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Abstract

The relaxation method for linear inequalities iterates by projecting
the current point onto (or reflecting it in) a most violated comstraint.
We give a condition number for inequality systems that yields a bound on
the convergence ratio for relaxation methods. We alsc show that projection
onto (or reflection in) several hyperplanes simultaneously is possible
without jeopardizing convergence results. The resulting method converges
finitely for a transshipment problem with unrestricted floﬁs. Finally we
show that the finite convergence of the reflection version is not bounded by

a polyncmial in the size of the input.



1. Introduction

Until the recent development of fast direct methods, large sparse
linear systems were generally solved by iterative methods of either the
Gauss-Seidel or Jacobi type. In 1954, Agmon [1] and Motzkin and Schoenberg
[6] independently discovered an analogous method for solving systems of
linear inequalities, called the relaxation method.

Basic versions of the method obtain each successive iterate by either
projecting the current iterate onto, or reflecting it in, the hyperplane
corresponding to the most violated inequality. This description makes
clear why such a method might be appropriate for large, sparse systems of
inequalities; only the original data and the current iterate need be stored,
and any accumulated roundoff error is automatically compensated for.

The usual way to attack such problems is by some variant of the simplex
method. Recent techniques to exploit sparsity in the simplex method may
have supplanted relaxation methods to some extent for these problems.

One very successful application of relaxation methods has been in
developing bounds in combinatorial optimization problems. The subproblem
of obtaining a bound is similar to finding a feasible poiﬁt to an astronomi-
cally large number of linear inequalities. These inequalities are only known
implicitly--for any trial solution, a most violated inequality may be
cbtained. See Held, Wolfe and Crowder [ 4] for a discussion. Our results
may be of interest if a (small) group of violated inequalities may be
generated for any trial solution.

The relaxation method is closely related to subgradient algorithms
for nonsmooth optimization, apparently first introduced by Shor [11];

Polyak [ 8,9 ] obtained several results concerning the convergence of these

methods,



Oettli [7] has shown how relaxation methods may be applied to linear
programming problems. His description also makes clear the relationship
between relaxation methods and subgradient algorithms.

This paper discusses certain aspects of the relaxation method. In
part, our approach is based on the fact that there is no known polynomial
algorithm for solving linear inequalities. In Section 4, therefore, we
allow each step to be far more complicated than projecting on (or reflecting
in) a simple hyperplane. We consider simultaneous projection onto several
hyperplanes under certain conditions. Such an iteration costs the sclution
of a linear system of equations and therefore sacrifices the simplicity of
the original methods. On the other hand, one can solve systems of equations
in polynomizl time.

Section 2 describes the basic relaxation method. This method generally
has linear convergence rate, and the ccnvergence ratio is a function of a
certain condition number of the inequality system. Section 3 obtains a
formula for such a condition number that is much simpler than that of
Agmon [1]. Section 4 discusses simultaneous projection in relaxation methods.
In certain cases, this extension allows finite convergence when it was not
present for the original method. For example, Section 5 shows that finding
unrestricted flows in a directed graph to satisfy demands from given supplies
can be performed in at most a number of iterations equal tc the number of
nodes. When the feasible region is full-dimensional, the reflection algorithm
of Motzkin and Schoenberg [5] terminates finitely:; Section 6 demonstrates
that the number of steps may not be polynomial in the length of the input.

It is our hope that a certain version of the simultaneous projection

algorithm will exhibit finite, and possibly even polynomial, convergence.



A more modest expectation is that the material of Sections 3 and 4 could
be somehow combined to give improved rates of convergence when simultaneocus

crojections are employed. At present we see no way to achieve either goal.

