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Abstract

In a famous short paper, Conway and Soifer show that n2+2 equilateral triangles with
edge length 1 can cover one with side n+ε. We provide a generalization to d dimensions.

1 Introduction

We denote by e1, . . . , ed the unit coordinate vectors in Rd, and by e :=
∑

j e
j the vector

of ones. A unit right d-simplex is defined to be the convex hull of 0, e1, e1 + e2, ... ,
e1 + e2 + · · ·+ ed, or any of its images under coordinate permutations and translations. A
right d-simplex is a dilation of a unit right d-simplex; if the dilation is by a factor α > 0,
its shortest side has length α.

We are not able to answer the question in the title, but we first show that, if ε ≤ δ :=
(n + 2)−1, then (n + 1)d + (n − 1)d − nd suffice. (This fails for the trivial case d = 1;
we assume implicitly throughout that d > 1.) Notice that, under the transformation
x 7→Mx, where

M :=

[
1 −1/2

0
√

3/2

]
,

right 2-simplices are transformed into equilateral triangles, so that our result implies that
of Conway and Soifer [1]. However, while this theorem matches the known result for
d = 2, we observe that for larger dimensions the excess of (n+ 1)d + (n− 1)d−nd over nd

is increasing with n. Our second result is that, when n > d, nd + (d+ 1)d− 2dd + (d− 1)d

suffice, though with a much smaller ε. Both of these arguments generalize those of Conway
and Soifer, although inevitably they are longer. (Note that, in its original form [2], the
text of the paper contains just two words: “n2 + 2 can,” although with the two figures
and the usual rate of exchange, there are a total of 2002 words, exceeding the length of
[3].)

We need a convenient notation for right d-simplices. For v ∈ Rd and π a permutation
of {1, . . . , d}, we use k(v, π) to denote the convex hull of v, v + eπ(1), v + eπ(1) + eπ(2),
. . . ,v + e. It is easy to see that

k(v, π) = {x ∈ Rd : 1 ≥ (x− v)π(1) ≥ (x− v)π(2) ≥ · · · ≥ (x− v)π(d) ≥ 0}.
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It is well known that the set of all k(0, π)’s, as π ranges over all permutations, triangulates
the unit cube, while the set of all k(v, π)’s, with v an integer vector and π a permutation,
triangulates Rd. See, for example, [5]. These simplices are exactly the d-dimensional
pieces when Rd is partitioned by all hyperplanes of the form xj = z or xi−xj = z, with z
an integer. More relevant to our purposes, the set of all k(v, π)’s, with v an integer vector
and π a permutation, that lie in the right d-simplex

Sn := {x ∈ Rd : n ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ 0},

covers (indeed, triangulates) that set. In fact, k(v, π) lies in this set iff v ∈ Sn−1 and, if
vj = vj+1, j precedes j + 1 in the permutation π. By volume considerations, there are nd

such unit right d-simplices.
We can also easily see that the “base” of Sn, where xd lies between 0 and 1, can also

be triangulated, by nd − (n − 1)d of these simplices, those with vd = 0. In general, we
define the base

Bβ
α := {x ∈ Sβ : xd ≤ α}

of the right d-simplex

Sβ := {x ∈ Rd : β ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ 0},

and similarly the “top”
T βα := {x ∈ Sβ : xd ≥ α}.

We say Bβ
α has height α. The base discussed above is Bn

1 , while in the sequel we consider
bases Bn+δ

α with height α either slightly more than or slightly less than 1.

2 The Conway Construction

The first (graphical) proof in [1, 2] — due to Conway according to Chapter 9 of [4] —
shows how to cover a 2-dimensional base slightly taller than 1 with 2n+ 1 triangles. We
generalize this construction to establish

Theorem 1 For δ := (n+ 2)−1, the right d-simplex

Sn+δ := {x ∈ Rd : n+ δ ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ 0},

with shortest side n+ δ, can be covered by

(n+ 1)d + (n− 1)d − nd

unit right d-simplices.

Proof: We divide Sn+δ into its base

Bn+δ
1+δ := {x ∈ Sn+δ : xd ≤ 1 + δ}

and its top
Tn+δ1+δ := {x ∈ Sn+δ : xd ≥ 1 + δ}.

Note that the top can be written as

Tn+δ1+δ = {x ∈ Rd : n+ δ ≥ x1 ≥ · · · ≥ xd ≥ 1 + δ},

which is just the translation by (1 + δ)e of Sn−1, and can therefore be triangulated by
(n − 1)d unit right d-simplices as above. The proof is completed by applying the lemma
below, which we separate to contrast it to the second construction. ut
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Lemma 1 For δ := (n + 2)−1, the base Tn+δ1+δ can be covered by (n + 1)d − nd unit right
d-simplices.

