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Abstract
We show that, under a plausible assumption on the distribution of the projected cost vector in
an iteration of Karmarkar’s linear programming algorithm, the decrease in the potential function will
be Q(n/log n) with probability approaching one as n, the number of variables, tends to infinity.
Thus the “anticipated” number of steps to obtain precision 279 s O(q ¢n n). This contrasts with a

worst-case bound on O(qn).



1. Introduction

The aim of this paper is to attempt to explain the excellent behavior of interior point
algorithms for linear programming. Several computational studies have demonstrated the potential of
various variants of Karmarkar’s algorithm [10]: see [1,11,12,13,16]. While the theoretical worst-case
bounds of such algorithms are O(Ln) iterations for projective methods such as Karmarkar’s and
O(LAT) iterations for various path-following (e.g., Renegar [17]) and potential-reduction (e.g., Ye [21])
methods, in practice the number of iterations required seems to grow very slowly with n. (Here n is
the number of inequalities (variables in the standard form) and L the length of the (integer) data.
Alternatively, L can be thought of as the number of significant figures required in the final solution.)
In particular, the results of Lustig, Shanno and Gregory [12] indicate that the number of iterations
required by their code grows linearly with fn n.

Here we consider the “anticipated” behavior of Karmarkar’s original algorithm with optimal
step size. By this we mean the following. At any iteration, we make a plausible assumption on the
distribution of the projected cost vector, and then prove that Karmarkar’s potential function can be
decreased by Q(n/fn n) with probability approaching one as n — oo under this distribution. The
anticipated number of iterations is then defined to be the number of iterations required if this high-
probability event actually occurs every iteration (or at least once in every fixed number of iterations).
Note that the probabilistic assumptions we make at each iteration may not be consistent with each
other nor with a fixed probability distribution on the original problem; hence our results differ from
those on the expected number of iterations. From well-known properties of the potential function, it
follows that the anticipated number of iterations is O(L €n n), or O(q ¢n n) to obtain precision 2—q,
in contrast with a worst-case bound of O(Ln) or O(qn) respectively. In addition, we show that a
step of (1-¢) times the distance to the boundary also achieves a similar reduction of the potential
function with high probability. Similar step-size rules are often used in practice.

The concept of anticipated number of steps was introduced in Gonzaga and Todd [9], and has
also been studied by Mizuno, Todd and Ye [14,15]. A related analysis of the simplex method was

made by Dantzig [6]. Our analysis also applies to the Todd-Burrell algorithm [20], which adjusts lower



bounds on the optimal value, and to the standard-form variants of Anstreicher [2], Gay [,

de Ghellinck and Vial [8] (given a feasible starting solution), Jensen and Steger [19], and Ye and
Kojima [22]. Anstreicher [4] has recentiy given an example where Karmarkar’s algorithm requires
O(L ¢n n) iterations. This nicely complements our results, although in Anstreicher’s example the
potential reduction per iteration is constant.

Section 2 outlines Karmarkar’s algorithm. In section 3 we introduce the probabilistic model

and analyze the decrease in the potential function obtained. Section 4 addresses the step size.

2. Karmarkar’s Algorithm

Consider the linear programming problem in Karmarkar’s canonical form:

) min ¢Tx
Ax =0
eTx =n
x>0

where e denotes a vector of ones in R™ and it is assumed that A is mxn of rank m, that Ae =

0 and c¢Te > 0 so that x° = e is an initial positive feasible solution, and that the optimal value of

(P) (which is clearly bounded) is zero. Karmarkar’s algorithm generates a sequence {xk} of positive

feasible solutions with <TxK o 0. Progress is measured via the potential function

f(x) :=n fn cTx - Ej én X (1)

defined on all positive feasible solutions. Indeed, if f(x) < f(x%) - 4 for such an x, then it is not

hard to show that ¢Tx < exp(-y/n ¢TxC. Hence chk < 279%Tx% in O qn) steps if we can reduce
= Y



f by a constant at each iteration, and in O(q &n n) steps if the reduction is by Q(n/én n) at each

iteration (or at least once in every fixed number of iterations, and is not increased in the others).

The iteration from xk to xk+1 proceeds as follows. Let X := Xk = diag(xk), and consider
the projective transformation
- X e = nXxX
x - X = B2 2 with inverse X = x 1= 2= (2)
eTX—lx e XX
Under this transformation (P) becomes
—T=
p’ min $-X
(F) el XX
Ax =0
e’X=n
% >0

where A := AX and T := Xc. Note that this is a linear fractional programming problem, but since

we seek a solution with objective value zero, it is equivalent to solve

(P) min €%
Ax =0
e’X =n
>0

Note that x = xX is transformed by (2) into X = e. Also, if we define f(X) :=n {n tTx - Y. in %,

it is easy to show that when x and X correspond by (2),

f(x) = f(x) + ¢n det X.



Thus potential differences in the transformed and the original spaces coincide, and we therefore want to

find a feasible X with potential suitably reduced as compared to e. Let
%(a) =e-a £, (3)
|lsll
where g is the projected cost vector of P),

T. (4)

Here Py denotes orthogonal projection onto the null space of M. Hence -g is the projected steepest
descent direction for the linear objective function of (P). More relevantly, it is also proportional to
the projected steepest descent direction for the potential function f at e [20].

