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An Extension of Karmarkar's Algorithm for 
Linear Programming Using Dual Variables 

Michael J. Todd 1'2 and Bruce P. Burrell I 

Abstract. We describe an extension of Karmarkar's algorithm for linear programming that handles 
problems with unknown optimal value and generates primal and dual solutions with objective values 
converging to the common optimal primal and dual value. We also describe an implementation for 
the dense case and show how extreme point solutions can be obtained naturally, with little extra 
computation. 
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1. Introduction. This paper  is concerned with the new algorithm of Karmarkar  
[16] to solve linear programming problems. I f  the data of  a linear programming 
problem are all integer, then the running time of the algorithm is polynomial  in 
the length of a binary encoding of the data. The basic method is an iterative 
technique for solving a linear programming problem of a certain type. I f  the data 
are integer, the iterations can be terminated after a polynomial  number  of  steps, 
and an exact solution obtained by rounding. Various subsidiary problems of 
obtaining a feasible solution and dealing with problems not in the required form 
can be reduced to solving problems in canonical form. 

Let us ignore integrality of  the data and consider the infinite sequence of 
iterates produced by the basic algorithm. The objective function values of  the 
iterates converge at least linearly to the optimal value, but, in contrast to simplex 
methods, each iterate is a strictly positive vector lying in the relative interior of  
the feasible region. Convergence is proved by monitoring a cleverly constructed 
potential function, which is invariant under certain projective transformations. 
By making such a transformation so that the current iterate is mapped  into a 
point far away from all inequality constraints Karmarkar  is able to assure a fixed 
decrease in this potential function at every iteration. This translates into an 
aggregate decrease of  the objective function as a geometric progression. 

One drawback of Karmarkar ' s  method is that it does not generate dual solutions, 
which are of  great economic significance as well as of  potential use during the 
algorithm. Here we show how dual solutions can be generated naturally during 
the course of  the algorithm and how they can be used to extend the applicability 
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of the basic algorithm. We also discuss some aspects of an implementation of 
the algorithm for the dense case. We show in particular that, at a very modest 
extra cost, extreme point solutions can be generated at each iteration. 

In Section 2 we describe Karmarkar's basic algorithm for problems in a certain 
canonical form, with optimal value known to be zero. Section 3 shows that the 
potential function can be decreased by a constant at each iteration. This proof  
uses a result (Lemma 3.1) which shows that, in the transformed space, the objective 
function moves a substantial fraction of the way toward a lower bound given by 
duality, rather than toward zero. This replaces a geometrical argument of 
Karmarkar, and also applies when the optimal value is not zero. Section 4 
discusses a sequence of dual solutions that arises naturally from the proofs of 
Section 3. We prove convergence under a certain nondegeneracy assumption. 
However, this assumption may fail for many practical problems. Section 5 
introduces an extended algorithm that applies even in degenerate cases and when 
the optimal value is not known. Dual variables are naturally generated, and both 
the primal and dual objective values converge to their optimal value. 

.In Section 6 we discuss an implementation of  the method using the OR 
factorization. In particular we show how to generate extreme point solutions. 

Karmarkar uses a clever modification of his method to avoid computing a fresh 
factorization at each iteration. Instead, a lower rank update of the appropriate 
matrix is carried out at each step; on average, updates of rank ~ are sufficient. 
We avoid this modification for several reasons. First, it is hard to see how dual 
var iables  could be extracted and used effectively if low-rank updates are 
employed. Second, Karmarkar's proof  that ~/-ff-rank updates suffice on average 
depends on his taking a step of fixed length in the transformed space. It seems 
to be much more efficient to perform some form of line search on the potential 
function along the direction generated by the algorithm. Such a line search may 
lead to much longer steps that preclude the application of Karmarkar's average- 
rank analysis. A line search also eliminates the difficulty of simple small examples 
leading to slow linear convergence--see Charnes et al. [3]. 

