1δ
2
i = dµ2.

Each component, after being rescaled by d−1, can be shown to converge to 0 in

probability as d → ∞. For example, the first component, rescaled by (dσd)
−1, be-

comes 1
dσd

Σd
i=1[E(x+

i· ) − E(x−
i· )]ẋ

+
ik = 1

d
1
2

√
1

dσ2
d

Σd
i=1δiẋ

+
ik = 1

d
1
2

Σd
i=1δiΣ

d
s=1v

+
i,s

√

λ̃+
s,dz

+
s .

By Chebychev’s inequality,

Pr(| 1

d
1
2

Σd
i=1δiΣ

d
s=1v

+
i,s

√

λ̃+
s,dz

+
s | > ε)

≤ ε−2E( 1

d
1
2

Σd
i=1δiΣ

d
s=1v

+
i,s

√

λ̃+
s,dz

+
s )2 = ε−2 1

d
E(Σd

s=1Σ
d
i=1δiv

+
i,s

√

λ̃+
s,dz

+
s )2

= ε−2 1
d
Σd

s=1(Σ
d
i=1δiv

+
i,s)

2λ̃+
s,dE(z+

s )2 = ε−2 1

d
Σd

s=1(Σ
d
i=1δiv

+
i,s)

2λ̃+
s,d

≤ ε−2 1
d
Σd

s=1(Σ
d
i=1δiv

+
i,s)

2 maxi(λ̃
+
i,d) = ε−2µ2 max

i
(λ̃+

i,d) → 0, as d → ∞.

Note that Σd
s=1(Σ

d
i=1δiv

+
i,s)

2 = Σd
i=1δ

2
i = dµ2 because V + is an orthogonal matrix, which

keeps the norm of δ after transformation. Hence the first component Σd
i=1[E(x+

i· ) −
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E(x−
i· )]ẋ

+
ik, rescaled by d−1, converges to 0 in probability as d → ∞. And so does the

second component Σd
i=1[E(x+

i· ) − E(x−
i· )]ẋ

−
il .

To summarize the analysis above, 1
d
‖x+

k − x−
l ‖2 → σ2 + τ 2 + µ2, in probability, as

d → ∞.

Proof of Theorem 5:

Recall that the DWD hyperplane cut-off point P ∗ satisfies (13): α∗

β∗
=

(
w+n+

w−n−

)1/2

.

Let X+
0 be a new data point from the X+-population. It was shown in Hall et al.

(2005) that the rescaled squared distance of X+
0 from O+ and O− are σ2(1 + n−1

+ ) and

µ2 + σ2 + τ 2/n− respectively, and it was known that the squared distance between O+

and O− was µ2+σ2/n++τ 2/n−. Let P be the projection of X+
0 to the line O+O−, with

distances to the two centroids being α and β. It was shown by a series of geometric

calculations in Hall et al. (2005) that α
β

= σ2/n+

µ2+τ2/n−
.

The point X+
0 will be correctly classified as X+ type if it lies on the same side of

the DWD hyperplane as O+, i.e., if σ2/n+

µ2+τ2/n−
<

(
w+n+

w−n−

)1/2

. It will be wrongly classified

as X− if σ2/n+

µ2+τ2/n−
>

(
w+n+

w−n−

)1/2

.

The first and second parts of Theorem 5 follows from the two inequalities above im-

mediately. Now assume that σ2/[n
3

2

+w
1

2

+] ≥ τ 2/[n
3

2

−w
1

2

−]. This ensures the non-negativity

of (n−w−/n+w+)
1

2 σ2/n+ − τ 2/n−, the right hand side of the inequality in the first

and second parts. Furthermore, suppose that we have a data point X−
0 from the X−-

population. By the inequality above, τ2/n−

σ2/n+ ≤
(

w−n−

w+n+

)1/2

. Then for any positive µ2 we

have τ2/n−

µ2+σ2/n+ < τ2/n−

σ2/n+ ≤
(

w−n−

w+n+

)1/2

, i.e., X−
0 will always be classified as belonging to

X−. Theorem 5 simply combines the analysis above.

