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Abstract

We describe path-following and potential-reduction algorithms for linear
programming problems with variable upper bounds. Both methods depend
on a barrier function for the cone of solutions to the variable upper bounds,
and we establish the key properties of this barrier that allow the complexity
of the algorithms to be analyzed. These properties mostly follow from the
self-concordance of the function, a notion introduced by Nesterov and Ne-
mirovsky. Our analysis follows that of Freund and Todd for problems with
(possibly two-sided) simple bounds.
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1 Introduction

The aim of this paper is to describe two polynomial-time interior-point al-
gorithms for linear programming problems with variable upper bounds, one
based on path-following and the other on potential reduction. In this en-
deavor, we are continuing the work of Freund and Todd [5] for the case of
simple upper and lower bounds; the idea is to highlight the role of the bar-
rier function and elucidate in a simple setting the notion of self-concordance
introduced by Nesterov and Nemirovsky [12]. At the same time we show how
variable upper bounds can be handled implicitly, without increasing the size
of the linear system to be solved at each iteration.

Exploiting the structure of variable upper bounds has been discussed by
Schrage [16] and Todd [17] in the context of the simplex method, by Todd
[18] for Karmarkar’s projective algorithm, and by Choi and Goldfarb [2]
for a short-step primal-dual path-following method. In addition, since vari-
able upper bounds define a cone, the general primal-dual potention-reduction
method of Nesterov and Nemirovsky (see [11] or Chapter 3 of [12]) can be
adapted to this problem. However, as we argue in Section 2.5, their algorithm
is also restricted to relatively short step sizes.

Let N = {1,2,...,n} index the variables of a linear programming prob-
lem, and suppose J U K U LU F = N is a partition of N. A variable upper
bound is a constraint of the form z; < zx(;) where j € J and k(j) € K.
We call j (or ;) the child of its parent k(j) (or zx(;)); each child has only
one parent, but a parent may have several (but at least one) children. Vari-
ables in L (as well as those in J U K) are required to be nonnegative, while
those in F are free. We assume there are no simple upper bounds. Let
J(k) = {j € J : k(j) = k}. Then our problem can be written

mxin 'z
z € C,
where

C:={z€R": 0<z;<uz, jeJk), kek,

(1.1)
0< s, te L}



and A is an m X n matrix. If we added the constraints z; < zx with slack
variables explicitly to the constraint matrix, m and n would increase by |J|,
a substantial increase if m < n and |J| is of the same order as n.

Writing the dual problem directly, we obtain

-
maxys by

a;-y - 13 Scj’ ]er

(D) ay + ¥ t; =a, keK,
jeJ(k)

G'Zy ..<_c£7 gELa

a’}—y = Cfy feF,

t; >0, j € J

It is easy to see that y is feasible in (D) with some ¢ iff s = ¢ — ATy lies in

C*i={seR": s+ Y. si>0, I(k)CJ(k), kekK,

i€I(k)
s¢ >0, tel, (1.2)
Sf= 0, f € F}’

the dual or polar cone of C: C*:={s € R™:z's>0forall v € C}. Note
that C can also be described in terms of its generators,

C =cone{ €+ T e, I(k)CJ(k), k€K,
e Y e (1.3)
ef, —ef, feF},
where ¢/ denotes the jth unit vector in IR™, and similarly
C* = cone{ ¢, ekl —¢l, jeJ,
e, e L}
We can then describe (D) compactly as

(1.4)
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max by
Y8

ATy+s=c

D
(D) secn

and this is (easily seen to be equivalent to) the dual problem of Nesterov and
Nemirovsky ([11] or Chapter 3 of [12]).

For any « feasible in (P) and (y, s) feasible in (D), the duality gap is seen
to be

Tr—by=(ATy+s)Tz—(Az)Ty=2"5>0, (1.5)

so z7s is the gap as in the standard case of nonnegativities only in C.
‘We make the following assumptions throughout the paper:

(A1) FO(P):={z €int C : Az = b} # {;
(A2) the set of optimal solutions of (P) is nonempty and bounded; and
(A3) A has rank m.

The assumption (A3) is for convenience only; it can easily be relaxed and only
minor modifications are necessary. Of course, given feasibility of (P), linearly
dependent rows of A give redundant constraints, which can be deleted.

If there were a linear dependence among the columns of A corresponding
to the free variables, say Apzr = 0, zF # 0, then necessarily crxp = 0 (else
there would be no optimal solutions to (P)) and hence the set of optimal
solutions of (P) would be unbounded. Hence (A2) implies that

Ap has full column rank. (1.6)

Of course, this assumption in Ap is fairly harmless; as long as (P) has an
optimal solution, Apzr = 0 implies cyzr = 0, and so linearly dependent
columns of Ar could be deleted without changing the problem. (This is dual
to removing dependent rows.) (A2) is stronger than this requirement; as in
the standard case, it is not hard to show that it implies



FO(D) :={(y,s) ER™ x1i C*: ATy + s =c} # 0, (1.7)

where i C* is the relative interior of C*, obtained by making all the inequal-
ities in (1.2) strict. Conversely, (1.6) and (1.7) imply (A2), and similarly
(A1) and (A3) imply that the set of optimal solutions of (D) is nonempty
and bounded.