To conclude this introduction, we note that several previous algorithms have 
attempted to cut through the interior of the feasible region, rather than generate 
a sequence of adjacent extreme points on its boundary. See, for example, the 
reduced gradient methods in [15]. Karmarkar's treatment is distinguished by its 
ingenious transformations allowing substantial steps to be taken at each iteration 
and its use of  the sophisticated potential function to assure reasonable progress. 
We also mention that projective transformations have also been used, first to 
handle linear fractional programming problems (Charnes and Cooper [2]), but 
also in linear complementary [18] and probabilistic analyses [11]. 

The first version of this paper contained additional material on solving problems 
in general form and on implementation for the large sparse case; many of the 
ideas were discussed independently by Tomlin [19]. There has been considerable 
further work in these areas. We would like to mention in particular the work of 
Anstreicher [1], Gay [6], Gonzaga [10], and Jensen and Steger [14] on handling 
general problems, and of  Gill et al [8] on a Newton barrier method (similar to 
Karmarkar's projective method) and its efficient implementation. This last paper 
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also contains the most encouraging computational results for an interior method 
obtained outside AT&T Bell Laboratories. 

2. Karmarkar's Algorithm. In this section, we consider the linear programming 
problem 

(P) 

min c r x 

A x  = O, 

e T x  = It, 

x>--O, 

where A is m x n, and c, x, and e = (1, 1 , . . . ,  1) 7̀  are n-vectors. We assume that: 

(a) A e  = 0, so that x ~ = e is an initial feasible point; 
(b) the rank of A is m; and 
(c) the optimal value of (P),  denoted v ( P ) ,  is zero. 

We also assume that cre  > 0, since otherwise we could stop immediately with 
e optimal. This implies that cTx is not constant on the feasible region, and hence 
that it is (strictly) positive at any strictly positive feasible point. 

We will outline Karmarkar's algorithm for this problem, and show that in k 
iterations it generates a strictly positive feasible vector x k with 

(1) cTx k <_ e x p ( - k / 5 n ) c r x  ~ 

which can be written as 

(2) n log r l'l log c r x ~  

This inequality would be trivial if at each iteration n log cTx could be reduced 
by �89 This appears difficult, due to the presence of the inequalities x >-0. Thus 
Karmarkar considers instead the "potential function" 

(3) f ( x )  - f ( x ;  c) = n log c r x  -Y~ log xj 
J 

= E l o g ( c r x / x j )  

defined for all points in 

where 

F = {x ~ R~_+: A x  = O, eTx = n}, 

,~ _ R n :  R + + - { x c  x~ > 0 for all j}. 
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Karmarkar shows that f can be reduced by a constant at every iteration. 
Intuitively, if n log crx  is not decreased, then - ~ j  log xj is; this can be thought 
of  as "gaining altitude" to allow a greater decrease later, or moving away from 
the close boundaries of  R~_+ to allow a greater decrease later. Note that - ~ j  log xj 
is minimized for x c F, indeed also for x in the simplex 

S = { x e R + + :  e r x = n } ,  

by x = x ~ = e. Hence it is easy to see that guaranteeing a decrease in f of ~ at 
each iteration assures (1) (Lemma 2.2). 

It is worthwhile to note the resemblance of f to the objective function of an 
interior penalty or barrier method. Using Frisch's logarithmic barrier function 
[5] and ignoring the easily maintained equality constraints, one might choose x k 
to minimize 

( 1 / r k ) c r x - - ~  log xj 
J 

over x ~ F, where {r k} is a sequence of parameters converging to zero. Thus the 
parameters are chosen to magnify the effect of the objective function as k increases. 
There are also parameter-free methods, from which we single out Huard's method 
of centers [13]. At iteration k, Huard would minimize 

--Iog(cTx k-1 -- cTx) - -~  log Xj 
J 

over x~  F with c r x <  cTx k-1. N o t e  that, as cTx k-1 approaches v(P),  the effect 
of the objective function is automatically magnified. 

