
Algorithmica (1986) 1:409-424 Algorithmica
�9 1986 Springer-Verlag New York Inc.

An Extension of Karmarkar's Algorithm for
Linear Programming Using Dual Variables

Michael J. Todd 1'2 and Bruce P. Burrell I

Abstract. We describe an extension of Karmarkar's algorithm for linear programming that handles
problems with unknown optimal value and generates primal and dual solutions with objective values
converging to the common optimal primal and dual value. We also describe an implementation for
the dense case and show how extreme point solutions can be obtained naturally, with little extra
computation.

Key Words. Linear programming, Karmarkar's algorithm, Duality.

1. Introduction. This paper is concerned with the new algorithm of Karmarkar
[16] to solve linear programming problems. I f the data of a linear programming
problem are all integer, then the running time of the algorithm is polynomial in
the length of a binary encoding of the data. The basic method is an iterative
technique for solving a linear programming problem of a certain type. I f the data
are integer, the iterations can be terminated after a polynomial number of steps,
and an exact solution obtained by rounding. Various subsidiary problems of
obtaining a feasible solution and dealing with problems not in the required form
can be reduced to solving problems in canonical form.

Let us ignore integrality of the data and consider the infinite sequence of
iterates produced by the basic algorithm. The objective function values of the
iterates converge at least linearly to the optimal value, but, in contrast to simplex
methods, each iterate is a strictly positive vector lying in the relative interior of
the feasible region. Convergence is proved by monitoring a cleverly constructed
potential function, which is invariant under certain projective transformations.
By making such a transformation so that the current iterate is mapped into a
point far away from all inequality constraints Karmarkar is able to assure a fixed
decrease in this potential function at every iteration. This translates into an
aggregate decrease of the objective function as a geometric progression.

One drawback of Karmarkar ' s method is that it does not generate dual solutions,
which are of great economic significance as well as of potential use during the
algorithm. Here we show how dual solutions can be generated naturally during
the course of the algorithm and how they can be used to extend the applicability

1 School of Operations Research and Industrial Engineering, College of Engineering, Cornell Univer-
sity, Ithaca, New York, 14850, USA.
2 Research supported in part by a fellowship from the Alfred P. Sloan Foundation and by NSF Grant
ECS-15361.

Received March 1985; revised January 2, 1986. Communicated by Nimrod Megiddo.

410 M.J. Todd and B. P. Burrell

of the basic algorithm. We also discuss some aspects of an implementation of
the algorithm for the dense case. We show in particular that, at a very modest
extra cost, extreme point solutions can be generated at each iteration.

In Section 2 we describe Karmarkar's basic algorithm for problems in a certain
canonical form, with optimal value known to be zero. Section 3 shows that the
potential function can be decreased by a constant at each iteration. This proof
uses a result (Lemma 3.1) which shows that, in the transformed space, the objective
function moves a substantial fraction of the way toward a lower bound given by
duality, rather than toward zero. This replaces a geometrical argument of
Karmarkar, and also applies when the optimal value is not zero. Section 4
discusses a sequence of dual solutions that arises naturally from the proofs of
Section 3. We prove convergence under a certain nondegeneracy assumption.
However, this assumption may fail for many practical problems. Section 5
introduces an extended algorithm that applies even in degenerate cases and when
the optimal value is not known. Dual variables are naturally generated, and both
the primal and dual objective values converge to their optimal value.

.In Section 6 we discuss an implementation of the method using the OR
factorization. In particular we show how to generate extreme point solutions.

Karmarkar uses a clever modification of his method to avoid computing a fresh
factorization at each iteration. Instead, a lower rank update of the appropriate
matrix is carried out at each step; on average, updates of rank ~ are sufficient.
We avoid this modification for several reasons. First, it is hard to see how dual
var iables could be extracted and used effectively if low-rank updates are
employed. Second, Karmarkar's proof that ~/-ff-rank updates suffice on average
depends on his taking a step of fixed length in the transformed space. It seems
to be much more efficient to perform some form of line search on the potential
function along the direction generated by the algorithm. Such a line search may
lead to much longer steps that preclude the application of Karmarkar's average-
rank analysis. A line search also eliminates the difficulty of simple small examples
leading to slow linear convergence--see Charnes et al. [3].