2. The Relaxation Method

Here we merely describe the methods introduced by Agmeon [1] and
Motzkin and Schoenberg [6] and give some of their properties. We seek
a point in 8 = {x ¢ Rn|Ax < b} where A 1is an mxn real matrix and

b an m-vector. We assume throughout that S 1s nonempty. Suppose

. 0 2 m ¢ 4
also that the rows a ,a ,...,a of A have been normalized to have

unit Euclidean length. The methed then iterates as follows, given a

relaxation parameter A, 0 < A < 2:

Choose zl e B arbitrarily;

. I k
Given =z = Rq, calculate s = Azk = b. If sk < 0,

terminate. Otherwise, choose 1 = i(k) so that

o

k
Si = maxﬁ s, and set

k+1 k k
b

(ST

Z =z - As.a .
Note that this method chooses i(kx) as the index of the furthest

i . L k. s
hyperplane defining S with respect to which =z is on the wrong side.

» 5 5 k¥l F ; - k ;
Then, if X = 1, =z is the orthogonal projection of =z onto this

k+1
A

B!

hyperplane, while if A = 2, is the reflection of zk in this

hyperplane. We then have the following results.

Lemma 1 (Agmon). Suppose the algorithm does not terminate at step k.

Then, for every w £ S, we have

!]zk+l—wH2 iﬂ]zk—wiF - [1 - (l—k)zl(st)g.



Theorem 1 (Agmen). For all 0 < A < 2, either the algorithm terminates

ofe
W

. 3 _ k :
or the iterates 2z  converge to some z% ¢ S. Moreover, there is some

@ >0, 0<pBg <1 with |‘ZK—Z*|[ f_aBk. Suppose A = 1. Then g can

be taken as (l-—¢_2(A))i/2, where ¢(A) 1is such that for all =z with

i ; : :
a -z <b.+l all i, there is some w ¢ § with | | z=w] | < ¢(A).

Thecorem 2 (Motzkin and Schoenberg). If S 1is n-dimensional and A = 2,

then the method terminates finitely.

e k .
Note that it is unnecessary to compute s at each stage; it may
. s . " B S
instead by updated. For this, calculate n.. = a .al  for all 1,7

1]
1 k k A ; ; ;
Then 3%+ =8y o~ A M, ppi s SAMELERIY, zk need not be updated at each
j i(k) "i(k)] :

. . R m ‘ ; k
= . 1 i = e Ry € d ; . = .
iteration We initialize y 0 R at iteration k, yl(k) + yl(k) Asl(kJ

; ; k . T
Then at any iteration, =z can be retrieved by zk = zl + A'y.

Example 1. Let A = [g _i] with ¢ small and positive and let b = 0.

Define 8 = tan-lé. Suppose zl: (cos 8,,8in G}T. Then, for A = 1, we

have the iterates 7¥L o (cos 8(cos 28)% sin 6(-cos 28)k)T. Here the

rate of convergence B = cos 26. For X = 2, we have

zk+l= (cos(2k+1)9, (—l)ksin(2k+l)e)l for k < m/26 - 1.

3. A Lipschitz Constant for Inequality Systems

Many authors have investigated the stability of the solution set to a
set of linear inequalities as the data is perturbed, from Agmon [1] and
Hoffman [5] to the recent general theory of Robinson [10]. Here our aims
are more modest; we simply seek a simple expression for ¢(A) as in
Theorem 2. Agmon [1] has given an expression, which, however, is

cumbersome and hard to compute. We give below a simpler formula based on



quadratic programming duality. Since some relaxation algorithms guarantse
satisfaction of certain constraints (e.g., bounds on the variables) at
e2ach iteration, we consider the change in the sclution set under an
arbitrary relaxation of the right hand sides.

Let S = {x|Ax f.b}= and for any u e RT, let S(u) denote

{xle < btu}. Our goal is a bound on maxzés(u) mlnWES ||z—w |. Suppose
A is mxn and has rank 1r; then an prxn submatrix of A with full row

rank will be called a basis of A.

Theorem 3. Let ¢(A,u) be the maximum of (E-T(BBT)_J'G-};L/2 for B =a

basis of A and u the corresponding subvector of u. Then

min | |z-w|]| < ¢(a,u).

maxzes(u) weS

T
Proof: For any z € R° let f(z) denote the minimum of %{z—w)'(z—w) for

w ¢ 8. Since S is nonempty and the minimand has bounded level sets, this
minimum is obtained. Also, the Kuhn-Tucker conditions are both necessary and
sufficient for a minimum to this problem; hence there is a basis B with
corresponding subvectors b and u such that £(z) is the minimum of

itk T = i . . . . :

§(z~w) (z-w) over Bw < b, Now using quadratic programming duality we

can write
Flz) = maxv{— %-VT(BBT)V + (Bz—gﬁTvJv 3_0}.