There is a close resemblance between Karmarkar's potential function f and 
Huard's penalty function. Again, the effect of the objective function in f is 
magnified as cTx approaches 0, the assumed optimal value of (P).  Huard's 
function is convex, while f is not; on the other hand, f does not depend on the 
iteration number and has some particularly nice properties. 

We shall see that Karmarkar's algorithm is basically a projected gradient 
method to minimize (or reduce) f, but at each iteration it works in a transformed 
space. The transformation moves the current iterate x k c S to the center e of the 
simplex; at the same time it maintains the form of the potential function f. 

The transformation is defined by 

(4)  x ---> x - r l X k l x  
e T X k l x  ' 

where Xk = diag(x k, i . . ,  xk). It is a projective transformation taking S into itself, 
x k into e, and the feasible solutions F into 
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where ,4 = AXk. A crucial property of the potential function f is that it is 
transformed into a function of the same form: 

LEMMA 2.1. Let x and ~ correspond as above, and let ~ = XkC. Then 

f (~ ;  ~) = f ( x ;  c )+log  det Xk. 

The proof is direct from the definition. Thus if we can assure a certain drop 
in f - f ( .  ; ~) from ] (e) ,  we will have obtained a similar drop in f in the original 
space. The significance of this is shown by: 

LEMMA 2.2. Let x e  F satisfy f ( x ) < - f ( e ) - y .  Then 

PROOF. 

crx<_exp(-y /n)cre .  

Note that f ( e )  = n log crx -Y.j  log 1 = n log cre. Thus 

n log crx <- n log c r e -  y +~, log xj. 
3 

Now the xfls are positive numbers with arithmetic mean 1 (since erx = n). Thus 
their geometric mean is at most 1, which implies ~j log xj-< 0. Hence log crx <- 
log c re - y/n ,  from which the result follows. [] 

The key inequality (1) will follow from Lemma 2.2 if we can show that each 
iteration decreases f by at least ~. By Lemma 2.1 we only need to decrease f by 
at least ~ from its value at e. 

We now show how this is done (the proof is deferred to the next section). For 
any p x n matrix M of rank p, PM denotes the projection onto the nullspace of 
M, { d ~ R " :  Md=O}, so that P M = I - M T ( M M r ) - I M .  We denote by P the 
projection I -  e e r / n  onto {d E R": erd = 0}. 

Let 

Note that since .4 has full row rank and Ae = 0,/~ has full row rank and 

Ph = PAP = PPA. 

The gradient of f evaluated at e is 

Vf(e) = n~/~re - e. 

Thus a reasonable direction in which to search for a suitable decrease in ] is the 
projection of the negative gradient, 

d'= -P Vj(e). 
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Since P~e = O, this is proportional to 

d = - P ~ c  ~. 

Karmarkar shows that at least some fixed decrease in f is obtained by moving 
from e to ~ = e + ad/I1 d II, where a is a sufficiently small constant. In the next 
section we show that a = ~ guarantees a decrease in f of ~. 

In terms of the original variables, we have: 

ALGORITHM 1. Set 

Compute 

Set 

and 

d k = -PBkXkC, d k = Xkd  k. 

k Ak ~k§ /lld II 

xk+'= n~k+'/ eT~ k+l. 

In fact, ~ is worth while toper form a line search on f in the direction d k from 
x k (or on f in the direction d k from e) rather than choosing a fixed a. We show 
below that along such a line, f has at most one stationary point, which is a 
minimizer. 

LEMMA 2.3. Let ~ ( a ) = f ( x + ad  ) = n log c r ( x + ad  ) -- Y~j log( xj + otdj ), where x 
and d are not proportional. Then r has at most one stationary point, and i f  it has 
one, it is a minimizer. 

PROOF. We find directly 

nc~d 4 
~'(a)=cT(x+~d) ~xj+~4' 

n(cTd)  2 ~ y~ d 2 

~"(a)= (c~(x+~d)) ~ j(xj+~4)2. 

