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Abstract. We describe some insights that have been obtained from experimenting with various
interior-point algorithms on random linear programming problems.
1. Introduction

Most published computational results for interior-point approaches to linear programming have
been concerned with state-of-the-art implementations of various algorithms to suites of large sparse test
problems, usually including but not limited to the NETLIB suite (Gay [8]). Among such studies are
those of Adler, Karmarkar, Resende and Veiga [1] and Monma and Morton [17] for the dual affine-
scaling method; and those of McShane, Monma and Shanno [13], Choi, Monma and Shanno [5], Lustig,
Marsten and Shanno [11,12], and Mehrotra [15] for primal-dual methods. However, if one is interested
primarily in how the algorithms deal with certain features of the problems or how various families of
algorithms compare, it often suffices to apply simple implementations to relatively small dense
problems. Examples include Anstreicher and Watteyne [3], Todd and Wang [22], and Todd [19,20].

Here I do not wish to present detailed comparisons of various algorithms. Instead I will give
some qualitative conclusions, and also stress the insights that can be obtained by observing the
performance of different methods.

A delightfully painless environment for making such observations is provided by
MATLAB [16], a high-performance interactive software package for performing matrix computations
and displaying results. I will illustrate the ease of use of this package by displaying the MATLAB code
for computing the projections of the scaled cost vector and the vector of ones onto the null space of the
scaled coefficient matrix:
function [cp, ep] = projc(Abar, cbar)

% computes the projections of cbar and e into the null

% space of Abar.

cpep = [cbar ones(cbar)] - Abar’ x (Abar’ \ [cbar ones(cbar)]);
cp = cpep(:,1);

ep = cpep(y,2);

return
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Here cbar (¢) and Abar (A) are the scaled cost vector and coefficient matrix, ones(cbar) is the vector
(e) of ones of the same dimension as cbar, and Abar’ \ [cbar ones(cbar)] yields the matrix [yc yel,
where y. is the least-squares solution to ATyc ~ © and ye that to ATye ~ e. MATLAB
computations are carried out in a numerically stable way, are remarkably efficient for dense matrices,
and require, as is evident from the example above, very little programming time.

In section 2 T will discuss using MATLAB to elucidate the relationship between the low-
complexity algorithm in [20] and path-following methods. Section 3 compares a more efficient version
of the low-complexity algorithm to a variant which bears a strong resemblance to the methods of
Gonzaga [9], Ye [25] and Freund [7] and also to the affine-scaling algorithm. Finally, in section 4 1

consider solving problems where an initial strictly feasible solution is not at hand.

2. Following the central path

The basic low-complexity algorithm (BLCA) in [20] solves the standard-form linear

programming problem

min ¢Tx
(P) Ax =D
x>0
as follows. Given a strictly positive feasible solution %, let A = AX and © = Xc, where

X = diag(). These are the transformed data in the scaled problem

in terms of the scaled variables X = %-1x. Note that the current iterate %X corresponds to X = e,
the vector of ones.

The algorithm first computes the projections Tp and ep of € and e onto the null space of
A, and sets dg := -aCp + ep where a:= Ege/égép. Then the search direction is d = do/||da|] if
ldgll > .3 and d = cp/|[cpll otherwise. The new point is X =e+ .2d in the scaled space, and
Xy = Xx + in the original space. Perhaps surprisingly, this algorithm achieves the best known
complexity in terms of the number of iterations: given a suitable starting point, it gets within 97t of
the optimal value of (P) within O(NT t) iterations, where n is the number of variables in (P).

The BLCA takes a step in the direction do/||dg|| (a constant-cost centering step) if Hdall
is large, and a step in the direction -€p/|[cp|| (the affine-scaling direction of Dikin) if ||dg]|| is small.

In the latter case, Cp and ep are in some sense close to being collinear, which characterizes the
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central path (e.g. [18]). Indeed, Todd and Vial [21] recently showed that ll[dal] is exactly the measure
of centrality of Roos and Vial [18]. Further, they showed that after some initial centering steps, each
affine-scaling step is followed by at most three centering steps before another affine-scaling step. Hence
the BLCA generates iterates close to the central path.

What only emerged from computational testing is how astonishingly close the iterates remain.
Indeed, after the initial centering phase, no further centering steps were made in several runs on
random standard-form problems of dimensions 50x100 up to 300x600, and in fact ||dgl|| continued to
decrease. This encouraged us to try modifications. Suppose we perform a line search on the
logarithmic barrier function along the constant-cost centering direction if [|dg|| > 9/10. We take a
Newton step in this direction if ||dq]|| lies between 1/16 and 9/10. Finally, if ||dg|| is smaller than
1/16, we take a step of length .4 (rather than .2) in the affine-scaling direction. It can be shown [21]
that, after the initial centering phase, each affine-scaling step is followed by at most two centering
steps; but in practice, a single centering step is only needed every 10-20 iterations.