To conclude this introduction, we note that several previous algorithms have
attempted to cut through the interior of the feasible region, rather than generate
a sequence of adjacent extreme points on its boundary. See, for example, the
reduced gradient methods in [15]. Karmarkar's treatment is distinguished by its
ingenious transformations allowing substantial steps to be taken at each iteration
and its use of the sophisticated potential function to assure reasonable progress.
We also mention that projective transformations have also been used, first to
handle linear fractional programming problems (Charnes and Cooper [2]), but
also in linear complementary [18] and probabilistic analyses [11].

The first version of this paper contained additional material on solving problems
in general form and on implementation for the large sparse case; many of the
ideas were discussed independently by Tomlin [19]. There has been considerable
further work in these areas. We would like to mention in particular the work of
Anstreicher [1], Gay [6], Gonzaga [10], and Jensen and Steger [14] on handling
general problems, and of Gill et al [8] on a Newton barrier method (similar to
Karmarkar's projective method) and its efficient implementation. This last paper

Extension of Karmarkar's Algorithm for Linear Programming 411

also contains the most encouraging computational results for an interior method
obtained outside AT&T Bell Laboratories.

2. Karmarkar's Algorithm. In this section, we consider the linear programming
problem

(P)

min c r x

A x = O,

e T x = It,

x>--O,

where A is m x n, and c, x, and e = (1, 1 , . . . , 1) 7̀ are n-vectors. We assume that:

(a) A e = 0, so that x ~ = e is an initial feasible point;
(b) the rank of A is m; and
(c) the optimal value of (P), denoted v (P) , is zero.

We also assume that cre > 0, since otherwise we could stop immediately with
e optimal. This implies that cTx is not constant on the feasible region, and hence
that it is (strictly) positive at any strictly positive feasible point.

We will outline Karmarkar's algorithm for this problem, and show that in k
iterations it generates a strictly positive feasible vector x k with

(1) cTx k <_ e x p (- k / 5 n) c r x ~

which can be written as

(2) n log r l'l log c r x ~

This inequality would be trivial if at each iteration n log cTx could be reduced
by �89 This appears difficult, due to the presence of the inequalities x >-0. Thus
Karmarkar considers instead the "potential function"

(3) f (x) - f (x ; c) = n log c r x -Y~ log xj
J

= E l o g (c r x / x j)

defined for all points in

where

F = {x ~ R~_+: A x = O, eTx = n},

,~ _ R n : R + + - { x c x~ > 0 for all j}.

412 M.J. Todd and B. P. Burrell

Karmarkar shows that f can be reduced by a constant at every iteration.
Intuitively, if n log crx is not decreased, then - ~ j log xj is; this can be thought
of as "gaining altitude" to allow a greater decrease later, or moving away from
the close boundaries of R~_+ to allow a greater decrease later. Note that - ~ j log xj
is minimized for x c F, indeed also for x in the simplex

S = { x e R + + : e r x = n } ,

by x = x ~ = e. Hence it is easy to see that guaranteeing a decrease in f of ~ at
each iteration assures (1) (Lemma 2.2).

It is worthwhile to note the resemblance of f to the objective function of an
interior penalty or barrier method. Using Frisch's logarithmic barrier function
[5] and ignoring the easily maintained equality constraints, one might choose x k
to minimize

(1 / r k) c r x - - ~ log xj
J

over x ~ F, where {r k} is a sequence of parameters converging to zero. Thus the
parameters are chosen to magnify the effect of the objective function as k increases.
There are also parameter-free methods, from which we single out Huard's method
of centers [13]. At iteration k, Huard would minimize

--Iog(cTx k-1 -- cTx) - -~ log Xj
J

over x~ F with c r x < cTx k-1. N o t e that, as cTx k-1 approaches v(P), the effect
of the objective function is automatically magnified.

There is a close resemblance between Karmarkar's potential function f and
Huard's penalty function. Again, the effect of the objective function in f is
magnified as cTx approaches 0, the assumed optimal value of (P). Huard's
function is convex, while f is not; on the other hand, f does not depend on the
iteration number and has some particularly nice properties.