If  r  0, then the arithmetic mean of the quantities 3j = dj/(xj  + adj) equals 
c r d / c r ( x +  ad) .  Because 3--> 3 2 is a strictly convex function, it follows that the 
arithmetic mean of the 3~ is at least [ c r d / c T ( x  + ad) ]  2, with equality only if all 
3j's are equal. Since we assume that x and d are not proportional, the 3j's are 
not all equal, so that ~p'(a) =0  implies ~p"(a)>0. This gives the result. [] 
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3. Guaranteed Decrease in f .  Here we show that f can be decreased by a 
constant at each iteration. To allow its use in more general contexts in Section 
5, the proof is different from that presented by Karmarkar. 

The analysis of the previous section demonstrates that all iterations reduce to 
the same situation as the first, with c and A replaced by ~ and A. Thus we 
consider here just the first iteration. However, to allow for general use of the 
results in Section 5, we replace c and A by ~ and/~. Thus we consider the linear 
programming problem 

min ~rx  

-Ax = O, 
(P)  

e T x " :  rl, 

x - O ,  

satisfying the assumptions (a) and (b) of Section 2. Its dual is 

max n 

(D) / i r y +  e~<_ e, 

where y~  R m and g~ R. 
Note that, given any 37, (37, ~) with ~=min i (~ - f i ,  r)7)j is feasible in the dual 

with objective function n~. If v(/5) =0,  we have :~-<0. 
The idea is to show first that Karmarkar's step assures a reasonable decrease 

in f ( x ) =  n log 5rx and then to show that the extra term - ~ j  log x~ does not 
increase f too much. 

Our first result shows that, in fact, grx moves a substantial fraction of the way 
toward a lower bound given by a particular feasible dual solution by searching 
in the negative projected gradient direction. 

LEMMA 3.1. Let  d : - P ~ ,  where / ~ = ( A )  e r  . Let  37=(fi~/(r)-l,4~ and 

= min i (5 -  A ~ ) j .  Then either d = O, in which case e is an optimal solution to (P)  
and (y, e) to (D) ,  or 

5V(e + ad/II dll) ~ (1 - a / n ) e r e  + ( ~ / n ) ( n ~ ) .  

PROOF. If  d = - P a 5  = - P P a 5  = -P(~- .4 r )7)  is zero, then ~ -  tiff-)7 is a multiple 
of e and hence n 2 = ( 5 - . 4 r ~ ) r e = ~ r e .  Hence e and (37,~) are primal and 
dual optimal. Suppose not. Then we have I l d l l 2 = d T d = g r P ~ g = - C d .  Thus 
5T(e + ~d/II dll) : ~Te-  ~ II d11, It suffices to show that II dll -> e~e/n  - ~. Now 

d =  - P ( e -  ~Vy) 

= - ( 5 -  AT~f- eer(5- A~)/n). 
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Since A e = 0 ,  we get d = - ( ~ - A r ~ ) + ( 6 r e / n ) e .  Also, 6re>-v(fi)>-n~, so 
(6re~n) >-~. For some i, we have e = ( e - f i , ~ ) i ,  so di = 6re~ n -  e >-O. Now [1 d ll-- 
[di] = 6 r e / n - ~ ,  which completes the proof. [] 

COROLLARY 3.2. With the notation of Lemma 3.1, suppose further that ~ <- 0 and 
v( ff ) >- 0 (which holds if  (if) satisfies assumption (c) of Section 2 ) and d # O. Then 
if  0 < a < 1, n log 6T(e + ad/II drl)--< n log ere - a. 

PROOF. Since d # 0 ,  Lemma 3.1 gives 6%>U(e+ad/lldll)>-v(P) so that 
C x >  v(P)>-0 for all strictly positive x feasible in (/5). From ~-< 0, Lemma 3.1 
yields 6r(e + ad/I[ d][) -< (1 - a~ n)6Te. Since all these quantities are positive, the 
result follows from log(1 - a / n )  <- - a / n .  [] 

The following lemmas are essentially proved in Karmarkar [16]. 