1

Let & = max —
wesS 2

zeS(u) min ||z—w!|2; then we have

§ = max Z{— %‘VL(BBL)V - (BZ—B)TVIAZ < btu, v 3_0}.

3



For any v > 0 and =z

hence

The theorem follows.

(o))

: S(u) the maximand is at most - %'VT(BB)TV + ETV;

j_maxv{- %—VT(BBT)V + Elv1v > 0}

| A

maxv{— %—VT(BBT)V + ETV}

%-GT(BBT)-kE.

Corollary 3.1. 1In Thecrem 1, we may teke ¢(A) = ¢(A,e), where e ¢ R 1is

a vector of ones.

Note that if »r(A) = r

n, then ¢(A,u) = max]lB_lEW| for B a .

1

basis of A. In this case, our bound for u the vector of ones coincides

with that of Agmon [1].

examples can easily be

Example 2. First tzake

only basis, Then ¢(A,

For r < n, the bounds generally differ;

constructed to show that neither dominates the other.

;
A= [2 71 as in Example 1. Then A itself is its
e) = ||A-lel| = (i + HB:EQiif, which is large when
A

§ 1is small. The bound however is tight--take b = 0 and consider

2
A

2 = (1L, ¢ see).

To show that the bound captures the

(57 o)

/

rather than just the ill-conditioning of A, replace the second row of A

by (0,1). Then |[|A

this bound is tight.

il

is again large, but ¢(A,e) Dbecomes l--again

Finally let us show a situation where the bound is poor. Replace

1 -1.1/2

the second row of A by (0,2). Then d¢(A,e) = §{l+6 ) is large, but

instability of the inequality system



the inequality system is stable. Indeed ¢(A,(l,2)T) = 1. A palliative
is to ensure that the rows of A have roughly unit length, but it is
still possible to have ¢(A,e) >> ¢(A,u) for E.i_e. A complete cure
to this problem would probably render the bound almost impossible to
compute. For the same reason, we did not insist that the basis in
Theorem 3 be feasible (B is feasible if Bx = b has a solution in 8

though the theorem in this stronger form remains valid.

4. Simultaneocus Projection

Simple two-dimensional examples of the relaxation method show that
it behaves poorly (for X = 2 as well as X = 1) if the iterates
oscillate between two hyperplanes with ai.aj < 0. In this case each move
to satisfy one of these constraints increases the violation of the other;
it is easily seen that this behavior can occcur also in higher dimensions.
Our main result in this section shows when it is possible to project
orthegonally onto several constraints simultaneously without sacrificing
monotonic movement towards S.

OQur first result is purely matrix-theoretic. After a geometric

corollary we derive our main tool, Corollary u4.2.

Theorem 4. If C is a kxn matrix such that CCT has nonpositive
: . — — 5 L«
off-diagonal entries and for some =x ¢ Rn, Cx > 0, themn CC 1is

nonsingular with nonnegative inverse.

. 2 ’ i
Proof: Since R~ 1is the direct sum of the row space of C and its

orthogonal complement, we can write x = CT§'+ Dz with CD = 0. Hence

vy € Rk satisfies CCT§-> 0.



Write w = CCT§-> 0 and let y be any solution to CCTy = W,

Splitting y into positive and negative parts, we have V=¥ -V ,
Y+ >0, y >0, y+-y_ = 0. Then
< = T + i R g T + T - T =112
0 <wy =(CCy -CCy)y =(Cy(cy)-|lcy |l

The first term is a nonnegative combination of inner products of different
v + - ; : e
rows of C, since y .y = 0. Hence this term is nonpositive from our
; . T T = . — %
hypothesis on CC°. Thus Cy =0 and we have w = CC y . Now the
; g S s == . +
hypothesis on CCT together with the positivity of w gives y > 0.
. = v ; T
All solutions to CCTy = w are therefore positive, from which CC" must
be nonsingular.
- .1 . : ;o
If some entry of (CC7) were negative, we could find w > 0 with

(CCT)—lw # 0. But the argument above with w replacing w shows that this

. o ; Tl ;
is impossible. Hence (CC7) 1s nonnegative.