We shall see that Karmarkar's algorithm is basically a projected gradient
method to minimize (or reduce) f, but at each iteration it works in a transformed
space. The transformation moves the current iterate x k c S to the center e of the
simplex; at the same time it maintains the form of the potential function f.

The transformation is defined by

(4) x ---> x - r l X k l x
e T X k l x '

where Xk = diag(x k, i . . , xk). It is a projective transformation taking S into itself,
x k into e, and the feasible solutions F into

Extension of Karmarkar's Algorithm for Linear Programming 413

where ,4 = AXk. A crucial property of the potential function f is that it is
transformed into a function of the same form:

LEMMA 2.1. Let x and ~ correspond as above, and let ~ = XkC. Then

f (~ ; ~) = f (x ; c)+log det Xk.

The proof is direct from the definition. Thus if we can assure a certain drop
in f - f (. ; ~) from] (e) , we will have obtained a similar drop in f in the original
space. The significance of this is shown by:

LEMMA 2.2. Let x e F satisfy f (x) < - f (e) - y . Then

PROOF.

crx<_exp(-y /n)cre .

Note that f (e) = n log crx -Y.j log 1 = n log cre. Thus

n log crx <- n log c r e - y +~, log xj.
3

Now the xfls are positive numbers with arithmetic mean 1 (since erx = n). Thus
their geometric mean is at most 1, which implies ~j log xj-< 0. Hence log crx <-
log c re - y/n , from which the result follows. []

The key inequality (1) will follow from Lemma 2.2 if we can show that each
iteration decreases f by at least ~. By Lemma 2.1 we only need to decrease f by
at least ~ from its value at e.

We now show how this is done (the proof is deferred to the next section). For
any p x n matrix M of rank p, PM denotes the projection onto the nullspace of
M, { d ~ R " : Md=O}, so that P M = I - M T (M M r) - I M . We denote by P the
projection I - e e r / n onto {d E R": erd = 0}.

Let

Note that since .4 has full row rank and Ae = 0,/~ has full row rank and

Ph = PAP = PPA.

The gradient of f evaluated at e is

Vf(e) = n~/~re - e.

Thus a reasonable direction in which to search for a suitable decrease in] is the
projection of the negative gradient,

d'= -P Vj(e).

414 M.J. Todd and B. P. Burrell

Since P~e = O, this is proportional to

d = - P ~ c ~.

Karmarkar shows that at least some fixed decrease in f is obtained by moving
from e to ~ = e + ad/I1 d II, where a is a sufficiently small constant. In the next
section we show that a = ~ guarantees a decrease in f of ~.

In terms of the original variables, we have:

ALGORITHM 1. Set

Compute

Set

and

d k = -PBkXkC, d k = Xkd k.

k Ak ~k§ /lld II

xk+'= n~k+'/ eT~ k+l.

In fact, ~ is worth while toper form a line search on f in the direction d k from
x k (or on f in the direction d k from e) rather than choosing a fixed a. We show
below that along such a line, f has at most one stationary point, which is a
minimizer.

LEMMA 2.3. Let ~ (a) = f (x + ad) = n log c r (x + ad) -- Y~j log(xj + otdj), where x
and d are not proportional. Then r has at most one stationary point, and i f it has
one, it is a minimizer.

PROOF. We find directly

nc~d 4
~'(a)=cT(x+~d) ~xj+~4'

n(cTd) 2 ~ y~ d 2

~"(a)= (c~(x+~d)) ~ j(xj+~4)2.

If r 0, then the arithmetic mean of the quantities 3j = dj/(xj + adj) equals
c r d / c r (x + ad) . Because 3--> 3 2 is a strictly convex function, it follows that the
arithmetic mean of the 3~ is at least [c r d / c T (x + ad)] 2, with equality only if all
3j's are equal. Since we assume that x and d are not proportional, the 3j's are
not all equal, so that ~p'(a) =0 implies ~p"(a)>0. This gives the result. []

Extension of Karmarkar's Algorithm for Linear Programming 415

3. Guaranteed Decrease in f . Here we show that f can be decreased by a
constant at each iteration. To allow its use in more general contexts in Section
5, the proof is different from that presented by Karmarkar.