LEMMA 3.3. I f  [ e [ _ < a < l  then 

e - 62/2(1 - a)2-- < log(1 + e) --< e. 

LEMMA 3.4. I f  [Ix-e[]-<~<l,  e~x--n, then 

0 -  < - ~  log xj -< a2/2(1 - 2 ) .  
J 

Now from Corollary 3.2 and Lemma 3.4 we deduce: 

THEOREM 3.5. With notation as in Lemma 3.1, 

f ( e  + ad/II d II) <- f ( e )  - a + 012/2(1 - a )  2. 

In particular, if  ce = �89 

(5) f ( e  + (�89 d 11) < f ( e )  -~. 

Inequality (1) follows from (5) and the discussion following Lemma 2.2. 

4. Dual Variables, I. The proof of Lemma 3.1 suggests that we might obtain 
good dual solutions by setting 

(6) yk = (AX2AT)-iAX2kC and z k =minj(c--Aryk)j .  

This is indeed the case as long as suitable nondegeneracy assumptions hold: 

THEOREM 4.1. Suppose the iterates x k defined by Karmarkar's Algorithm 1 
converge to a nondegenerate basic solution x* to (P). Then {(yk, zk)} given by 
(6) converges to an optimal solution to (D). 
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PROOF. Let X ,  = diag(x~* . . . .  , x,*) and let J( ,  denote the principal submatrix of 

X ,  corresponding to the basic variables in x*. Let [ A 1 er  be the basis matrix of 

(P) corresponding to x*. Then A has rank m, and hence so does A X , .  Thus 
AX,A- -2 - r  = A X 2 , A  T is nonsingular. Now ( A X 2  A T)y k = A X 2  c. Since A X 2  A r con- 
verges to the nonsingular matrix AXZ, A r, and AX2c converges to AX2,c, it 
follows that yk  converges to the unique solution y* to 

(7) AXEAry, 2 AX~c. 

Now the optimal solution )7 to (D) satisfies At)7 -< c (the optimal z is zero) and 
by complementary slackness X ,  AT)7 = X , c .  Thus )7 also solves (7), whence y* = 37 
as desired. [] 

While Theorem 4.1 appears at first sight attractive, there are some difficulties. 
Many linear programming problems arising in practice have degenerate optimal 
solutions, and Theorem 4.1 fails to apply. In particular, one might hope to be 
able to find a feasible solution to a system ~Ty <_ ~ by considering (/9) with 

= [,4, 0], ~r = [~r  0]. If the linear inequality system has a solution, this  has 
optimal value 0, and one might be tempted to apply Karmarkar's algorithm to 
(15) and generate {yk} as in (6). Unfortunately, one optimal solution of (/5) is 
then x = ( 0 , . . . , 0 ,  n) r, which is highly degenerate. Whi le  the argument of 
Theorem 4.1 can be somewhat refined, we see no way to prove convergence in 
such a case. 

Next, one might hope that, even if {yk} failed to converge, z k would converge 
to 0 and hence every limit point of {yk} would be optimal. (It is possible to show 
that {yk} remains bounded, so that limit points exist.) The basis for such a hope 
comes from Lemma 3.1, where it appears that crx k makes progress toward the 
lower bound nz k at each iteration. Thus, with cTxk+O, we should also have 
zk~O.  Unfortunately, Lemma 3.1 applies only to the first iteration; at a later 
iteration z k should be replaced with ffk = minj(Xkc-  XkAryk)~. Since some com- 
ponents of x k are approaching zero, the fact that fig tends to zero does not help. 

We shall see in the next section how dual variables can be obtained in any 
case, and how they can be used to solve problems whose optimal value is not 
necessarily zero. 

5. Dual Variables, II. We consider again problem (P), but now we drop assump- 
tion (c), that v ( P ) = 0 .  If  we knew that v (P )  equalled nz*, for some known z* 
(part of an optimal solution to the dual (D) of (P)), then it would follow that 
the optimal value of (t5) with 6 = c - z * e  would be zero. Indeed, 6Tx = 
c T x -  z*erx-= c T x -  nz* for every feasible x. Then we could apply the algorithm 
with ~ = c -  z* e replacing c. 