Proof of Theorem 6:

Denote the centroids of the (n+ − 1)-simplex from X+ as On+

+ and the (n− − 1)-

simplex from X− as On−

− . Also denote the population means of X+ and X− as O∞
+ and
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O∞
− respectively. In the large d-limit, the expected squared distance, rescaled by d−1,

between On+

+ and On−

− is µ2 + σ2/n+ + τ 2/n−. If we consider k more data vectors from

X+, the expected squared distance, rescaled by d−1, between the centroids O
(n++k)
+ ,

of the new (n+ + k − 1)-simplex, and the centroid On−

− , of the (n− − 1)-simplex is

µ2+σ2/(n+ + k)+τ 2/n−. Also the expected squared distance, rescaled by d−1, between

On+

+ and O
(n++k)
+ is

(
k

n+(n++k)

)

σ2. This can be shown by calculating the distance

between the two (n++k)-dimensional vectors,
√

dσ(n−1
+ , n−1

+ , · · · , n−1
+

︸ ︷︷ ︸

n+

, 0, 0, · · · , 0
︸ ︷︷ ︸

k

)T and

√
dσ((n+ + k)−1, (n+ + k)−1, · · · , (n+ + k)−1

︸ ︷︷ ︸

n++k

)T , which are the centroids of the (n+−1)-

simplex {
√

d(1, 0, · · · , 0
︸ ︷︷ ︸

n+

, 0, · · · , 0
︸ ︷︷ ︸

k

), · · · ,
√

d(0, · · · , 0, 1
︸ ︷︷ ︸

n+

, 0, · · · , 0
︸ ︷︷ ︸

k

)} and the (n+ − 1 + k)-

simplex {
√

d(1, 0, · · · , 0
︸ ︷︷ ︸

n++k

), · · · ,
√

d(0, · · · , 0, 1
︸ ︷︷ ︸

n++k

)} respectively.

Thus by the Pythagorean theorem, On+

+ O
(n++k)
+ , On+

+ On−

− and O
(n++k)
+ On−

− form

a right triangle, with On+

+ On−

− being the hypotenuse. And it follows that the angle

between O
(n++k)
+ On−

− and On+

+ On−

− becomes approximately cos−1
(

µ2+σ2/(n++k)+τ2/n−

µ2+σ2/n++τ2/n−

) 1

2

.

Let k → ∞. O
(n++k)
+ converges to O∞

+ . Thus the angle between O∞
+ On−

− and On+

+ On−

−

becomes cos−1
(

µ2+τ2/n−

µ2+σ2/n++τ2/n−

) 1

2

.

In the same manner, consider l more data vectors from X−, and let l → ∞. Then

the angle between O∞
+ O∞

− and On+

+ On−

− is cos−1
(

µ2

µ2+σ2/n++τ2/n−

) 1

2

, i.e., the angle be-

tween the direction joining the means of two populations and the DWD direction

joining the centroids of the (n+ − 1)-simplex X+(d) and the (n− − 1)-simplex X−(d)

becomes θ = cos−1
(

µ2

µ2+σ2/n++τ2/n−

) 1

2

.

Proof of Theorem 7:

For any fixed x, the conditional risk is

E[W (Ys)V (Ysf)|Xs = x] = ps(x)W (+1)V (f(x)) + (1 − ps(x))W (−1)V (−f(x)).

Here the DWD loss V (·) is defined in (17). For simplicity, we write R(f) = psW (+1)V (f)+

(1 − ps)W (−1)V (−f). Then f ∗ is obtained by solving R′(f) = 0, where R′(f) =
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psW (+1)1V ′(f) − (1 − ps)W (−1)V ′(−f). Straightforward computations give

V (f) =







2
√

C − Cf if f ≤ 1√
C

1

f
otherwise,

and V (−f) =







2
√

C + Cf if f ≥ − 1√
C

−1

f
otherwise.

We can show that, for fixed ps, R(f) is continuous and differentiable everywhere

and R(f) is convex in [−∞,∞], i.e., R′(f) is nondecreasing. By directly solving the

equation R′(f) = 0, we get f ∗, the minimizer of R(f) as

f ∗ =
1√
C

·







√
psW (+1)

(1−ps)W (−1)
if psW (+1)

(1−ps)W (−1)
> 1

0 if psW (+1)
(1−ps)W (−1)

= 1

−
√

(1−ps)W (−1)
psW (+1)

if psW (+1)
(1−ps)W (−1)

< 1.

Note when psW (+1)
(1−ps)W (−1)

= 1, f ∗ can take any value in [−
√

(1−ps)W (−1)
CpsW (+1)

,
√

psW (+1)
C(1−ps)W (−1)

].

We choose 0 here for convenience. Therefore, the minimizer of R(f) satisfies sign[f ∗] =

sign
[ psW (+1)

(1−ps)W (−1)
−1

]
= sign

[
psW (+1)−(1−ps)W (−1)

]
= sign

[
ps{W (+1)+W (−1)}−

W (−1)
]

= sign
[
ps > W (−1)

W (+1)+W (−1)

]
= φ∗.
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