The analysis of the previous section demonstrates that all iterations reduce to
the same situation as the first, with c and A replaced by ~ and A. Thus we
consider here just the first iteration. However, to allow for general use of the
results in Section 5, we replace c and A by ~ and/~. Thus we consider the linear
programming problem

min ~rx

-Ax = O,
(P)

e T x " : rl,

x - O ,

satisfying the assumptions (a) and (b) of Section 2. Its dual is

max n

(D) / i r y + e~<_ e,

where y~ R m and g~ R.
Note that, given any 37, (37, ~) with ~=min i (~ - f i , r)7)j is feasible in the dual

with objective function n~. If v(/5) =0, we have :~-<0.
The idea is to show first that Karmarkar's step assures a reasonable decrease

in f (x) = n log 5rx and then to show that the extra term - ~ j log x~ does not
increase f too much.

Our first result shows that, in fact, grx moves a substantial fraction of the way
toward a lower bound given by a particular feasible dual solution by searching
in the negative projected gradient direction.

LEMMA 3.1. Let d : - P ~ , where / ~ = (A) e r . Let 37=(fi~/(r)-l,4~ and

= min i (5 - A ~) j . Then either d = O, in which case e is an optimal solution to (P)
and (y, e) to (D) , or

5V(e + ad/II dll) ~ (1 - a / n) e r e + (~ / n) (n ~) .

PROOF. If d = - P a 5 = - P P a 5 = -P(~- .4 r)7) is zero, then ~ - tiff-)7 is a multiple
of e and hence n 2 = (5 - . 4 r ~) r e = ~ r e . Hence e and (37,~) are primal and
dual optimal. Suppose not. Then we have I l d l l 2 = d T d = g r P ~ g = - C d . Thus
5T(e + ~d/II dll) : ~Te- ~ II d11, It suffices to show that II dll -> e~e/n - ~. Now

d = - P (e - ~Vy)

= - (5 - AT~f- eer(5- A~)/n).

416 M.J. Todd and B. P. Burrell

Since A e = 0 , we get d = - (~ - A r ~) + (6 r e / n) e . Also, 6re>-v(fi)>-n~, so
(6re~n) >-~. For some i, we have e = (e - f i , ~) i , so di = 6re~ n - e >-O. Now [1 d ll--
[di] = 6 r e / n - ~ , which completes the proof. []

COROLLARY 3.2. With the notation of Lemma 3.1, suppose further that ~ <- 0 and
v(ff) >- 0 (which holds if (if) satisfies assumption (c) of Section 2) and d # O. Then
if 0 < a < 1, n log 6T(e + ad/II drl)--< n log ere - a.

PROOF. Since d # 0 , Lemma 3.1 gives 6%>U(e+ad/lldll)>-v(P) so that
C x > v(P)>-0 for all strictly positive x feasible in (/5). From ~-< 0, Lemma 3.1
yields 6r(e + ad/I[d][) -< (1 - a~ n)6Te. Since all these quantities are positive, the
result follows from log(1 - a / n) <- - a / n . []

The following lemmas are essentially proved in Karmarkar [16].

LEMMA 3.3. I f [e [_ < a < l then

e - 62/2(1 - a)2-- < log(1 + e) --< e.

LEMMA 3.4. I f [Ix-e[]-<~<l, e~x--n, then

0 - < - ~ log xj -< a2/2(1 - 2) .
J

Now from Corollary 3.2 and Lemma 3.4 we deduce:

THEOREM 3.5. With notation as in Lemma 3.1,

f (e + ad/II d II) <- f (e) - a + 012/2(1 - a) 2.

In particular, if ce = �89

(5) f (e + (�89 d 11) < f (e) -~.

Inequality (1) follows from (5) and the discussion following Lemma 2.2.

4. Dual Variables, I. The proof of Lemma 3.1 suggests that we might obtain
good dual solutions by setting

(6) yk = (AX2AT)-iAX2kC and z k =minj(c--Aryk)j .

This is indeed the case as long as suitable nondegeneracy assumptions hold:

THEOREM 4.1. Suppose the iterates x k defined by Karmarkar's Algorithm 1
converge to a nondegenerate basic solution x* to (P). Then {(yk, zk)} given by
(6) converges to an optimal solution to (D).