Unfortunately, z* is unknown. Instead, we will use lower bounds z k on z* 
and consider ~ = c(z k) =- c - zke at the kth iteration instead of c. We will show 
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that the algorithm can be modified to generate sequences {x k} and {(yk, Zk)} 
satisfying 

(8) 

(9) 

(10) 

such that 

(11) 

x k e F ,  

yk ~ R m, 

z k = minj(c - Aryk)~, 

yk =f(xO; c(zk))  _ f ( x k ;  c(zk))  -> k /5  

for all k. For k = 0 we choose x ~ = e, yO = (AAT)-IAc and the corresponding z ~ 
and (8)-(11) are trivially satisfied. 

If c - - A T y  ~ is a multiple of e, then cTx is constant on the feasible region and 
we stop with e optimal. If  not, then CTX is not constant and so c r x >  nz for any 
strictly positive feasible x and any lower bound nz on v(P) .  

Suppose (8)-(11) hold at the kth iteration. Since (yk, Z k) is feasible in (D),  
z k -  < z*. The following lemma shows that (11) implies also that 

f ( x k ;  c(z*))  -----f(x~ c(z*))  - k /5 ,  

so that convergence of the algorithm follows as before. 

LEMMA 5.1. L e t z < - z ' < - z  *. T h e n f o r a l l x ~ F w i t h c r x > n z  ', 

implies 

f (x~ c ( z ) ) - f ( x ;  c(z))-> y->O 

f (x~ c(z '))  - f ( x ;  c(z '))  >- % 

PROOF. By 
equivalent to 

Lemma 2.2, C(z)Tx<-c(z)Tx ~ SO cTx<--CrX ~ The hypothesis is 

/ c T x - - n z \  
, 

Note that, since nz <- n z '<  cTx <- cTx ~ 

thus 

c Tx -- nz I c Tx -- nz 
~- cTxO c T x  O -  n z  r -  --  n z  

[ cTx-nz'\ 
,, logt -< z log % 

J 

which implies the conclusion. [] 
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We now show how to find x k+l, yk+l, and z k+l satisfying (8)-(11).  
Set 37 = (AX2AT)-IAX2kc(zk),  and $ = min~(c(z k) - A ~ ) j .  There are two cases, 

depend ing  on whether  $<- 0. Note  that  $ = i -  z k, where ~ = m i n ~ ( c -  Ar37)j ; n~ 
is the b o u n d  on v ( P )  given by 37. Hence  ~ >  0 iff 37 generates  an improved  bound  
(nY> nz k) on v(P). 

LEMMA 5.2. I f  $<-O, set ~k = _pB~XkC(Z k) and d k = Xkd k. Then with yk+l =yk, 
z k§  = z ~, ; ~ + ' - - x ~ + ~ d V I I d ~ l l  and X k+l = nxk§ k+l (where a =1 or a is 
obtained by a line search on f ( . ;  c(zk+l))), (8)-(11)  hold for k+ 1. 

PROOF. Since 2-< 0, we also have 

e = minj(Xkc(z k) - XkAT;)j ~ O. 

Thus  L e m m a  3.1 and Corol la ry  3.2 can be appl ied  with ~ = Xkc(z k) and ,4 = AXk. 
Hence  the potent ia l  funct ion f (  �9 ; c(zk)) can be reduced  by at least �89 as in Section 
3, by moving  in the direct ion d k in the s ta tement  of  the lemma.  Hence  (8)-(11)  
fol low for  k + 1. []  

N o w  we suppose  2 > 0, so that  

(12) 

Note  that  

min~( Xkc( z k) - XkA ry)j > O. 

XkC(Z k ) -- X k A ~  = P AxkXkc(z k) 

= PAx~(Xkc-- ZkXk). 

Let u = PAx~XkC, V = PAxkX k. 