Proof: Note that the base is somewhat similar to the base

Bn+1
1 := {x ∈ Sn+1 : xd ≤ 1},

which as we noted above, can be triangulated by exactly this many unit right d-simplices.
Indeed, the base we are interested in has its first d − 1 components squeezed in (from
n+ 1 to n+ δ) and its last component stretched out (from 1 to 1 + δ). We therefore apply
an operation to the individual simplices in this triangulation, roughly as the individual
cloves are transformed by squeezing the head of a roasted garlic.

As we observed above, the simplices of the triangulation of Bn+1
1 are those k(v, π)

where
v ∈ Sn ∩ Zd; vd = 0; if vj = vj+1, j precedes j + 1 in π. (1)

We squeeze these simplices as follows:

(a) If π−1(d) = d, k̃(v, π) := k((1− δ)v, π);

(b) if π−1(d) < d, k̃(v, π) := k((1− δ)v + δe, π).

We need to show that every x ∈ Bn+δ
1+δ is covered by at least one such k̃(v, π), where (v, π)

satisfies (1).
For any such x, we can choose v ∈ Zd+, vd = 0, so that all components of

w := x− (1− δ)v,

except possibly the last, lie between 0 and 1. We then order these components using the
permutation π. Suppose first we can choose π so that d comes last:

1 ≥ wπ(1) ≥ · · · ≥ wπ(d) ≥ 0, π−1(d) = d. (2)

Note that there is some choice involved for j < d; if vj > 0 and 0 ≤ wj ≤ δ, we can
decrease vj by 1 so that 1− δ ≤ wj ≤ 1 and then adjust π accordingly. Then we have

if vj > 0 for 1 ≤ j < d,wj > δ. (3)

Moreover, if there is a set of components of w that are equal, we may modify π so that
their indices appear in ascending order:

if wπ(j) = wπ(j+1) for 1 ≤ j < d, π(j) < π(j + 1). (4)

We show that, if v and π can be chosen so that (2)–(4) hold, then x lies in the simplex
k̃(v, π) of type (a). By the first of these conditions, it is only necessary to check (1).

First, we have w1 ≥ 0, so that

v1 ≤ (1− δ)−1x1 ≤ (1− δ)−1(n+ δ) = n+ 1.

Moreover, if v1 = n + 1, we have equality throughout, so that v1 > 0 and w1 = 0,
contradicting (3). Hence v1 ≤ n.
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Next, consider the condition vj ≥ vj+1. If vj+1 = 0, then this holds by default. If not,
then j + 1 < d and by (3), wj+1 > δ, so that wj < wj+1 + 1− δ and thus

vj > vj+1 − 1 + (1− δ)−1(xj − xj+1) ≥ vj+1 − 1,

and we obtain vj ≥ vj+1.
Finally, if vj = vj+1, then since xj ≥ xj+1 we have wj ≥ wj+1. Thus j precedes j + 1

in π, either by (2) if these components are unequal, or by (4) if they are equal. This
completes the verification of (1), and so x is covered.

Note that, if xd ≤ δ, then we can find v and π so that (2) holds. Indeed, we order
the components of w as above, and ensure that if vj > 0 and j < d, then wj > δ and j
precedes d in π. But if vj = 0 for j < d, then xj ≥ xd ensures that wj ≥ wd, and thus
we can arrange that d comes last in π. Thus the bottom sliver of the base is covered by
simplices of type (a).

Now we assume that x cannot be covered by such a simplex. Then xd > δ, and hence
xj > δ for all j. We can then find v ∈ Zd+ with vd = 0 and a permutation π so that, with
w again defined as x− (1− δ)v, we have

1 + δ ≥ wπ(1) ≥ · · · ≥ wπ(d) ≥ δ. (5)

Moreover, as above, if 1 ≤ wj ≤ 1+δ for j < d, we can increase vj by 1 so that δ ≤ wj ≤ 2δ
and then adjust π accordingly, so that

for j < d,wj < 1. (6)

We can also ensure that equal components of w are suitably ordered, so that (4) holds.
If wd > 1, then because of (6), π−1(d) = 1. If instead wd ≤ 1, then (11) and (6) show

that (2) holds, so that if π−1(d) = d, x could be covered by a simplex of type (a). Thus
in either case, π−1(d) < d, so that, if w′ := x− (1− δ)v − δe,