In Section 2 we describe and study a barrier function for C' and show
how it determines primal and dual norms and projections as well as central
trajectories. These form the basis for the algorithms given in Section 3.

2 Analysis

In this section we define a barrier function for int C, and develop its key
properties for our algorithms. Section 2.1 defines the barrier and computes
its gradient and Hessian matrix. In Section 2.2 we use these to define primal
and dual metrics. Then we establish key self-concordance properties and
Taylor approximation results in Section 2.3. (The reader may prefer to skip
the proofs here on a first reading.) Section 2.4 shows how the metrics are
used to define projections. The central path is defined in Section 2.5, and
Section 2.6 uses the projections defined in Section 2.4 to analyze near-central
points.

2.1 A barrier function for int C

Here we describe a barrier function for int C, a convex function that tends
to 400 if the argument converges to a point of C'\(int C), and compute its
first and second derivatives. Our barrier is a simple logarithmic function,
following the standard techniques for constructing barriers, with one term
for each inequality defining C. We group these as follows. For each z in

intC={zeR": 0<z; <z, jEJk)kEK, (2.1)
0 < zy, EEL}, )

define

W (z) := —Inz; — In(zx) — %), JE€J, (2.2)



and

Ui(z):=—1lnz,, (€L, (2.3)

and then set

U(z) =Y W(z)+ ) Tt (). (2.4)

Jjed LeL
From (2.2) we have, for j € J,

VUi(z) = ((on—2,)" = 27")e) — (o — 7;)""eh

= -—sz:j—leJ — (wk — :Ej)—l(ek - 6j) (25)
and
o) (T
igk(ﬂik:c-j){jz)ek()e(ke) T(6 )t +e(€)T) (2.6)
= a5%(e))T + (zx — a5) 2 (ef — &F)(F — &),
where k := k(j), and from (2.3) we have
VU (z) = —z; ' (2.7)
and
V() = z7 %€l (). (2.8)

From these elements we can assemble the gradient and Hessian of ¥. (Note
that we use superscripts for both powers and indices; no confusion should
result.) For example, if n = 7, J = {1,2,4}, K = {3,5}, k(1) = k(2) =
3, k(4) =5, and L = {6}, we find



246 —B?

-B;° -8 BT+ B
V2(g) = o’ + 8% -6

-2 -2
—B4 4

where a; = z;, 1 = 1,2,4,6; f1 = 23— 1, B2 = T3—T2; and B4 = zs—z4. All
unmarked entries are zero. We see that V2¥ has a block diagonal structure
where each block has an arrowhead pattern if “families” are grouped together,
with the parent appearing last. (The same structure appears in the matrix

S in Choi and Goldfarb [2]; see their (4.2).)

2.2 Primal and dual metrics

Let us fix some 2 € int C and denote V2¥(%) by ©2. We note from (2.6) and
(2.8) that V?¥(&) is symmetric positive semi-definite; thus this notation is
appropriate if we use O for the symmetric positive semi-definite square root
of V2U(%). We further note that ©? is positive definite on

RVKVL .= {geR":z; =0 forall feF}. (2.9)

Let us write v/YEKYL for the projection of a vector v € IR™ into RIVEVL,
obtained by setting its components indexed by F' to zero. Let V be any
subspace of IR™ satisfying

veV and v/VEYL'=0 imply v=0. (2.10)

By the discussion above,




Proposition 2.1 || - ||z, defined by

[ollz == |6v]lz, (2.11)

is a normon V. O

From (1.6), we see that the null space of A, N(A), satisfies (2.10), so
|| - || provides a norm on this space, and hence a metric on F°(P).

Note that the lineality space of C (the largest subspace contained in it)
is

F = {.’E cR": mJUKUL — 0},

while its linear span is C — C' = IR™. Also, the lineality space of C* is {0}
and its span is C* — C* = R'YEKYL, The difference of s’s for any two feasible
solutions in FO(D) lies in C*—C* = R'YKYL and this subspace also contains
the ranges of V¥ and of ©2. We now define a dual norm on this space.

Since ©7? is nonsingular (and positive definite) as an operator on R7“K4L,
it has an inverse, also nonsingular and positive definite, which we denote 62,
We also use (~) -2 to denote the matrix that is block diagonal, representing
the operator ©~2 on R7YKYL and diagonal with diagonal entries equal to
+00 on IR¥. Our convention is that (+00)0 = 0, so Oy is well-defined for
v € RIYKYL whether ©~2 is viewed as an operator or a matrix. We define
O similarly.

Proposition 2.2 | - ||3, defined by

Iollz = 107 vlle, (2.12)

is a norm on C* — C* =IRJYKYL O

2.3 Self-concordance and Taylor approximations to ¥

Here we show that U is self-concordant in the sense of Nesterov and Nemirovsky
[12] and also establish some key bounds on the errors in Taylor approxima-
tions to ¥ and V.