LEMMA 5.3. I f 2 > 0 ,  there is a unique z k+~ with z k < Z k+l such that 

minj (u-zk+lv) j  =0 .  

Define 

Then 

yg+l = (AX2kAT)-IAX2kc(zk+I). 

(13) min j (c (z  TM) - A r y k §  = min2 (u - z k§ v)j = O. 

Moreover, if  

~k k+l d k : ""k 
= -PBkXkc(z ), Xkd , 

• k + l = x k + o ,  dk/lldk]l and X k + l = n . ~ k + ' / e T y c  k+' 
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(where  a =�89 or a is obtained by a line search on f ( . ;  c(zk+l))), then (8)-(11) hold 
for  k + l .  

PROOF. The function qr(z)=--- -minj(u-zv) j  is piecewise linear and concave. 
Moreover, by (12), ~ ( z  k) > 0. Now let z = c r x k / n  >-z k. Then 

e r ( u  -- ZV) = (PAx~e)T(XkC -- ZX k) 

= e r ( X k C  -- zX k) 

-~. c Txk  --  n z  ~. O. 

Since the sum of the components of u - z v  vanishes, we must have ~(z ) -<  0. 
Hence there is a unique z k§ z k < z k§ <- z, with ~ ( z  k§ = 0. (Note that z k§ can 
be found by a simple minimum ratio test.) 

Observe that u -  zk+~v = Xk(C(Z  k §  SO that (13) holds. Thus nz k§ 
is a lower bound on v ( P ) ,  since (yk+~, Zk+l) is feasible in (D).  From z k < z k+~ <- z*, 

Lemma 5.1 gives 

~k =f(xO; c ( z k + I ) )  _ f ( x k ;  c(zk+I))  >_ k / 5 .  

Moreover, from (13), 

min j (  X k c ( z  k+l) - X k A  ryk+l)j = O, 

so that Lemma 3.1 and Corollary 3.2 can be applied with 6=  XkC(Z k+l) and 
fi, = AXk. The corresponding 2 equals 0, so that the potential function 

f ( ' ;  c(zk+l))  

can be decreased by at least 1 as in Section 3 by searching in the direction d k. 
Hence (8)-(11) also hold for k + l .  [] 

Let us state the resulting method precisely: 

ALGORITHM 2. At iteration k, we have x k, yk, zk. Set 

Compute 

I f  

then set 

Ak = A X k .  

U = PAkX~c, v = PAkX k. 

min~(u - - zkv ) j  <--O, 

y k + l  ~ y k  z k + l  ~ zk .  
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Otherwise, find 

and set 

Compute 

and 

Set 

Zk+l>Z k with min~(u--zk+lv)j=O, 

y k + ,  = ( AkA T[)-I AkXkC( Zk+,). 

~k=--p(u- -zk+Iv) ,  dk= Xk~ k, 

= x + (k)d  / Ildkll. 

X k+l : n~k+l/ery k+l. 

(Al t e rna t ive ly ,  3~ k+l is found by searching along xk-Fotd  k to approximately 
minimize f ( . ;  c(zk+~)).) Note that if the computation of u and v also yields 
~= (AkA[)-IAkXkC and 3~ = (AkA[)-~AkXk as by-products, then whenever yk 
needs to be updated, we may use yk+l ~ Zk+l~ 

From Lemmas 5.2 and 5.3, we obtain: 

THEOREM 5.4. The algorithm above generates a sequence {x k} of  primal feasible 
and a sequence  {(yk, z k ) )  of dual feasible solutions, with cTx k and nz k approaching 
nz* = v( P ). Indeed, 

(14) 

and 

( c r x k - n z * ) ~ e x p ( - k / 5 n ) [ c r x ~  

(15) (nz*- -nzk)~  
1 

1 - e x p ( - k / 5 n )  eXv~-rwJn)tcx~ 1.,~ ~r r.. nz*]. 

PROOF. From (11) and Lemma 2.2 we have 

( cTx k - nz*) + ( nz* - nz k) <- e x p ( - k /  5n )[ ( c rx ~ - nz*) + ( nz* - nzk) ]. 