Extension of Karmarkar's Algorithm for Linear Programming 417

PROOF. Let X , = diag(x~* , x,*) and let J(, denote the principal submatrix of

X , corresponding to the basic variables in x*. Let [A 1 er be the basis matrix of

(P) corresponding to x*. Then A has rank m, and hence so does A X , . Thus
AX,A- -2 - r = A X 2 , A T is nonsingular. Now (A X 2 A T)y k = A X 2 c. Since A X 2 A r con-
verges to the nonsingular matrix AXZ, A r, and AX2c converges to AX2,c, it
follows that yk converges to the unique solution y* to

(7) AXEAry, 2 AX~c.

Now the optimal solution)7 to (D) satisfies At)7 -< c (the optimal z is zero) and
by complementary slackness X , AT)7 = X , c . Thus)7 also solves (7), whence y* = 37
as desired. []

While Theorem 4.1 appears at first sight attractive, there are some difficulties.
Many linear programming problems arising in practice have degenerate optimal
solutions, and Theorem 4.1 fails to apply. In particular, one might hope to be
able to find a feasible solution to a system ~Ty <_ ~ by considering (/9) with

= [,4, 0], ~r = [~r 0]. If the linear inequality system has a solution, this has
optimal value 0, and one might be tempted to apply Karmarkar's algorithm to
(15) and generate {yk} as in (6). Unfortunately, one optimal solution of (/5) is
then x = (0 , . . . , 0 , n) r, which is highly degenerate. Whi le the argument of
Theorem 4.1 can be somewhat refined, we see no way to prove convergence in
such a case.

Next, one might hope that, even if {yk} failed to converge, z k would converge
to 0 and hence every limit point of {yk} would be optimal. (It is possible to show
that {yk} remains bounded, so that limit points exist.) The basis for such a hope
comes from Lemma 3.1, where it appears that crx k makes progress toward the
lower bound nz k at each iteration. Thus, with cTxk+O, we should also have
zk~O. Unfortunately, Lemma 3.1 applies only to the first iteration; at a later
iteration z k should be replaced with ffk = minj(Xkc- XkAryk)~. Since some com-
ponents of x k are approaching zero, the fact that fig tends to zero does not help.

We shall see in the next section how dual variables can be obtained in any
case, and how they can be used to solve problems whose optimal value is not
necessarily zero.

5. Dual Variables, II. We consider again problem (P), but now we drop assump-
tion (c), that v (P) = 0 . If we knew that v (P) equalled nz*, for some known z*
(part of an optimal solution to the dual (D) of (P)), then it would follow that
the optimal value of (t5) with 6 = c - z * e would be zero. Indeed, 6Tx =
c T x - z*erx-= c T x - nz* for every feasible x. Then we could apply the algorithm
with ~ = c - z* e replacing c.

Unfortunately, z* is unknown. Instead, we will use lower bounds z k on z*
and consider ~ = c(z k) =- c - zke at the kth iteration instead of c. We will show

418 M.J. Todd and B. P. Burrell

that the algorithm can be modified to generate sequences {x k} and {(yk, Zk)}
satisfying

(8)

(9)

(10)

such that

(11)

x k e F ,

yk ~ R m,

z k = minj(c - Aryk)~,

yk =f(xO; c(zk)) _ f (x k ; c(zk)) -> k /5

for all k. For k = 0 we choose x ~ = e, yO = (AAT)-IAc and the corresponding z ~
and (8)-(11) are trivially satisfied.

If c - - A T y ~ is a multiple of e, then cTx is constant on the feasible region and
we stop with e optimal. If not, then CTX is not constant and so c r x > nz for any
strictly positive feasible x and any lower bound nz on v(P) .

Suppose (8)-(11) hold at the kth iteration. Since (yk, Z k) is feasible in (D),
z k - < z*. The following lemma shows that (11) implies also that

f (x k ; c(z*)) -----f(x~ c(z*)) - k /5 ,

so that convergence of the algorithm follows as before.