A convex function ® on an open subset @ of R" is said to be self-
concordant (with parameter 1) if @ is C° and for every z € Q and d € R",



|D?®(2)[d, d, d]| < 2(d"V?®(z)d)>/>. (2.13)
Here D3®(x) denotes the third derivative of ®. We easily find

D*(z)[d,d,d] = >, > [~2d—z _oldk = di). } +>° ( —%) (2.14)

k€K jeJ(k) T (z — xa) el
while
d2 d 2 d?
dTV(z)d= ) > [——;— + —(——————)—5} +3 =, (2.15)
keK jed(k) LT3 (2 ) teL Tt

50 (2.13) holds for ¥ by the inequality 3~ if < (¥ p#)*/? for nonnegative p;s.
Note that ¥ also satisfies
U(Az) = ¥(z) — (2|J] + |L]) In A, (2.16)

for A > 0 and z € int C, directly from the definition. For ease of notation,
we define

1
= |71+ 3L, (2.17)

and note that p < n— |F|, the number of non-free variables. Equation (2.16)
is then the defining relationship for ¥ to be logarithmically homogeneous
with homogeneity parameter 2p (Nesterov and Nemirovsky [11]). Hence we
have:

Theorem 2.1 ¥ is a (2p)-logarithmically homogeneous self-concordant bar-
rier for int C'. O

(The terminology (2p)-normal barrier is used in ([12], Chapter 3).)
We can now follow the development of [11, 12]: (2.16) implies (differenti-
ating with respect to A at A = 1)

VU(z)'z=-2p (2.18)
and (differentiating with respect to )



VU¥(\z) = A\'VE(z), (2.19)
and hence (differentiating (2.19) with respect to A at A = 1)
ViU(z) -z = -VI(z), (2.20)

and
V2(z) - T KY = V(). (2.21)

From this we obtain (similar to [5]):
Proposition 2.3 For any z € int C, V¥(z) € —ri C* C RIVKVE gnd
IVe(2)[; = (2p)"/* < (20)'/%. (2.22)

Proof. (2.5) and (2.7) show that —V¥(z) is a positive combination of the
generators of C* (see (1.4)), establishing the first part. For the second,

VO(2)T(V2U(2))'VU(z) = —V¥(z) /R
= —V¥(z)'z
= 2p,
where the first equation comes from (2.21) and the last from (2.18). This
proves (2.22). O

The following result is essentially a general consequence of self-concordance
(see Theorem 1.1 of Nesterov and Nemirovsky [12]) but we provide a direct
proof because it is so simple.

Proposition 2.4 If& € int C and d € R™ with ||d||z <1, then 2+d € int C.

(Note that we can use | - ||z, defined in (2.11), even for vectors not lying in
a subspace V satisfying (2.10).)

Proof. Using (2.6) and (2.8) we find
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1> |ld2 = d"VU(a)d

& (d — d;)? &
- TG T
7122 @Gy — 24) L Yt

whence |d;| < Z; and ]dk(J) —dj| < &x(j) — &; for each j € J and |d,| < &, for
each £ € L. This implies £ + d lies in int C. O

We can use this property of self-concordance to eliminate another natural
candidate for a self-concordant barrier. Indeed, by analogy with [5], we might
suppose that U7 in (2.2) could be replaced by

~ min{z;,zr — z;}

V() = )

— In(min{z;, zx — z;})

for k = k(7). This U can be shown to be twice continuously differentiable
(but not thrice), and its Hessian at a point ¢ with z; < /2 is

VA (2) = 2% (¢/) T — 205 2(e9(eF)T + €H(e))T) + dajai et (M)

Suppose k € K and & € int C has &; < /2 for all j € J(k). Let d = dye®,
and note that

dTV(3)d = 4> &;/2k)(dk/2x)?,
J(F)

where ¥ := ¥, U/ + 3, ¥# is the new barrier function. It follows that we
may have dTV2\II( )d less than 1 while dy < —& (so & + dr < 0) as long
as all ;’s, j € J(k), are sufficiently small. Hence Proposition 2.4 fails for
¥, and we conclude that U is not self-concordant. Indeed, for any positive
constant ¢, dTVZ\II(:c)d < ¢ does not imply dj < —Z; for all &, so no positive
multiple of ¥ is self-concordant (or in other words, ¥ is not self»concordant
with any positive parameter [12]).

We now establish a key result on the first-order Taylor approximation of

V.
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Theorem 2.2 Let &,z € int C and let d := z — & and @2 := V?U(&). Then
IV¥(z) — V(&) - ©%d|I; < ||d]I3- (2.23)

(Note that the vector appearing on the left-hand side of (2.23) is the error in
the first-order Taylor approximation to V¥(z) based on the point £. Since
all vectors in this expression lie in IR7YKVL] its dual norm is defined, and
indeed appropriate—gradients of ¥ lie in dual space. On the right-hand side
we have the square of the primal norm of the primal displacement d. Note
also that the dual norm is with respect to the “new point” z, while the primal
norm corresponds to the base point &.)