(Note: as soon as the existence of a solution y > 0 to CCTy > 0
is established, we can use & theorem of Fiedler and Ptak [3] to finish the

proof. The approach above is simpler and self-contained.)

Corollary 4.1, Suppecse K 1is a finite cone in R' such that every two

extreme rays of K form an obtuse angle. If K and its polar

K¥ = {x

M
o

x.z2 < 0 for all 2z ¢ K} have nonempty interiors, then

K# ¢ -K,

T
Proof: Write K = {C'yl|y > 0} where the rows of C are the extreme rays

of K. Then K¥ = {x|Cx < 0}. The condition on the extreme rays shows

that CC  has nonpositive off-diagonal entries. The nonemptiness of the



interior of K% implies that Cx > 0 has a solution, and the similar

—_ - n 5 T
condition on K shows that any x £ R can be written C'y for some
T

m

y. Now if x ¢ K*, x = CTy and CC'y < 0. From the thecrem, y < 0

and so x = -K.

Corollary 4.2. Under the conditions of the theorem, let T = {x ¢ R® G < 4k

for some d ¢« R'. Then T is nonempty and for any z € RY with Cz > d,

the closest point in T to z is p = z - CT(CCT)—l(Cz—d).

m

4 . . . < -
Proof: From the thecrem, CC is nonsingular and hence p 1is well-defined.

Since Cp =d, T 1is nonempty. Now for any w € T we have

Gi-p) "Ca-5) = Cu-8)20r (et Leos—a)

1"

(cw-a) (ce) Hez-a) < 0,

. Ti=1 3 ; T
since (CC") and Cz-d are nonnegative and Cw-d nonpositive. Hence

2 2
|z=w||? = ||z-p||% + ||w-p||? - 2Ge-p)T(z-p) > |]z-p]||°.

Corollary 4.2 demonstrates the possibility of using simultaneous projection
(or over- or underprojection) in relaxation methods. Specifically, given
zk and sk = Azk - b, with i = i(k) such that s? = maxj s?, choose
I & I(k) © {112,000 m; with
(1) 4dlk) = I,
1]

(ii) ngs = aa” <o for all i,j £ I, 1 # i, and
™
(iii) sk >0, and for some x, A.x > O.
I — I
Here of course s? is the subwvector of sk and AI the submatrix of A

corresponding to the row index set I. Then set
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k+1l _ k T T.-1 k
z S Sha AAI(AIAI) s1

From Corollary 4,2, (ii) and (iii), zk+l is well-defined,

k+1

Theorem 5. With z defined as above rather than as in Section 2,

Lemma 1 and Theorems 1 and 2 remain wvalid.

Proof: We merely note that Corollary 4.2 allows the arguments of [1] and

[6] to be used with obvious translations, Condition (i) on I(k) ensures
. k . :

that the step taken has size at least s; and hence the linear rate of

convergence of theorem 1 remains valid. (In fact, it is easy to see that

sz+l_zk!|z_||s?|| if the rows of A are normalized.)

It is natural to choose I to be any maximal set satisfying (i)-(iii),

although it is sometimes preferable not to insist on maximality. The

8 4 k . P . es
assumption that S i1s nonempty ensures that SI > 0 1is sufficient for (iii},

for then AI(zk—w) >0 for any w < S. We will see later that it is often

worthwhile including other j's with s? = 0. Condition (iii) still holds

. . i . k-1
if niJ <0 forsome 11 (take x = zk-w——sal) or if s, > 0 (take
J
k

—_ k- . 2ol e . .
X =z -wtelz l—w)). The following example shows thzt finite termination

cannct be guaranteed with X = 1 by choosing any maximal I.