In Figure 1, we show the trajectories of these algorithms on a 50x100 problem. Figure 1(a)
plots the 31st component of x against the 30th, while 1(b) plots the 34th against the 33th. The
dashed line corresponds to the BLCA, which requires 347 iterations; every tenth iterate is marked with
a “4+”. The dotted line is the modification described above, needing only 170 iterations; every tenth
iterate is marked with a “x.” Finally, the solid line gives the progress of the most efficient variant of
the BLCA, called variant 2 in [20], with q = 2n; this needs only 11 iterations. All trajectories start at

(1,1).
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Notice how the modified BLCA reaches the vicinity of the central path in only 3 iterations,
and after 10 is further along the path than the BLCA after 30 iterations. Both these methods follow
very smooth paths. (Experiments with modifications taking step sizes of .8 or .95 along the affine-
scaling direction lead to similar results, with fewer iterations and still a very small number of centering
steps.) We must conclude that interior-point methods whose step is of fixed (or uniformly bounded by
one) Euclidean length in the scaled space seem to be very short-step methods with a strong resemblance
to path-following methods. Such methods include the original projective-scaling algorithm of
Karmarkar [10] (although a line search is usually employed) and the affine-scaling method with the
step size analyzed by Dikin [6], Barnes [4], and Tsuchiya [23] (in practice, a step a certain proportion of
the way to the boundary is typically used). See also Xiao and Goldfarb [24] and Anstreicher [2].

We also remark that the efficient method (the solid line) also appears to follow the central

path quite closely after its initial few steps.

3. Problems with e feasible

Here we briefly discuss experiments on problems generated so that the vector of ones, e, yields
an initial feasible solution. (Each entry of A was generated as an independent standard Gaussian
random variable; b was set to Ae; and ¢ was set to ATy +'s, where y and s were generated as
was A, and then s replaced by |s|, the vector of absolute values of the components of s. This was
also the way the problems of the previous section were generated.) We tested variant 2 of the BLCA
(with q = 2n) against the affine-scaling algorithm, with step size .95 of the way to the boundary of
the feasible region, and against another variant of the BLCA. We call this variant 3; it only differs
from variant 2 in its choice of direction, which is d ¢ (see section 4 of [20]). This is very close to the
potential reduction methods of Gonzaga [9], Ye [25] and Freund [7]. The direction chosen by variant 2
is usually half-way between d ¢ and the affine-scaling direction. With q = 2n, both variants require
O(nt) iterations to obtain t digits of accuracy.

The termination criterion in all cases was that the relative error in the objective function be no
more than 10“4. (In the line search, we checked whether a step all the way to the boundary would
satisfy this criterion, and, if so, took such a step.) Here the relative error is with respect to the lower
bound. Such a lower bound is generated in variants 2 and 3, using lemma 5 of [20]. We also found
that the same procedure generated lower bounds for the affine-scaling algorithm. The latter is
normally terminated when the relative improvement in the objective function falls below a certain
level. Especially if a dual solution is required, it might be worth adding a further test at this stage, by
trying to compute a lower bound using lemma 5 of [20]. If successful, this provides a guarantee of the
quality of the solution as well as a near-optimal dual solution, and our results indicate that success is
likely for well-scaled problems with near-central initial solutions. The additional cost required is a

further least-squares solution, to obtain ep,



The table below gives the average number of iterations required for five random problems and
the three algrithms discussed above. For the affine-scaling algorithm, the average proportion of the
way to the boundary was (of course) .95. For variant 2, it ranged from .96 to .99, and for variant 3,
from .88 to .99. The advantage of the latter algorithms is that their use of a potential function allows

further flexibility: short steps will be taken if necessary, longer steps if safe.

100x200 200x400 300x600 400x800

affine-scaling 11.8 12.8 13.8 14.4
variant 2 12.2 13.6 13.8 14.4
variant 3 13.6 16.0 18.2 19.2

We see that in an algorithm with a polynomial-time guarantee it generally pays to choose a direction
between that of the pure potential reduction algorithm and that of the affine-scaling algorithm, and
that the penalty of using variant 2 instead of the latter is very slight in terms of number of iterations.
(Unfortunately, variant 2 needs an extra projection at each iteration.)

Finally, all the runs with variant 2, and to a lesser extent, the other methods, show a strong
symmetry between the objective function values and the lower bounds generated -- see Figure 2 for a
typical example, where the solid line shows the progress of the objective and the dotted line that of the

bound; at each iteration, both have roughly the same accuracy.
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4. Problems without initial feasible point

We conclude by making some brief comments about our results where an initial feasible point
is not available. We generate such problems as in section 3, but with b = A% where each component
of % is generated as the absolute value of an independent standard Gaussian random variable. Now
we add an artificial variable with column b - Ae and cost 1010 to get a new problem with an extra
variable. We modified the line search to go all the way to the boundary if this eliminated the artificial
variable.