Proof. We obtain a bound on the norm of each constituent of the vector
appearing on the left in (2.23). For ease of notation, let

o =gzj, G =%, Bi=zkG =T Bi = TxG — i

Oy = Ty, Q¢ = Ty,

8 =5 — &= 0aj—b&;, € =ax;)— 5~ (&) — &) = Bi — Fis
6£-$£“$e—a£'a£

We also omit subscripts when they are clear from the context. Then

VUi (z) — V\Iﬁ'(x) V2 (3)(z — 2)
= —aj'e 'l(e —el) + a5 tel + ,8'1(6 e)
—““26 el — ﬂJ e;(e* — €7)
- '1“2( —& —I—aa——aé)e”—}—ﬁ“lﬂ 2(— — 3%+ BB — Be)(e* — &)
— _a—l *-252 ﬂ—lﬂ -2 2(6k _ 6]),
(2.24)
where k = k(j).
Now if P and ( are symmetric positive semi-definite matrices with P > Q)
(P — Q positive semi-definite), and v € Im(Q) € Im(P), then we can show
that

v Pl <0’ Q ,

where P~1v denotes the vector in the range of P with P(P~'v) = v, and
similarly for Q@ 'v. Indeed, this is a standard result when P and Q are
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positive definite, and the general result follows by a limiting argument, using
P.:=P+1% £1 and similarly for Qr. (I am grateful to C. Van Loan for this line
of reasonmg, which simplifies my earlier argument using Schur complements.)

Applying this inequality to the vector in (2.24), with P = V2¥(z) and
Q = VW (z), we obtain

(IVE(z) - V¥(2) - V¥ (&)(2 - 2)II7)”

e _ o - _ -1
S( 14 2{2_1_—51322) ( 2+_ﬁ __)3—22)
—5 1ﬂ 2.2 __5 ,3
—1A-252+ﬂ—1ﬁ —22
( ﬁ—lﬁ—2 2 )
B -1«~252+ﬂ—1ﬂ —2¢2
- _6—1)8—2 2 ol o +62
( —a~ 147262 ‘f ﬂ“lﬁ"zez )
_6—1ﬁ~262
— &1 + 6—464 < (&—252 + 3«262)2
= (d"V?W(3)d)2.

In the same way, using V?¥(z) > V¥ (z), we get

(IV¥(2) - VI(E) — V2 (&) (z — 2)|;)* < 6767 = (d' V2T (2)d)".
Adding the square roots of all these inequalities gives the desired inequality
(2.23). O

From this result we can prove, exactly as in [5],

Theorem 2.3 Let & €int C. Ifd € R™ and v > 0 are such that v||d||; < 1,
then  + vd € int C and

U(3) +4VE(2)Td < U(E + 7d)

A ANT T 21|12
< W() + V() Td+ 55 (2.25)
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Proof. The first part follows from Proposition 2.4, while (2.25) is derived
from (2.23) and the fundamental theorem of calculus exactly as in [5], using
the following consequence of the self-concordance property established in
Theorem 2.1: For every € int C,d € R", and h € R", if v € IR satisfies
I7llld||- <1, then

(1= yll[dll) kT V2 ¥ (2)h < BTV?U(z + yd)h < (1= [ylldlle) *RT V¥ ().
(This implication is Theorem 1.1 of Nesterov and Nemirovsky [12].) O

2.4 Projections

We can use the metrics in Section 2.2 to perform projections. Note that the
Euclidean projection of a vector v € IR™ onto N (A) can easily be seen to be
the unique solution to

mc?,x{v-rd — %Hd“2 : Ad = 0}.

Correspondingly, we have (as in [5]):

Theorem 2.4 Fiz & € int C. For each v € R™, there is a unique solution
to the problem

max oTd— Hd]2
Ad = 0.
Moreover, this solution d is part of the solution (d,y) to the system

(3 ér)(Z)z(g)’ (2.27)

where ©% := V2U(2), and satisfies

(2.26)

Id|Iz = v"d; (2.28)
lldlls = llo — ATgll3; (2.29)

and, if v € RIVEVL
d]lz < [lvll3- (2.30)
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Proof. Exactly as in [5]. The system (2.27) forms the Karush-Kuhn-Tucker
conditions for the concave maximization problem (2.26), and these condi-
tions are necessary and sufficient for optimality. The homogeneous system
corresponding to (2.27) has only the trivial solution (using Proposition 2.1
and the remark following it, and assumption (A3)), so (2.27) has a unique
solution. Then (2.28) - (2.30) follow from the first set of equations in (2.27).
O

We write P;(v) for the solution to (2.26). Simple algebra shows that
(2.27) also forms the KKT conditions for

min LsTO 25
e 2

ATy+s=v
s ERJUKUL,

which is feasible since A has rank m. Hence we obtain the dual result:

Theorem 2.5 There is a unique solution to
min 3(lo — ATyl
v — ATy GBJUKUL.

