Can $n^d + 1$ unit right *d*-simplices cover a right *d*-simplex with shortest side $n + \epsilon$?

Michael J. Todd *

July 2, 2023

Abstract

In a famous short paper, Conway and Soifer show that $n^2 + 2$ equilateral triangles with edge length 1 can cover one with side $n + \epsilon$. We provide a generalization to d dimensions.

1 Introduction

We denote by e^1, \ldots, e^d the unit coordinate vectors in \mathbb{R}^d , and by $e := \sum_j e^j$ the vector of ones. A unit right *d*-simplex is defined to be the convex hull of 0, e^1 , $e^1 + e^2$, ..., $e^1 + e^2 + \cdots + e^d$, or any of its images under coordinate permutations and translations. A right *d*-simplex is a dilation of a unit right *d*-simplex; if the dilation is by a factor $\alpha > 0$, its shortest side has length α .

We are not able to answer the question in the title, but we first show that, if $\epsilon \leq \delta := (n+2)^{-1}$, then $(n+1)^d + (n-1)^d - n^d$ suffice. (This fails for the trivial case d = 1; we assume implicitly throughout that d > 1.) Notice that, under the transformation $x \mapsto Mx$, where

$$M := \left[\begin{array}{cc} 1 & -1/2 \\ 0 & \sqrt{3}/2 \end{array} \right],$$

right 2-simplices are transformed into equilateral triangles, so that our result implies that of Conway and Soifer [1]. However, while this theorem matches the known result for d = 2, we observe that for larger dimensions the excess of $(n+1)^d + (n-1)^d - n^d$ over n^d is increasing with n. Our second result is that, when n > d, $n^d + (d+1)^d - 2d^d + (d-1)^d$ suffice, though with a much smaller ϵ . Both of these arguments generalize those of Conway and Soifer, although inevitably they are longer. (Note that, in its original form [2], the text of the paper contains just two words: " $n^2 + 2$ can," although with the two figures and the usual rate of exchange, there are a total of 2002 words, exceeding the length of [3].)

We need a convenient notation for right *d*-simplices. For $v \in \mathbb{R}^d$ and π a permutation of $\{1, \ldots, d\}$, we use $k(v, \pi)$ to denote the convex hull of $v, v + e^{\pi(1)}, v + e^{\pi(1)} + e^{\pi(2)}, \ldots, v + e$. It is easy to see that

$$k(v,\pi) = \{x \in \mathbb{R}^d : 1 \ge (x-v)_{\pi(1)} \ge (x-v)_{\pi(2)} \ge \dots \ge (x-v)_{\pi(d)} \ge 0\}$$

^{*}School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA. E-mail mjt7@cornell.edu.

It is well known that the set of all $k(0, \pi)$'s, as π ranges over all permutations, triangulates the unit cube, while the set of all $k(v, \pi)$'s, with v an integer vector and π a permutation, triangulates \mathbb{R}^d . See, for example, [5]. These simplices are exactly the *d*-dimensional pieces when \mathbb{R}^d is partitioned by all hyperplanes of the form $x_j = z$ or $x_i - x_j = z$, with zan integer. More relevant to our purposes, the set of all $k(v, \pi)$'s, with v an integer vector and π a permutation, that lie in the right *d*-simplex

$$S^n := \{ x \in \mathbb{R}^d : n \ge x_1 \ge x_2 \ge \dots \ge x_d \ge 0 \},$$

covers (indeed, triangulates) that set. In fact, $k(v, \pi)$ lies in this set iff $v \in S^{n-1}$ and, if $v_j = v_{j+1}$, j precedes j + 1 in the permutation π . By volume considerations, there are n^d such unit right d-simplices.