Both variants 2 and 3 had difficulty with such problems if they were initialized with lower
bounds of -co. The iterates grew very large (usually to the order of 108) before returning to the
neighborhood of the optimal solution, as in the experiments in [19]. We therefore initialized the lower
bound to ~105, as in [19]. In this case, variant 2 was usually comparable to the affine-scaling
algorithm and two to six iterations faster than variant 3. Average iteration counts varied from 13.4 to
28.0. Typical trajectories for a 300x599 problem are shown in figure 3(a). Here the dashed line,
marked with a “+” every ten iterations, shows variant 2; the solid line, with “o0” ’s, shows the affine-
scaling method and the dotted line, with “x” ’s, illustrates variant 3. The algorithms require 19, 18
and 22 iterations respectively. If we modified variant 3 to make it monotonic (d = d ¢ if ¢ > a
else d = dg), its behavior becomes almost identical to that of variant 2 - see figure 3(b); 19
iterations are now required.

Finally, we examined the behavior of these methods when started at the feasible solution X,
so that an artificial variable is not needed. The behavior of variant 2 (now with initial bound -oc)
was comparable to its behavior on the artificial problem (with initial bound ~105). The affine-scaling
method performed very poorly, partly because of its difficulty in generating lower bounds, but also
because some variables became prematurely very small. Variant 3 needed either an initial lower bound
of ~105 or monotonic directions to perform adequately. In the latter case it was again comparable to
variant 2. These results are illustrated by the trajectories for the same problem as before. (Here the
trajectories start near (1,.3).) Figure 3(c) shows variant 2 (dashed line, 20 iterations), the affine-scaling
algorithm {solid line, 85 1terat10ns), and variant 3 with initial bound -10° (dotted line, 36 iterations).
Notice how the latter initially has variables increasing substantially -- in fact, some reach the order of
103, while the initial and final solutions are of order 1. Figure 3(d) shows the first two algorithms as
above, and variant 3 with monotonic directions (dotted line, 20 iterations). Here we see the poor
behavior of the affine-scaling method -- one variable becomes much too small and impedes progress.

Overall, the results suggest that the affine-scaling algorithm can perform very badly when the
initial solution is far from centered (compare with the analytic results of Megiddo and Shub [14]), and
that it is perhaps preferable to introduce an artificial variable even if a feasible solution is known, or to

take some initial centering steps.
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central path (e.g. [18]). Indeed, Todd and Vial [21] recently showed that ||dg]| is exactly the measure
of centrality of Roos and Vial [18]. Further, they showed that after some initial centering steps, each
affine-scaling step is followed by at most three centering steps before another affine-scaling step. Hence
the BLCA generates iterates close to the central path.

What only emerged from computational testing is how astonishingly close the iterates remain.
Indeed, after the initial centering phase, no further centering steps were made in several runs on
random standard-form problems of dimensions 50x100 up to 300x600, and in fact lldg|l continued to
decrease. This encouraged us to try modifications. Suppose we perform a line search on the
logarithmic barrier function along the constant-cost centering direction if ||dg|] > 9/10. We take a
Newton step in this direction if ||dg|| lies between 1/16 and 9/10. Finally, if ||dgl]] is smaller than
1/16, we take a step of length .4 (rather than .2) in the affine-scaling direction. It can be shown [21]
that, after the initial centering phase, each affine-scaling step is followed by at most two centering
steps; but in practice, a single centering step is only needed every 10-20 iterations.

In Figure 1, we show the trajectories of these algorithms on a 50x100 problem. Figure 1(a)
plots the 31st component of x against the 30th, while 1(b) plots the 34th against the 33th. The
dashed line corresponds to the BLCA, which requires 347 iterations; every tenth iterate is marked with
a “+”. The dotted line is the modification described above, needing only 170 iterations; every tenth
iterate is marked with a “x.” Tinally, the solid line gives the progress of the most efficient variant of
the BLCA, called variant 2 in [20], with q = 2n; this needs only 11 iterations. All trajectories start at

(1,1).
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The table below gives the average number of iterations required for five random problems and
the three algrithms discussed above. For the affine-scaling algorithm, the average proportion of the
way to the boundary was (of course) .95. For variant 2, it ranged from .96 to .99, and for variant 3,
from .88 to .99. The advantage of the latter algorithms is that their use of a potential function allows

further flexibility: short steps will be taken if necessary, longer steps if safe.

100200 200x400 300x600 400800
affine-scaling 11.8 12.8 13.8 14.4
variant 2 12.2 13.6 13.8 14.4
variant 3 13.6 16.0 18.2 19.2

We see that in an algorithm with a polynomial-time guarantee it generally pays to choose a direction
between that of the pure potential reduction algorithm and that of the affine-scaling algorithm, and
that the penalty of using variant 2 instead of the latter is very slight in terms of number of iterations.
(Unfortunately, variant 2 needs an extra projection at each iteration.)

Finally, all the runs with variant 2, and to a lesser extent, the other methods, show a strong
symmetry between the objective function values and the lower bounds generated -- see Figure 2 for a
typical example, where the solid line shows the progress of the objective and the dotted line that of the

bound; at each iteration, both have roughly the same accuracy.
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