Moreover, this solution i is part of the solution (d,g) to (2.27). O

(2.31)

Hence (2.26) and (2.31) can be viewed as dual problems with equal optimal
values.

Since computing projections is the basic task at each iteration, we con-
clude this section by describing how (2.27) can be solved efficiently. Of
course, (2.27) is a sparse symmetric indefinite system of size m + n, and
it can be solved by general techniques as in the standard case—see, for in-
stance, Fourer and Mehrotra [3] or Vanderbei and Carpenter [19]. However,
here we show how it can be reduced to a positive definite system of order m
(assuming for simplicity there are no free variables).

Note that solving the system (2.27) reduces to the solution of a smaller
system with coefficient matrix AO=2AT. Since we are assuming F' = §, 62
is positive definite and hence its inverse is finite and also positive definite.

15



However, ©-2 is not diagonal when variable upper bounds are present, so our
matrix is more complicated than AD?AT = ¥_;d%a;a] as in the standard
case.

As noted in Section 2.1, ©2 is block diagonal. If we set

&j = &, Bi=dx— a5, % = (7" + B, 23
o bt ke (J(k) "26‘2"2)”2, (2:32)

for j € J(k), the kth block of 62 is

a7? + Bj-z . 672
o S, (2.33)
— 72 e 32
B; J%) B;
which has Cholesky factorization WWT with
W = L , (2.34)
TR
as can easily be checked. Thus the corresponding part of AB2AT is
ol
(--raj-rag)WTWTH T (2.35)
ak
From (2.34) we find that
(--raj e aR) W= (e RN ak = D 147 a5)- (2.36)
J(k)

Assembling all these pieces, and substituting back from (2.32), we find

16



AOTAT = Tuex |T R
keK J€J (k) &7 4 (85 —5) 2 2 W (2.37)
22 T
+ e Tiaeay,
where

. (& — 2;)7°
ay 1= ar + - " - a;. 2.38
e jezJ(:k) 870+ (& — 8)77 (238)

Notice that AO=2AT in (2.37) is expressed as AD?AT with D diagonal, where
A differs from A only in that its parent columns aj are augmented by a linear
combination of their children columns. (If each Z; converges to 0 or to I,
then & converges to ay + Y {a; : j € J(k), &; converges to i}, and this
is exactly the modification of parent columns in the working basis scheme of
[17].)

A similar analysis of the simplifications resulting from the special struc-
ture of ©2 appears in Choi and Goldfarb [2], but without noting the rela-
tionship to perturbing the parent columns as above.

2.5 Central paths

Consider the barrier problem

min c'z + p¥(z)

z € intC,

for 4 > 0. By our assumption that F°(P) is nonempty, (BP) has a feasible
solution. Since we also assume that (P) has a nonempty bounded set of
optimal solutions, along any direction in N(A)N C c"z increases linearly
while ¥ decreases at most logarithmically. Hence standard arguments from
convex analysis (e.g., see Rockafellar [14]) imply that (BP) has an optimal
solution. Moreover, ¥ is strictly convex in R” UKUL  while the columns of Ap

17



are linearly independent, so the optimal solution is unique. We denote it by
z(p), and define the primal central trajectory to be {z(p) : p > 0}.

The KKT conditions are necessary and sufficient for (BP), so z(u) to-
gether with some y(u), s(p) satisfies uniquely

Az = b, (2.39)
ATy +s=c, (2.40)
pV¥(z)+s=0. (2.41)

Condition (2.41) implies that s = —pV¥(z) € 1i C* by Proposition 2.3 so
that (y,s) € FO(D), and that —s/u = V¥(z) € 0Y(z) where 0¥ denotes
the subdifferential of the convex function ¥. We define the convex conjugate
of ¥ by

U*(s) := sgp{—sTa: —¥(z)}.

(Note that we use —s'z instead of the more usual s'z here, in order to
get the usual formula when there are only nonnegativity constraints.) Then
(2.41) is equivalent [14] to

—z € OU*(s/p).

This can be made even more symmetric with (2.41). Indeed, since ¥ is a 2p-
logarithmically homogeneous barrier function (recall 2p := 2|1J| + |L]), so is
¥* (Nesterov and Nemirovsky [11, 12]), and hence (or directly) 0¥*(s/pu) =
pdU*(s). Thus (2.41) is equivalent to

po¥*(s) +x > 0. (2.42)
Thus conditions (2.39) — (2.41) also form the optimality conditions for

max by — p¥7(s),

ATy+s=c,

BD
( ) sern C*
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(As in [11, 12], ¥* is finite exactly on ri C*.) Hence (y(g),s(x)) lies on the
central trajectory for (D), defined as the set of solutions to (BD) for y > 0.

We could use ¥ and ¥* to construct a primal-dual potential-reduction
algorithm for (P) and (D) following the general scheme of Nesterov and Ne-
mirovsky [11, 12]. However, in our case it turns out to be impossible to obtain
U* in closed form, and this precludes the possibility of line searches in the
dual space. (This is in interesting contrast to [5], where ¥* could be obtained
explicitly, but because ¥ and ¥* were not logarithmically homogeneous (the
problems treated were not “conical”), we could not use the simplification

(2.42) and (BD) involved pU*(s/p).)
Hence in Section 4, we will confine ourselves to primal algorithms.