LEMMA 5.1. L e t z < - z ' < - z *. T h e n f o r a l l x ~ F w i t h c r x > n z ',

implies

f (x~ c (z)) - f (x ; c(z))-> y->O

f (x~ c(z ')) - f (x ; c(z ')) >- %

PROOF. By
equivalent to

Lemma 2.2, C(z)Tx<-c(z)Tx ~ SO cTx<--CrX ~ The hypothesis is

/ c T x - - n z \
,

Note that, since nz <- n z '< cTx <- cTx ~

thus

c Tx -- nz I c Tx -- nz
~- cTxO c T x O - n z r - -- n z

[cTx-nz'\
,, logt -< z log %

J

which implies the conclusion. []

Extension of Karmarkar's Algorithm for Linear Programming 419

We now show how to find x k+l, yk+l, and z k+l satisfying (8)-(11).
Set 37 = (AX2AT)-IAX2kc(zk), and $ = min~(c(z k) - A ~) j . There are two cases,

depend ing on whether $<- 0. Note that $ = i - z k, where ~ = m i n ~ (c - Ar37)j ; n~
is the b o u n d on v (P) given by 37. Hence ~ > 0 iff 37 generates an improved bound
(nY> nz k) on v(P).

LEMMA 5.2. I f $<-O, set ~k = _pB~XkC(Z k) and d k = Xkd k. Then with yk+l =yk,
z k§ = z ~, ; ~ + ' - - x ~ + ~ d V I I d ~ l l and X k+l = nxk§ k+l (where a =1 or a is
obtained by a line search on f (. ; c(zk+l))), (8)-(11) hold for k+ 1.

PROOF. Since 2-< 0, we also have

e = minj(Xkc(z k) - XkAT;)j ~ O.

Thus L e m m a 3.1 and Corol la ry 3.2 can be appl ied with ~ = Xkc(z k) and ,4 = AXk.
Hence the potent ia l funct ion f (�9 ; c(zk)) can be reduced by at least �89 as in Section
3, by moving in the direct ion d k in the s ta tement of the lemma. Hence (8)-(11)
fol low for k + 1. []

N o w we suppose 2 > 0, so that

(12)

Note that

min~(Xkc(z k) - XkA ry)j > O.

XkC(Z k) -- X k A ~ = P AxkXkc(z k)

= PAx~(Xkc-- ZkXk).

Let u = PAx~XkC, V = PAxkX k.

LEMMA 5.3. I f 2 > 0 , there is a unique z k+~ with z k < Z k+l such that

minj (u-zk+lv) j =0 .

Define

Then

yg+l = (AX2kAT)-IAX2kc(zk+I).

(13) min j (c (z TM) - A r y k § = min2 (u - z k§ v)j = O.

Moreover, if

~k k+l d k : ""k
= -PBkXkc(z), Xkd ,

• k + l = x k + o , dk/lldk]l and X k + l = n . ~ k + ' / e T y c k+'

420 M.J. Todd and B. P. Burrell

(where a =�89 or a is obtained by a line search on f (. ; c(zk+l))), then (8)-(11) hold
for k + l .

PROOF. The function qr(z)=--- -minj(u-zv) j is piecewise linear and concave.
Moreover, by (12), ~ (z k) > 0. Now let z = c r x k / n >-z k. Then

e r (u -- ZV) = (PAx~e)T(XkC -- ZX k)

= e r (X k C -- zX k)

-~. c Txk -- n z ~. O.

Since the sum of the components of u - z v vanishes, we must have ~(z) -< 0.
Hence there is a unique z k§ z k < z k§ <- z, with ~ (z k§ = 0. (Note that z k§ can
be found by a simple minimum ratio test.)

Observe that u - zk+~v = Xk(C(Z k § SO that (13) holds. Thus nz k§
is a lower bound on v (P) , since (yk+~, Zk+l) is feasible in (D). From z k < z k+~ <- z*,

Lemma 5.1 gives

~k =f(xO; c (z k + I)) _ f (x k ; c(zk+I)) >_ k / 5 .

Moreover, from (13),

min j (X k c (z k+l) - X k A ryk+l)j = O,

so that Lemma 3.1 and Corollary 3.2 can be applied with 6= XkC(Z k+l) and
fi, = AXk. The corresponding 2 equals 0, so that the potential function

f (' ; c(zk+l))

can be decreased by at least 1 as in Section 3 by searching in the direction d k.
Hence (8)-(11) also hold for k + l . []

Let us state the resulting method precisely:

ALGORITHM 2. At iteration k, we have x k, yk, zk. Set

Compute

I f

then set

Ak = A X k .