We can also easily see that the "base" of S^n , where x_d lies between 0 and 1, can also be triangulated, by $n^d - (n-1)^d$ of these simplices, those with $v_d = 0$. In general, we define the base

$$B^{\beta}_{\alpha} := \{ x \in S^{\beta} : x_d \le \alpha \}$$

of the right d-simplex

$$S^{\beta} := \{ x \in \mathbb{R}^d : \beta \ge x_1 \ge x_2 \ge \dots \ge x_d \ge 0 \}$$

and similarly the "top"

$$T_{\alpha}^{\beta} := \{ x \in S^{\beta} : x_d \ge \alpha \}.$$

We say B^{β}_{α} has height α . The base discussed above is B^{n}_{1} , while in the sequel we consider bases $B^{n+\delta}_{\alpha}$ with height α either slightly more than or slightly less than 1.

2 The Conway Construction

The first (graphical) proof in [1, 2] — due to Conway according to Chapter 9 of [4] — shows how to cover a 2-dimensional base slightly taller than 1 with 2n + 1 triangles. We generalize this construction to establish

Theorem 1 For $\delta := (n+2)^{-1}$, the right d-simplex

$$S^{n+\delta} := \{ x \in \mathbb{R}^d : n+\delta \ge x_1 \ge x_2 \ge \dots \ge x_d \ge 0 \},\$$

with shortest side $n + \delta$, can be covered by

$$(n+1)^d + (n-1)^d - n^d$$

unit right d-simplices.

Proof: We divide $S^{n+\delta}$ into its base

$$B_{1+\delta}^{n+\delta} := \{ x \in S^{n+\delta} : x_d \le 1+\delta \}$$

and its top

$$T_{1+\delta}^{n+\delta} := \{ x \in S^{n+\delta} : x_d \ge 1+\delta \}.$$

Note that the top can be written as

$$T_{1+\delta}^{n+\delta} = \{ x \in \mathbb{R}^d : n+\delta \ge x_1 \ge \dots \ge x_d \ge 1+\delta \},\$$

which is just the translation by $(1 + \delta)e$ of S^{n-1} , and can therefore be triangulated by $(n-1)^d$ unit right *d*-simplices as above. The proof is completed by applying the lemma below, which we separate to contrast it to the second construction. \Box

Lemma 1 For $\delta := (n+2)^{-1}$, the base $T_{1+\delta}^{n+\delta}$ can be covered by $(n+1)^d - n^d$ unit right *d*-simplices.

Proof: Note that the base is somewhat similar to the base

$$B_1^{n+1} := \{ x \in S^{n+1} : x_d \le 1 \}$$

which as we noted above, can be triangulated by exactly this many unit right *d*-simplices. Indeed, the base we are interested in has its first d-1 components squeezed in (from n+1 to $n+\delta$) and its last component stretched out (from 1 to $1+\delta$). We therefore apply an operation to the individual simplices in this triangulation, roughly as the individual cloves are transformed by squeezing the head of a roasted garlic.

As we observed above, the simplices of the triangulation of B_1^{n+1} are those $k(v,\pi)$ where

$$v \in S^n \cap \mathbb{Z}^d; \quad v_d = 0; \quad \text{if } v_j = v_{j+1}, \ j \text{ precedes } j+1 \text{ in } \pi.$$
 (1)

We squeeze these simplices as follows:

(a) If
$$\pi^{-1}(d) = d, k(v, \pi) := k((1 - \delta)v, \pi);$$

(b) if $\pi^{-1}(d) < d, \tilde{k}(v, \pi) := k((1 - \delta)v + \delta e, \pi)$

We need to show that every $x \in B_{1+\delta}^{n+\delta}$ is covered by at least one such $\tilde{k}(v,\pi)$, where (v,π) satisfies (1).