2.6 Duality gaps and near-central points
For every p > 0, we have z(u) € F°(P) and (y(y), s(x)) € F°(D). Our first

result concerns the corresponding duality gap.
Proposition 2.5 We have z(p)"s(u) = 2pp. (Recall that p = |J| + 3|L|.)
Proof. Since s € R7YKYL (we omit the argument u for ease of notation),
275 = (27K Ts = [-(VPU(2)) TV (2)] T[4V E(2)]
(using (2.21) and (2.41)), so
2Ts = pVU(2)(V*E(2)) "' VE(2) = u([VE()II7)*.

The result now follows from Proposition 2.3. O

Hence, if we could follow the path {z(x)}, we could get arbitrarily close
to optimal. Unfortunately, we cannot follow the path exactly. Thus we will
be interested in pairs ¢ € F°(P) and (y,s) € FO(D) satisfying (2.39) and
(2.40) exactly but (2.41) only approximately. The following result allows us
to bound the duality gap of such a pair. (Think of ¢ as s/p.)

Theorem 2.6 Suppose t = —VU(z) + h, where z € int C and h € R7VFVE
with ||kl < B < 1. Thent €r1i C* and

2Tt < 2p + By/2p. (2.43)
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Proof. From Proposition 2.3 it is immediate that ¢ € RIVYKYL To show
t € ri C* we show that vt > 0 for each generator (other than e/ or —e/) of
C (see (1.3)), or in other words

—vTh < —v"V¥(z)
for such v. Since h € IR7VKYL this holds if
lollaliBlly < —v"VE(2),
hence if
Blv|l < —vT V¥(z). (2.44)
For v = €f, the left-hand 51de is Bz; !, which is less than z; ', the right-

hand side. Now suppose v = €F + Yy €', where I(k) C J(k), k € K.
Then

o2 = oTV¥()o
(vk(J)"vJ) ] ?
e -—+"-“"‘—“‘—' 3
Z{ Erers ] R
- z[zx:2+ > <xk—wj>'2]
keK |icl(k) JeJ(R\I(K)

On the other hand, (2.5) and (2.7) show that

—0"VU(z) = ) [Z DY (:ck—:cj)-l].

keK |iel(k) JET(R\I(K)

Thus (2.44) follows from 8 < 1 and the inequality between the 2-norm and
the 1-norm of a vector.
To prove (2.43), we have as in Proposition 2.5

Ty = VU(e)(V2U(z))"Y(VE(z) — h)
(IVE(@)|3)? - VE(z)(V*E(2)) ™

(IVE(2)II2)* + IV (@)IIZ]IA]IZ

2p + \/ﬂﬂ,
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as required. O

Note that the first conclusion of the theorem can be viewed as a dual version
of Proposition 2.4.

As mentioned above, t should be thought of as s/, where s = ¢ — ATy
for some y. Then ph = pt + pV¥(z) = ¢+ pV¥(z) — ATy, and choosing
y to make h small is an instance of problem (2.31). Combining Theorems
2.4, 2.5 and 2.6 gives us the following important result, which we call the
approzimately-centered theorem. It allows us to obtain a feasible dual solution
from a sufficiently central primal solution.

Theorem 2.7 Suppose & € FO(P) is given. Choose i >0, and let

v:=c+ gVI(Z). (2.45)

Let (J,g)) be the solution to (2.27) for this v, and hence define

di=c—A"9. (2.46)

Then ||d|z = ||5 + 2VE(&)|l3. If

Ild/alls = 13/2 + VE@); < B, (2.47)

where 3 < 1, then
(i) (9,3) € FO(D);
(ii) the duality gap is £738 < i(2p + 5/2p).

If (2.47) holds, we say & is B-close to z(i1).

Proof. The equality of the norms follows from (2.29). Now define t:=38/p
and b := VU(#) + % Then we find & € R™KYF and |A[l} < 8 < 1.
From Theorem 2.6, € i C*, so § € ri C* and (§,$) € F°(D); and T <
2p + B+/2p, whence (ii) follows. O

To conclude this section, we give as in [5] a sufficient condition for z €
FO(D) to be B-close to z(ji). This follows from Theorem 2.5.
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Proposition 2.6 Suppose & € F°(P) and fi > 0 are given. If there exist
(y,s) satisfying

(i) ATy+s=c, s e RIVKYL

() ls/i+ VR < B,
then & is B-close to z(f1). O

3 Algorithms

Here we describe two algorithms for problem (P) based on the barrier func-
tion W. The first is a path-following method, using the measure of closeness
given in the approximately-centered theorem. Progress sufficient for polyno-
miality is assured by Proposition 2.3 and Theorem 2.2. The second algorithm
is a potential-reduction method, using the barrier function ¥ as part of the
potential function. Constant decrease of the latter is guaranteed by Theorems
9.3 and 2.7. We do not deal with initialization of the methods; techniques
similar to those in [5] can be employed.