Subtracting e x p ( - k / 5 n ) ( n z * - n z  k) from both sides, we deduce inequalities (14) 
and (15) and hence the desired convergence. [] 

Note that obtaining the strongest possible inequality of form (11) assures both 
fast primal and fast dual convergence by the proof above. Thus the line search 
proposed above helps both primal and dual solutions to converge rapidly. Also, 
we see no way to prove that crx k approaches v(P) monotonically or that nz k 
(which is monotonic by construction) increases strictly at each iteration. 
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6. Implementation. Here we discuss how the algorithm in Section 5 can be 
implemented in the dense case, and how extreme point solutions can be generated 
at a modest extra cost for each iteration. 

At each iteration, we perform a QR factorization of the matrix A [  = XkAV: 

(16) A[=QR=[Q1, Q2] (R1) , 

where Q = [Q1, Q2] is orthogonal, R 1 is m • m upper triangular, and Q1 has m 
columns. We do not need Q explicitly--it is sufficient to be able to calculate Qv 
and QTv efficiently. Thus Q can be stored as the product of Householder 
reflections or Givens rotations. The factorization (16) can be computed in about 
m2(n-m/3) floating-point operations using Householder reflections if Ak is 
dense; see [9]. For the sparse case, see, e.g., [7] and [12]. 

Next we compute QTXkc and QTxk (and thus Q~Xkc and Q~x k for i=  1, 2) 
and hence u = Q2Q~XkC and v = Q2Q~x k in O(mn) work. If yk and z k are to 
be updated, z k+x requires O(n) work and yk+l=RllQ~(XkC--Zk+lXk) an addi- 
tional O(m2). Finally, dg, d k, and s xk+~ need only O(n) work together with 
any additional calculations performed in a linear search. 

The factorization (16) is normally obtained by dealing with the columns of A [  
sequentially. A slightly modified procedure may be valuable in our context. 
Assume that {x k} is converging to a nondegenerate basic feasible solution. 
Suppose the columns of Ak are permuted to reflect decreasing size of x~. For 
large k we might expect the first m + 1 columns of the permuted Ak to correspond 
to the basic columns of A in an optimal solution. Suppose that these are the first 
m + 1 columns and that 

(17) Ak = [Ak, Ak] 

with Akm x (m + 1). In about (~)rn 3 floating-point operations we compute the QR 
factorization of  A[:  

Now note that /~kq = 0. Thus if A = [A, A], c r = ( j r ,  e r )  and Xk = diag(J~k, J~k) 
are partitioned as in (17), we find AXk~ = 0. Hence a suitable normalization x of 

gives an extreme point solution of (P). Note that if () is stored in product form, 
~ can be obtained in O(m 2) work. If x is nonnegative, we can compute the 
corresponding dual solution (y, z) to check its optimality. Let [•r, fi] = ~r(~, where 
~ is a vector of  m + 1 ones, and w -- QrXk~; then 

can be solved for y and z. 
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If x is not an optimal extreme point, we must continue with the algorithm. 
Note that 

from (18); thus we may just continue with the reduction of A~ to upper triangular 
form, an additional ~ m 2 ( n -  m)  operations being required to obtain 

A~= [0Q 0i] Q [ R 1 ] ,  

with t~ and t~ each stored in product form. Notice that the extra work required 
to calculate x, y, and z is only quadratic in m and thus negligible compared with 
that required for the factorization itself. Of course, it is only necessary to compute 
x, y, and z when the set of m + 1 largest components of x k differs from that 
obtained on the previous iteration. 

The analysis above assumes that x k is converging to a nondegerate basic optimal 
solution. In the case of degeneracy, we may still obtain the optimal x (if Ak has 
rank rn), but unless we have the right basis it is likely that (y, z) will not verify 
optimality. In addition, there may well be numerical problems since A T is nearly 
rank deficient. We defer the treatment of these difficulties to future work. 
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