For any such x, we can choose $v \in \mathbb{Z}^d_+$, $v_d = 0$, so that all components of

$$w := x - (1 - \delta)v_{\delta}$$

except possibly the last, lie between 0 and 1. We then order these components using the permutation π . Suppose first we can choose π so that d comes last:

$$1 \ge w_{\pi(1)} \ge \dots \ge w_{\pi(d)} \ge 0, \quad \pi^{-1}(d) = d.$$
 (2)

Note that there is some choice involved for j < d; if $v_j > 0$ and $0 \le w_j \le \delta$, we can decrease v_j by 1 so that $1 - \delta \le w_j \le 1$ and then adjust π accordingly. Then we have

$$\text{if } v_j > 0 \text{ for } 1 \le j < d, w_j > \delta.$$

$$(3)$$

Moreover, if there is a set of components of w that are equal, we may modify π so that their indices appear in ascending order:

if
$$w_{\pi(j)} = w_{\pi(j+1)}$$
 for $1 \le j < d, \pi(j) < \pi(j+1)$. (4)

We show that, if v and π can be chosen so that (2)–(4) hold, then x lies in the simplex $\tilde{k}(v,\pi)$ of type (a). By the first of these conditions, it is only necessary to check (1).

First, we have $w_1 \ge 0$, so that

$$v_1 \le (1-\delta)^{-1} x_1 \le (1-\delta)^{-1} (n+\delta) = n+1.$$

Moreover, if $v_1 = n + 1$, we have equality throughout, so that $v_1 > 0$ and $w_1 = 0$, contradicting (3). Hence $v_1 \leq n$.

Next, consider the condition $v_j \ge v_{j+1}$. If $v_{j+1} = 0$, then this holds by default. If not, then j + 1 < d and by (3), $w_{j+1} > \delta$, so that $w_j < w_{j+1} + 1 - \delta$ and thus

$$v_j > v_{j+1} - 1 + (1 - \delta)^{-1}(x_j - x_{j+1}) \ge v_{j+1} - 1,$$

and we obtain $v_j \ge v_{j+1}$.

Finally, if $v_j = v_{j+1}$, then since $x_j \ge x_{j+1}$ we have $w_j \ge w_{j+1}$. Thus j precedes j + 1 in π , either by (2) if these components are unequal, or by (4) if they are equal. This completes the verification of (1), and so x is covered.

Note that, if $x_d \leq \delta$, then we can find v and π so that (2) holds. Indeed, we order the components of w as above, and ensure that if $v_j > 0$ and j < d, then $w_j > \delta$ and jprecedes d in π . But if $v_j = 0$ for j < d, then $x_j \geq x_d$ ensures that $w_j \geq w_d$, and thus we can arrange that d comes last in π . Thus the bottom sliver of the base is covered by simplices of type (a).

Now we assume that x cannot be covered by such a simplex. Then $x_d > \delta$, and hence $x_j > \delta$ for all j. We can then find $v \in \mathbb{Z}^d_+$ with $v_d = 0$ and a permutation π so that, with w again defined as $x - (1 - \delta)v$, we have

$$1 + \delta \ge w_{\pi(1)} \ge \dots \ge w_{\pi(d)} \ge \delta.$$
(5)

Moreover, as above, if $1 \le w_j \le 1+\delta$ for j < d, we can increase v_j by 1 so that $\delta \le w_j \le 2\delta$ and then adjust π accordingly, so that

for
$$j < d, w_j < 1$$
. (6)

We can also ensure that equal components of w are suitably ordered, so that (4) holds.

If $w_d > 1$, then because of (6), $\pi^{-1}(d) = 1$. If instead $w_d \le 1$, then (11) and (6) show that (2) holds, so that if $\pi^{-1}(d) = d$, x could be covered by a simplex of type (a). Thus in either case, $\pi^{-1}(d) < d$, so that, if $w' := x - (1 - \delta)v - \delta e$,

$$1 \ge w'_{\pi(1)} \ge \dots \ge w'_{\pi(d)} \ge 0, \quad \pi^{-1}(d) < d,$$

and x will be covered by a simplex of type (b) if we can verify (1).