3.1 A path-following method

Here we generate a sequence of points approximating z(y) for a geometri-
cally decreasing sequence of values of u. The idea is similar to that in the
algorithms of Renegar [13], Gonzaga [6], and Roos and Vial [15], for instance;
see also Gonzaga [8]. Our argument follows [5].

Suppose we have some 2 > 0 and & € F(P) that is B-close to z(ji) for
some 3 < 1. We generate a new value of z by applying Newton’s method to
(BP), and then shrink /i to p := ajt for some a < 1. We then want to show
that z is again B-close to z(u).

With &, i and 3 as above, define

vi=c+ gVU(Z) (3.1)

as in the approximately-centered Theorem 2.7. Let (cz, i) be the solution to
(2.27) for this v, so that d = P;(v), and let

§:=c—A"9. (3.2)

From our assumption and the theorem, \d/ills = 118/ + VE(@)|; < 8.
Now note that v is the gradient of the objective function of (B P) at &, while
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its Hessian is gV2¥(Z) = 1162, Tt follows that —d/ji is the Newton step for
(BP) at &. We write
d:=—d/ji. (3.3)

Thus, being B-close to z(jt) means precisely that the length of the Newton
step for (BP) at 2, measured in the primal norm associated with Z, is at
most 4. Now let z be the Newton iterate

z:=2+d. (3.4)
Proposition 3.1 With the notation above, = € FO(P) is B2-close to z(fi).

Proof. From (2.27), d lies in the null space of A, so that Az = AZ = b.
Also, since ||d||z < 8 < 1, Proposition 2.4 guarantees that € int C; hence
z € F°(P) as desired.

Now to show that z is #2%-close to z(j), it is enough by Proposition 2.6
to find (y,s) with

ATy+s=c, secR™EL |s/p+VE(2)|; < Be. (3.5)

We prove that (3.5) holds for (y,s) = (§,38). This vector certainly satisfies
the first two conditions, and we only need the norm inequality.

From (2.27),
02 + AT§ = c+ pVI(2),
where 02 := V?¥(), so we find
3p=(c— AT/ = —VU(E) - O (=d/i)
—V¥(z) — 0%d.

Hence the norm in (3.5) is exactly that on the left-hand side of (2.23) in
Theorem 2.2, and thus at most ||d||Z. But by hypothesis, this is at most B?
and the proof is complete. O

Now we show how i can be decreased:
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Proposition 3.2 Let i,ﬂ,ﬁ, and = be as above. Let

_B=p BV
B+v2p  B+V2p’ '
Then z is B-close to z(u). (Recall, p < n is defined in (2.17).)

(3.6)

a:=1

Proof. Again, we use Proposition 2.6 with (y,s) = (§,38). We have

15/ + VE@): = 115/(ch) + V()|

12 (5 + V(@) - (2 -1) VE@)I:
HE4ve@)z+ (2 -1)IVe@l: (37
2+ (2 -1) v

B,

where the second inequality follows from (3.5) with s = § and Proposition 2.3.
O

T VAN VAN

Thus p can be reduced by a constant factor at each iteration, and Theorem
2.7 translates this into a geometrically decreasing bound on the duality gap
at each iteration. Let us use g = %, soa=1-— _2:1—41% <1l- gl—p. Thus
repeating the Newton procedure k times, we reduce the bound by the factor
at most (1 — 1/8,/p)¥, and hence O(,/p) iterations reduce it by a constant
factor. From this discussion and the propositions above, we have

Theorem 3.1 Suppose z° is B-close to some z(u°), where p° > 0 and B = :
Let « := 1 — ﬁll'{/i—?’ and define the iterates (z*,y*,s*) as follows. For

each k = 0,1,..., let i := p* and 2 := z* and define d,§, and § as in the
approzimately-centered Theorem 2.7. Let (y*,s¥) := (9, 8), define okt =12
from (3.8) and (3.4), and set p**' := ap®. Then, for each k,

(i) &* € FO(P),(y*,s*) € FO(D);
(ii) ||s*/p* + V()5 < B; and
(iii) the duality gap is bounded by (*)Ts* < () u®(2p + B+/2p)-

Moreover, (z¥)Ts* < € within O(pln(pu°®/e)) iterations. O
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To conclude the section, we remark that from the proofs of Theorems 2.6
and 2.7 we can deduce that (z%)Ts* > (@)*u°(2p — 8v/2p). Thus the only
way to accelerate the algorithm is to decrease p faster. However, note that,
as in (3.7),

/4 VE@IE 2 (1) IVR@I - S15 + V@I

() E b

so that we can only prove that z is B-close to z(p) using § if @ > 1 — %.
Therefore, without solving another linear system, the rate of decrease of u
to guarantee path-following is severely restricted.