5 . 8 s
Example 3, Take b = 0 ¢ R and, with & a small pecsitive number,

s 1 27
§ 1 =2
A =
§ <31 2
g &1 o
L ° J




Let 6 = tan "6 and start with 2z' = (cos 8, sin B,O)T; take X = 1.
1 ; . T ; i
Then s = (2 sin®, 2 sin§, 0, 0)". A natural choice for I is then
Cos

{1,2}, leading to 22 = (cos 6 cos 26, -sin 8 . EQG,O)L s
s” = (0,0,2 sin 8 cos 28, 2 sin 8 cos 28)T. Again it is natural to

choose I = {3,4}; continuing in this way leads to

+ s 0w

zk L s (cos &(cos QG}k,sin 8(-cos 28)& O)T for all k. Similarly, the
4 ; ; k+1 k .
choice of I's with A = 2 gives =z = (cos(2k+1)8, (-1) sin(2k+1)s, 0
for k < n/208-1.
i . . 2 . i 2. T
If we take I = {1,4} for iteration 1 we find =z° = sin 9(0,5,—54
2 . 8 8 ..\T . )
and s = sin 0(0,z,-+,0)". Choosing I = {1,2} then gives
2 5 523

3 : Eath S T . . . ..

z = sin 26 tos 9(—337530) which lies in S. Hence unnatural but wvalid

choices of I sometimes lead to finite convergence with A = 1.

5. An Example of Finite Convergence

It might seem that condition (ii) above that the normals *to several
constraints be mutually pairwise obtuse is too restrictive to hold in
practice. Here we give an application of practical importance where this
condition holds.

Let A be the node-edge incidence matrix of a directed graph. Then,
with bi the net supply available at node 1, S = {XIAX < b} 1is the set
of flows in the graph that satisfy demand without exceeding supplies. Of
course, one usually adds lower and upper bounds to the flows to obtain a

reasonable mcdel, but our analysis below does not handle this case.

- j N ’
It a and aJl are two rows of A, then a .al is the negative of
s
the number of edges joining nodes i and j. Hence nij = at.ad s
nonpositive for all 1i,j. Consider the following method to choose I(k).

Set I(1) = {i|s; > 0} and for k > 1 set I(k) = I(k-1) u {i|s? S Qs

L

11

)T
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Theorem 6. If A 1is the node-edge incidence matrix of a directed graph
and I(k) is chosen as above, then the simultaneous projection method of
Section 4 with A = 1 yields a peoint in S within m iteraticns, where

m is the number of nodes of the graph, whenever S is nonempty.

Proof: We first show that I(k) satisfies conditions (i)-(iii) of the

previous section if zk £ S. Clearly condition (i) is satisfied since I(k)

contains the indices of all violated constraints; condition (ii) is satisfied

i ; . . ko _ k-1 . k-1
trivially. MNow it follows from the derivation of =z from =z and s

k

that s; = 0 for i e I(k-1). Hence s? >0 for i I(k). The fact

m

that, for some Q} % > 0, follows as below Theorem 5. We take
-1

AI(k)
— k k k- X g
X =z -w+elz —W) t...t et l(z -w) with w e S and & > 0 small.

e 5. A . . k
Now note that I(k) is increasing. Hence ifno =z , 1 <k <m,

lies in 8, then I(m) = {1,...,m}. Thus in this case Azm+l = b and

1

zm+l g S.

6. Exponential Time of Methods with ) = 2

We have seen above (Theorems 2 and 5) that finite convergence can be
assumed when S has dimension n by taking A = 2. Here we show that the
number of steps to convergence may grow exponentially with the length of
input for thes data.

Consider Examples 1 and 3. To make the length of the input clearer,

rescale A to get

o
Tou o om |
—
1 M 1 M 2M
5 4d 0w
1 -M
1 =M 2M
L 1 -M —QM_J




where M 1is a large integer. With b = 0, the length of the input is in
both cases 0(log M). However, Examples 1 and 3 show that, with X = 2,
the number of steps required is n/286 - 1 where 9 = cot_lM. For M
large, the number of steps is of the order of wM/2, which grows

exponentially in the length of the input.
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