U = PAkX~c, v = PAkX k.

min~(u - - zkv) j <--O,

y k + l ~ y k z k + l ~ zk .

Extension of Karmarkar's Algorithm for Linear Programming 421

Otherwise, find

and set

Compute

and

Set

Zk+l>Z k with min~(u--zk+lv)j=O,

y k + , = (AkA T[)-I AkXkC(Zk+,).

~k=--p(u- -zk+Iv) , dk= Xk~ k,

= x + (k)d / Ildkll.

X k+l : n~k+l/ery k+l.

(Al t e rna t ive ly , 3~ k+l is found by searching along xk-Fotd k to approximately
minimize f (. ; c(zk+~)).) Note that if the computation of u and v also yields
~= (AkA[)-IAkXkC and 3~ = (AkA[)-~AkXk as by-products, then whenever yk
needs to be updated, we may use yk+l ~ Zk+l~

From Lemmas 5.2 and 5.3, we obtain:

THEOREM 5.4. The algorithm above generates a sequence {x k} of primal feasible
and a sequence {(yk, z k)) of dual feasible solutions, with cTx k and nz k approaching
nz* = v(P). Indeed,

(14)

and

(c r x k - n z *) ~ e x p (- k / 5 n) [c r x ~

(15) (nz*- -nzk)~
1

1 - e x p (- k / 5 n) eXv~-rwJn)tcx~ 1.,~ ~r r.. nz*].

PROOF. From (11) and Lemma 2.2 we have

(cTx k - nz*) + (nz* - nz k) <- e x p (- k / 5n)[(c rx ~ - nz*) + (nz* - nzk)].

Subtracting e x p (- k / 5 n) (n z * - n z k) from both sides, we deduce inequalities (14)
and (15) and hence the desired convergence. []

Note that obtaining the strongest possible inequality of form (11) assures both
fast primal and fast dual convergence by the proof above. Thus the line search
proposed above helps both primal and dual solutions to converge rapidly. Also,
we see no way to prove that crx k approaches v(P) monotonically or that nz k
(which is monotonic by construction) increases strictly at each iteration.

422 M.J. Todd and B. P. Burrell

6. Implementation. Here we discuss how the algorithm in Section 5 can be
implemented in the dense case, and how extreme point solutions can be generated
at a modest extra cost for each iteration.

At each iteration, we perform a QR factorization of the matrix A [= XkAV:

(16) A[=QR=[Q1, Q2] (R1) ,

where Q = [Q1, Q2] is orthogonal, R 1 is m • m upper triangular, and Q1 has m
columns. We do not need Q explicitly--it is sufficient to be able to calculate Qv
and QTv efficiently. Thus Q can be stored as the product of Householder
reflections or Givens rotations. The factorization (16) can be computed in about
m2(n-m/3) floating-point operations using Householder reflections if Ak is
dense; see [9]. For the sparse case, see, e.g., [7] and [12].

Next we compute QTXkc and QTxk (and thus Q~Xkc and Q~x k for i= 1, 2)
and hence u = Q2Q~XkC and v = Q2Q~x k in O(mn) work. If yk and z k are to
be updated, z k+x requires O(n) work and yk+l=RllQ~(XkC--Zk+lXk) an addi-
tional O(m2). Finally, dg, d k, and s xk+~ need only O(n) work together with
any additional calculations performed in a linear search.

The factorization (16) is normally obtained by dealing with the columns of A [
sequentially. A slightly modified procedure may be valuable in our context.
Assume that {x k} is converging to a nondegenerate basic feasible solution.
Suppose the columns of Ak are permuted to reflect decreasing size of x~. For
large k we might expect the first m + 1 columns of the permuted Ak to correspond
to the basic columns of A in an optimal solution. Suppose that these are the first
m + 1 columns and that

(17) Ak = [Ak, Ak]

with Akm x (m + 1). In about (~)rn 3 floating-point operations we compute the QR
factorization of A[:

Now note that /~kq = 0. Thus if A = [A, A], c r = (j r , e r) and Xk = diag(J~k, J~k)
are partitioned as in (17), we find AXk~ = 0. Hence a suitable normalization x of

gives an extreme point solution of (P). Note that if () is stored in product form,
~ can be obtained in O(m 2) work. If x is nonnegative, we can compute the
corresponding dual solution (y, z) to check its optimality. Let [•r, fi] = ~r(~, where
~ is a vector of m + 1 ones, and w -- QrXk~; then

can be solved for y and z.