3.2 A potential-reduction method

Let us suppose that ¢"z is not constant on F'(P). (If it were, c would be in
the row space of A; then solving (2.27) for any & € F°(P) with v = ¢ would
give d = 0, confirming that £ is optimal.) In this case, c'z is greater than
the optimal value z* of (P) at any z € F°(P), and we can thus define

é(z,2) := qln(c'z — z) + ¥(z), (3.8)

where z < z* and ¢ is a positive parameter. Our algorithm is based on
reducing this potential function (closely related to that of Karmarkar [10])
as in Gonzaga [7], Ye [20], or Freund [4].

Suppose at the start of an iteration we have & € F°(P) and 2 < 2. Then
the gradient of ¢ with respect to z at (Z, 2) is

NN A
V.(Z,2) =10 = 53¢ + V(). (3.9)
(Note the similarity to v in (3.1).) Let (d,§) solve (2.27) for v = @, so that
d = P:(9). Then we show, as in [5], that the potential function can be
reduced by a constant by taking a step in the direction —d, as long as ||z
is sufficiently large.
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Proposition 3.3 Suppose 4,%,9,d and § are as above. Then, if Idlls > 2
and v € (0,1),

z(7) := & —~d/||d||s € F°(P)

and

R L. 4
¢($(7),2’) < ¢(:L',Z) - 57 + i . (310)
In particular, z(2) € F°(P) and

2

(x(z,2) < ¢(2,2) - (3.11)

L
6
Proof. As in the proof of Proposition 3.1, d lies in the null space of A, so

Az(y) = Az = b, and ||lz(y) — #|lz =7 <1, s0 z(vy) € F°(P) by Proposition
2.4. Also, we have

ve'd

:(cTd — %)
vgc'd G :

e+ U (& — vd/||d]5) — U(Z)

ldlla(c™E - 2)

(from the concavity of the logarithm function)

B ~gcTd AV (&)Td 72

lldlls(cT — 2) ldll: 2(1 =)

(from Theorem 2.3)

= 1L (2 9 d+ T
B |Mw(&¢—z'+vw(» I+ 50

5Td 7 ~ 7
T TR T R (e
(from (2.28) in Theorem 2.4)

< A7
> ')’ Y
2(1-7)

This proves (3.10), and (3.11) follows by substituting v = 2.0

o)) = 01.8) = atn (1= 2] ) - ¥

IN

IA

2
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Suppose now ||d||s < 2. Then let

fpoi= ("3 - 2)/q,

b = pv=c+ pVU(z), (3.12)
g = [y, and '

§ == c— AT

Let d := Ps(8) = jiPs(8) = jid, and note that ||d/fls = |ld|ls < 3, so & is f-
close to z(f) for 8 = 5;—. e can therefore apply the approximately-centered
Theorem 2.7 to obtain

(9,8) € FO(D) and (3.13)

T e o~ 4

$T8< p(2p + g\/é;) (3.14)
Hence

zi=bg=c&—%"3 (3.15)

is a valid lower bound on the optimal value z* of (P) and (D). We show
as in [5] that this update provides a sufficient decrease in ¢ as long as ¢ is
sufficiently large.

Proposition 3.4 Suppose ¢ > 2p + +/2p. If # € FO(P), and, with the
notation above, ||d||s < %, then (§,3) € FO(D), z < z* and

(3.16)

Proof. From the discussion above, we only need to establish (3.16). From

(3.12) - (3.15),
2p + /2
' E—z=38"8<p(2p+ =4/2p) = M(CT;% — Z).

Hence,
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¢(2,2) — 6(2,2)

2p + 2./2

q

1.2
< qln(l——5\/_l_))

q
(since g >2p++/2p)

< —1~ 2p < 1 0
— 5 p-— 6’

These two results naturally suggest an algorithm for which we obtain the
following convergence result.

Theorem 3.2 Let 2° € FO(P) and 2° < z* be given, and choose ¢ > 2p +
V2p. Suppose {z*} CIR" and {z*} C R are obtained as follows. For each
k, let & := z* and 2 := 2* and define ¥ by (3.9). Compute d := P3(?). If
Id||s > &, set **! := 2(%) as in Proposition 3.3, and let 21 := 2} else,
set zFt! = 2* and update 2**! := z as in Proposition 3.4. Then, for each k,

(i) zF € FO(P) and z* < 2%;
(ii) ¢(z*,2*) < ¢(2°,2°) — k[6; and
(iii) for some constant C, cTzF — 2¥ < Cexp(—k/6g). O

The last part follows from the same analysis used in the proofs of Theorem
4.1 and Lemma 4.2 of [1].

If we choose ¢ = O(p), this yields a bound of O(p) iterations to reduce
the bound on the optimality gap by a constant factor. This is worse than
the bound for the path-following method; but the present algorithm allows
considerably more flexibility which might improve its practical performance.
For instance, as in Freund [4] and Gonzaga [7], we can try to improve the
lower bound as in Proposition 3.4 at every iteration, performing a line search
on p = ji (of which § and $ are linear functions) to obtain the best bound,
and we can similarly perform a line search on 7 to approximately minimize
#(z(v), 2), even allowing v > 1 as long as z(v) remains feasible.
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