Suppose (4)–(6) hold. Then $w_1 \ge \delta$, so

$$v_1 \le (1-\delta)^{-1} x_1 - (1-\delta)^{-1} \delta < (1-\delta)^{-1} (n+\delta) = n+1,$$

and we have $v_1 \leq n$.

Next, consider the condition $v_j \ge v_{j+1}$. If $v_{j+1} = 0$, then this holds by default. If not, then j+1 < d and by (11) and (6), $w_{j+1} \ge \delta$ and $w_j < 1$, so that $w_j < w_{j+1} + 1 - \delta$ and thus

$$v_j > v_{j+1} - 1 + (1 - \delta)^{-1}(x_j - x_{j+1}) \ge v_{j+1} - 1,$$

and we obtain $v_j \ge v_{j+1}$. The proof that if $v_j = v_{j+1}$ then j precedes j + 1 in the permutation π is identical to that above.

Thus x is covered either by a simplex of type (a) or one of type (b), and the theorem is proved. \Box

3 The Soifer Construction

The second (graphical) proof in [1, 2], due to Soifer according to Chapter 9 of [4], demonstrates how to cover a 2-dimensional base slightly shorter than 1 with 2n - 1 triangles. We generalize this construction to prove

Theorem 2 For $n \ge d$ and $\delta \le (d+2)^{-1}d^{-(n-d)}$, $S^{n+\delta}$ can be covered by

$$n^{a} + (d+1)^{a} - 2d^{a} + (d-1)^{a}$$

unit right d-simplices.

Proof: We proceed by induction on n. For n = d, the result follows from Theorem 1. Now suppose n > d, and that the theorem holds for n - 1. Let

$$\gamma := \frac{1}{n-d}\delta \le \delta,$$

and divide $S^{n+\delta}$ into its base $B^{n+\delta}_{1-(d-1)\gamma}$ and its top $T^{n+\delta}_{1-(d-1)\gamma}$. Note that

$$T_{1-(d-1)\gamma}^{n+\delta} = \{x \in \mathbb{R}^d : n+\delta \ge x_1 \ge \dots \ge x_d \ge 1 - (d-1)\gamma\}$$

is a translation of $S^{n-1+\delta+(d-1)\gamma}$, and since

$$\delta + (d-1)\gamma \le d\delta \le (d+2)^{-1}d^{-(n-d-1)},$$

it can be covered by $(n-1)^d + (d+1)^d - 2d^d + (d-1)^d$ unit right simplices by the inductive hypothesis. Thus the result will follow from the lemma below. \Box

Lemma 2 $B_{1-(d-1)\gamma}^{n+\delta}$ can be covered by $n^d - (n-1)^d$ unit right d-simplices.

Proof: In the proof of Lemma 1, we took the "bottom" simplices of the triangulation of B_1^{n+1} and squeezed them together, pushing up the remaining simplices to cover a base slightly higher than 1. Now we take the bottom simplices of the triangulation of B_1^n and spread them out, letting the remaining simplices rattle down filling the gaps to cover a base slightly shorter than 1.

With γ as above, note that

$$(n-1)(1+\gamma) + 1 = n + \delta + (d-1)\gamma.$$
(7)

The simplices of the triangulation of B_1^n are those $k(v, \pi)$ where

$$v \in S^{n-1} \cap \mathbb{Z}^d; \quad v_d = 0; \quad \text{if } v_j = v_{j+1}, \ j \text{ precedes } j+1 \text{ in } \pi.$$
 (8)

We spread out and rattle down these simplices as follows:

(c) If
$$\pi^{-1}(d) = d$$
, $\hat{k}(v,\pi) := k((1+\gamma)v,\pi)$;
(d) if $\pi^{-1}(d) = j < d$, $\hat{k}(v,\pi) := k((1+\gamma)v - (d-j)\gamma e,\pi)$.