Karmarkar shows that a fixed value of o < 1 gives f(X(a)) < f(e) - % , and then by

k+1

defining x as the inverse image of this X(a) under the transformation (2) we have our desired

iterate. Todd and Burrell [20] also prove this, and suggest performing a line search on f to choose a.

k+1

Note that « < 1 ensures that X(c), and hence x , 1is positive.

We will follow Anstreicher [3] in parametrizing instead by a parameter A so that A =1

corresponds to the maximum feasible step. Let g and Emax denote the minimum and

min

maximum components of g respectively. Since eTg =0 and § #£0, g < 0 < gmax- Then

min

we redefine %(-) by

}_((/\)::e-/\—g . (5)

gmax

The basis for our analysis in the next section is the guaranteed reduction in f proved by

Anstreicher [3]:

=12 Ag.
(o) - TE(N) > ——lEl” Y tn (1 -3 5 ) (6)

8 min! Emax max




Now Karmarkar [10] showed that

in(1-6) > -0 - for 0 <89 <1,

0%
2(1-6)
and a Taylor expansion proves that

2
tn(1-6) > - 0- % for 6 <0,

soif XA < l-¢ we easily obtain from (6)

—n2 2=112
10 - 1)) » Bl VIRl @

igrninl gmax 2¢ g?‘nax

3. Probabilistic Analysis of Potential Difference

The assumption we make is that

g is distributed with a rotationally symmetric distribution in the

subspace et = {u € R": eTu = 0}. (8)

(Of course, there is no justification for this assumption; indeed, the asymptotic behavior of g is
known in the nondegenerate case (Asic et al. [5]). However, we hope that the results obtained give
insight into the observed behavior of Karmarkar’s algorithm.) Since the scale of g is immaterial in

(5)-(7), we can assume that

e, where

T
g=h-lye

(9)
h 4 N(o,1),

i.e. the components of h are independent random variables each with a standard normal distribution.

Then



12112 = [Ih]}? - (hTe)?/n,

grnin = hmin - hTe/n, and (10)
— - T
8max ~ hmax -he/n,

where h_. and hpzx have the obvious meanings.

n

Let f(n) be a sequence of random variables and c(-) a function. We write

f(n) ~ c(n)

to denote: for all € > 0,
P{f(n) € [(1-€)c(n), (1+€)c(n)]} =1 as n - oco.

Similarly,

f(n) < c(n)
denotes: for all € > 0,

P{f(n) < (14+€)c(n)} =+ 1 asn — oo.
It is then well known that
8% £ x2(n) ~ n and

Te2/n 4 x21) <n'?,

so that
Igll* ~ (11)
and
hTe/n 4 N0 /%)
so that

IhTe/n| <1, (12)

where X2(r) denotes a chi-square random variable with r degrees of freedom.



Moreover, extreme-value theory (see Resnick [18]) shows that

1/2
hmax ~ (2 {n n) and
1/2
gial ~ 2 2 )%,
so that (12) gives (13)
1/2
~ (2 fn n) and

gmax

il ~ (2 2 )72
Now let A = %, €= % in (7). Then

Agl?  Mel®

[8min! Bmax  2¢ g?nax 8 énn

from (11) and (13). We have proved:

Theorem 1. Under assumption (8), the reduction in the potential function obtained by
searching on f in the direction -g given by (4) is Q(n/fn n) with probability converging to one as

n - oo,

Indeed, such a reduction is achieved if we merely take as our step size half the maximum

feasible step size.

Corollary. The anticipated number of iterations required by Karmarkar’s algorithm with

optimal step size to achieve <TxK < 279Tx0 s O(q &n n).

4. Probabilistic Analysis of the Step Size

Here we show that a reduction in the potential function of Q(n/¢n n) can also be achieved by
choosing

A = l-¢ for any fixed ¢ > 0,



i.e. by moving a fixed proportion 1-¢ of the way to the boundary, with probability approaching one

as n — co. For this we need to use (6) rather than (7) because of the ¢ in the denominator in (7).

We divide the sum in (6) into two terms:

AE; Xg g
T(1-—L )= nf1-—L) + > en(1- —-)
Emax 1/2 max 1/2 max
J — {nn eE.< inn
i gj>( 3 Ak gj__( S
9 2
2 g g
ZEéA ( X B T o172 ) o
max \ j; g.>(tan)!/ i gy<lgn)!/? 2maxte - (R B

Now, using (11) and (13) we find that

2n

the second sum in (14) < % 3 - (15)
~ 9.9
4

Let

S0 =% (82 & > (tnn/9)'7%)

and

Tu(k) =X {&: & > k}

for each fixed k. Note that, for any k, Sy < Tp(k) for all sufficiently large n. By the strong law of

large numbers

Tn(k)

_ 152
o Z gj I{gj>k}
- E{g1 &> } in probability.

But this expectation converges to 0 as k = co. So for any 7 > 0, P{S—n——n > 77} < P{:I—‘-@ﬁg-k—) > 77} -0



as n—oco. If welet n < €¢/3, we find

the first sum in (14) < g—iel = % . (16)

Now (13)-(16) yield

Ag; 2
J 5X“n
'zjen(l"‘gmax>5122nn°

Also, (11) and (13) show that

Mel2 .

|gmin¥gma‘x 2 énn’

and these two results prove:

Theorem 2. Under assumption 8, the reduction in the potential function obtained by moving a
proportion (1-¢) of the way to the boundary in the direction -g given by (4) for any fixed ¢ > 0 is

Q(n/én n) with probability converging to one as n — co.
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