Extension of Karmarkar's Algorithm for Linear Programming 423

If x is not an optimal extreme point, we must continue with the algorithm.
Note that

from (18); thus we may just continue with the reduction of A~ to upper triangular
form, an additional ~ m 2 (n - m) operations being required to obtain

A~= [0Q 0i] Q [R 1] ,

with t~ and t~ each stored in product form. Notice that the extra work required
to calculate x, y, and z is only quadratic in m and thus negligible compared with
that required for the factorization itself. Of course, it is only necessary to compute
x, y, and z when the set of m + 1 largest components of x k differs from that
obtained on the previous iteration.

The analysis above assumes that x k is converging to a nondegerate basic optimal
solution. In the case of degeneracy, we may still obtain the optimal x (if Ak has
rank rn), but unless we have the right basis it is likely that (y, z) will not verify
optimality. In addition, there may well be numerical problems since A T is nearly
rank deficient. We defer the treatment of these difficulties to future work.

References

[1] K. M. Anstreicher, Analysis of Karmarkar's algorithm for fractional linear programming,
Manuscript, School of Organization and Management, Yale University, New Haven, CT, 1985.

[2] A. Charnes and W. W. Cooper, Programming with linear fraction functionals, Naval Res.
Logist. Quart., 9 (1962), 181-186.

[3] A. Charnes, T. Song, and M. Wolfe, An explicit solution sequence and convergence of
Karmarkar's algorithm, Manuscript, University of Texas at Austin, Austin, TX, 1984.

[4] V. Chvatal, Linear Programming, Freeman: New York and San Francisco, 1983.
[5] K.R. Friseh, The logarithmic potential method of convex programming, unpublished, Univer-

sity Institute of Economies, Oslo, 1955.
[6] D. Gay, A variant of Karmarkar's linear programming algorithm for problems in standard

form, Manuscript, AT&T Bell Laboratories, Murray Hill, NJ, 1985.
[7] A. George and M. T. Heath, Solution of sparse linear least squares problems using Givens

rotations, Linear Algebra Appl., 34 (1980), 69-83.
[8] P.E. Gill, W. Murray, M. E. Saunders, J. A. Tomlin, and M. H. Wright, On projected Newton

barrier methods for linear programming and an equivalence to Karmarkar's projective method,
Manuscript, Department of Operations Research, Stanford University, Stanford, CA, 1985.

[9] G.H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins Press, Baltimore,
1983.

[10] C. Gonzaga, A conical projection algorithm for linear programming, Manuscript, Department
of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 1985.

[11] M. Haimovich, The simplex method is very good! On the expected number of pivot stops and
related properties of random linear programs, Manuscript, Graduate School of Business,
Columbia University, New York, 1983.

424 M.J. Todd and B. P. Burrell

[12] M. Heath, Some extensions of an algorithm for sparse linear least squares problems, SIAM J.
Sci. Statist. Compat., 3 (1982), 223-237.

[13] P. Huard, Resolution of mathematical programming with nonlinear constraints by the method
of centers, in Nonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam, 1967,
pp. 207-219.

[14] D. Jensen and A. Steger, Private communication, Department of Applied Mathematics and
Statistics, State University of New York at Stonybrook, Stonybrook, New York, 1985.

[15] M. Kallio and E. L. Porteus, A class of methods for linear programming, Math. Programming,
14 (1978), 161-16.

[16] N. Karmarkar, A new polynomial time algorithm for linear programming, Combinatorica, 4
(1984), 373-395.

[17] N. Megiddo, A variation on Karmarkar's Algorithm, Manuscript, IBM Research Laboratory,
San Jose, CA, 1985.

[18] M.J. Todd, Extensions of Lemke's algorithm for the linear complementarity problem, J. Optim.
Theory Appl., 20 (1976), 397-416.

[19] J.A. Tomlin, An experimental approach to Karmarkar's projective method for linear program-
ming, Manuscript, Ketron Inc., Mountain View, CA, t985.