We need to show that every $x \in B_{1-(d-1)\gamma}^{n+\delta}$ is covered by at least one such $\hat{k}(v,\pi)$, where (v,π) satisfies (8). Given such an x, we can choose $v \in \mathbb{Z}_+^d$ with $v_d = 0$ and $v \leq (n-1)e$ so that all the components of

$$w := x - (1 + \gamma)v$$

lie between $-\gamma$ and 1. We then order these components using the permutation π so that

$$1 \ge w_{\pi(1)} \ge \dots \ge w_{\pi(d)} > -\gamma.$$
(9)

Since $x \leq (n+\delta)e$, equation (7) implies that

if
$$v_i = n - 1$$
 for $1 \le i < d, w_i \le 1 - (d - 1)\gamma$. (10)

Also, since $x \in B_{1-(d-1)\gamma}^{n+\delta}$, $w_d \leq 1 - (d-1)\gamma$. Finally, if there is a set of components of w that are equal, we may modify π so that their indices appear in ascending order:

if
$$w_{\pi(i)} = w_{\pi(i+1)}$$
 for $1 \le i < d, \pi(i) < \pi(i+1)$. (11)

Let us first assume that $\pi^{-1}(d) = d$. Then $w_d \ge 0$, so that

$$1 \ge w_{\pi(1)} \ge \dots \ge w_{\pi(d)} \ge 0,$$

and x lies in $k((1 + \gamma)v, \pi)$, and it remains to show (8). We already know that $0 \le v \le (n-1)e$ and $v_d = 0$. Since $x_i \ge x_{i+1}$,

$$v_i \ge v_{i+1} + \frac{w_{i+1} - w_i}{1 + \gamma} \ge v_{i+1} - \frac{1}{1 + \gamma} > v_{j+1} - 1$$

and so $v_i \ge v_{i+1}$, and if these are equal, then $w_i \ge w_{i+1}$ and then (9) and (11) imply that i precedes i + 1 in π . Thus x lies in a simplex of type (c) above.

Next suppose $k := \pi^{-1}(d) < d$. Let *i* be the lowest index such that

$$w_{\pi(i)} \le 1 - (d - k + i - 1)\gamma;$$

note that the index k satisfies this inequality so that $i \leq k$. Also,

if
$$i > 1$$
, for $h < i$, $w_{\pi(h)} \ge 1 - (d - k + i - 2)\gamma$, and hence $v_{\pi(h)} < n - 1$. (12)

using (10). We now increase $v_{\pi(h)}$ by 1 for each h < i, to get v'. From the above, we still have $v' \leq (n-1)e$. Let $w' := x - (1+\gamma)v'$. For $j \geq i$, $w'_{\pi(j)} = w_{\pi(j)}$, while for h < i, $w'_{\pi(h)} = w_{\pi(h)} - 1 - \gamma$, and so using (9) and (12), we find

for
$$h < i, -\gamma \ge w'_{\pi(h)} \ge -(d - k + i - 1)\gamma$$
.

Thus if we order the components of w', with strings of equal components in ascending order, we find the permutation ρ with $\rho = (\pi(i), \ldots, \pi(d), \pi(1), \ldots, \pi(i-1))$ with $\rho^{-1}(d) = k - i + 1 =: j'$. We also have

$$1 - (d - j')\gamma \ge w'_{\rho(1)} \ge \cdots \ge w'_{\rho(d)} \ge -(d - j')\gamma,$$

and so x lies in $\hat{k}(v', \rho)$, and it remains to show that v' and ρ satisfy (8). But this follows exactly the argument used above for the case $\pi^{-1}(d) = d$, and so x lies in a simplex of type (d) and the proof is complete. \Box

4 Discussion

Our results are not tight. Indeed, for d > 2 and n = 1, we have shown that $S^{1+\delta}$ can be covered by $2^d - 1$ right *d*-simplices, while d+1 suffice by using a construction also similar to Soifer's construction in [1, 2]:

Proposition 1 For $\delta := d^{-1}$, $S^{1+\delta}$ can be covered by d+1 right d-simplices.

Proof: Let $v^0 := 0$, $v^j = v^{j-1} + \delta e^j$ for $j = 1, \ldots, d$. Let ι denote the identity permutation $(1, 2, \ldots, d)$. We show that the d+1 right d-simplices $k(v^j, \iota)$ for $j = 0, \ldots, d$ cover $S^{1+\delta}$.

Consider any $x \in S^{1+\delta}$. Then

$$1 + \delta =: x_0 \ge x_1 \ge \cdots \ge x_d \ge x_{d+1} := 0.$$

There are then d + 1 nonnegative gaps $x_i - x_{i+1}$, $i = 0, \ldots, d$, summing to $1 + \delta$, and so since $(d+1)\delta = 1 + \delta$, one of these, say that indexed by i = j, must be at least δ . But then

$$1 \ge x_1 - \delta \ge \cdots \ge x_j - \delta \ge x_{j+1} \ge \cdots x_d \ge 0$$

(with obvious modifications if j = 0 or j = d), so that $x \in k(v^j, \iota)$. \Box

If Lemma 2 could be extended to all n, then Proposition 1 would provide the base case to prove that $S^{n+\delta}$ could be covered by $n^d + d$ unit right *d*-simplices. However, the rather delicate arguments in Lemma 2 seem to require that the "bottom" simplices be spread out to not only cover components up to $n + \delta$, but further up to $n + \delta + (d - 1)\gamma$ (see (7)), and this necessitates n > d.

It would be nice to complement our results with lower bounds on the number of unit right *d*-simplices required to cover $S^{n+\delta}$ ($\delta > 0$), but such results are rare even for d = 2. Indeed, volume considerations ensure that at least $n^d + 1$ are necessary, while for d = 2and n = 1 or n = 2, considering all points in $S^{n+\delta}$ all of whose components are integer multiples of $1 + \delta/n$, no two of which can lie in a single unit 2-simplex, shows that $n^2 + 2$ are necessary.

Both of these techniques are special cases of bounds from measures on \mathbb{R}^d . In general, we can consider the moment problem

 $M := \sup\{\mu(S^{n+\delta}) : \mu \text{ is a measure on } \mathbb{R}^d \text{ with } \mu(\Sigma) \leq 1 \text{ for any right } d\text{-simplex } \Sigma\}.$

Then M, rounded up to the next integer, provides a lower bound on the number of unit d-simplices to cover $S^{1+\delta}$. Perhaps numerical computations on discretizations of this problem can provide insights allowing the construction of measures yielding non-trivial lower bounds on the number of simplices required.

Finally, we note that for d = 2, right d-simplices are isosceles right triangles, and that Xu, Yuan, and Ding [6] consider a different problem of covering isosceles right triangles with isosceles right triangles of possibly different sizes and allowing for rotations as well as translations and coordinate permutations.

References

[1] J. H. CONWAY AND A. SOIFER, *Covering a triangle with triangles*, American Mathematical Monthly, 112 (2005), p. 78.

- [2] J. H. CONWAY AND A. SOIFER, Can $n^2 + 1$ unit equilateral triangles cover an equilateral triangle of side > n, say $n + \epsilon$?, https://fermatslibrary.com/s/shortest-paperever-published-in-a-serious-math-journal-john-conway-alexander-soifer
- [3] L. J. LANDER, T. R. PARKIN, Counterexample to Euler's conjecture on sums of like powers, Bull. Amer. Math. Soc. 72(6) (1966), p. 1079.
- [4] A. SOIFER. How does one cut a triangle. Springer, New York, 2009.
- [5] M. J. TODD, The Computation of Fixed Points and Applications, Lecture Notes in Economics and Mathematical Systems 124, Springer, Berlin-Heidelberg, 1976.
- [6] C. XU, L. YUAN, AND R. DING, Covering Isosceles Right Triangles with Isosceles Right Triangles, Geombinatorics 14(4) (2005), pp. 194–200.