1 ≥ w′π(1) ≥ · · · ≥ w
′
π(d) ≥ 0, π−1(d) < d,

and x will be covered by a simplex of type (b) if we can verify (1).
Suppose (4)–(6) hold. Then w1 ≥ δ, so

v1 ≤ (1− δ)−1x1 − (1− δ)−1δ < (1− δ)−1(n+ δ) = n+ 1,

and we have v1 ≤ n.
Next, consider the condition vj ≥ vj+1. If vj+1 = 0, then this holds by default. If not,

then j + 1 < d and by (11) and (6), wj+1 ≥ δ and wj < 1, so that wj < wj+1 + 1− δ and
thus

vj > vj+1 − 1 + (1− δ)−1(xj − xj+1) ≥ vj+1 − 1,

and we obtain vj ≥ vj+1. The proof that if vj = vj+1 then j precedes j + 1 in the
permutation π is identical to that above.

Thus x is covered either by a simplex of type (a) or one of type (b), and the theorem
is proved. ut

4



3 The Soifer Construction

The second (graphical) proof in [1, 2], due to Soifer according to Chapter 9 of [4], demon-
strates how to cover a 2-dimensional base slightly shorter than 1 with 2n − 1 triangles.
We generalize this construction to prove

Theorem 2 For n ≥ d and δ ≤ (d+ 2)−1d−(n−d), Sn+δ can be covered by

nd + (d+ 1)d − 2dd + (d− 1)d

unit right d-simplices.

Proof: We proceed by induction on n. For n = d, the result follows from Theorem 1.
Now suppose n > d, and that the theorem holds for n− 1. Let

γ :=
1

n− d
δ ≤ δ,

and divide Sn+δ into its base Bn+δ
1−(d−1)γ and its top Tn+δ1−(d−1)γ . Note that

Tn+δ1−(d−1)γ = {x ∈ Rd : n+ δ ≥ x1 ≥ · · · ≥ xd ≥ 1− (d− 1)γ}

is a translation of Sn−1+δ+(d−1)γ , and since

δ + (d− 1)γ ≤ dδ ≤ (d+ 2)−1d−(n−d−1),

it can be covered by (n−1)d+(d+1)d−2dd+(d−1)d unit right simplices by the inductive
hypothesis. Thus the result will follow from the lemma below. ut

Lemma 2 Bn+δ
1−(d−1)γ can be covered by nd − (n− 1)d unit right d-simplices.

Proof: In the proof of Lemma 1, we took the “bottom” simplices of the triangulation
of Bn+1

1 and squeezed them together, pushing up the remaining simplices to cover a base
slightly higher than 1. Now we take the bottom simplices of the triangulation of Bn

1 and
spread them out, letting the remaining simplices rattle down filling the gaps to cover a
base slightly shorter than 1.

With γ as above, note that

(n− 1)(1 + γ) + 1 = n+ δ + (d− 1)γ. (7)

The simplices of the triangulation of Bn
1 are those k(v, π) where

v ∈ Sn−1 ∩ Zd; vd = 0; if vj = vj+1, j precedes j + 1 in π. (8)

We spread out and rattle down these simplices as follows:

(c) If π−1(d) = d, k̂(v, π) := k((1 + γ)v, π);

(d) if π−1(d) = j < d, k̂(v, π) := k((1 + γ)v − (d− j)γe, π).

We need to show that every x ∈ Bn+δ
1−(d−1)γ is covered by at least one such k̂(v, π), where

(v, π) satisfies (8). Given such an x, we can choose v ∈ Zd+ with vd = 0 and v ≤ (n− 1)e
so that all the components of

w := x− (1 + γ)v
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lie between −γ and 1. We then order these components using the permutation π so that

1 ≥ wπ(1) ≥ · · · ≥ wπ(d) > −γ. (9)

Since x ≤ (n+ δ)e, equation (7) implies that

if vi = n− 1 for 1 ≤ i < d,wi ≤ 1− (d− 1)γ. (10)

Also, since x ∈ Bn+δ
1−(d−1)γ , wd ≤ 1− (d− 1)γ. Finally, if there is a set of components of w

that are equal, we may modify π so that their indices appear in ascending order:

if wπ(i) = wπ(i+1) for 1 ≤ i < d, π(i) < π(i+ 1). (11)

Let us first assume that π−1(d) = d, Then wd ≥ 0, so that

1 ≥ wπ(1) ≥ · · · ≥ wπ(d) ≥ 0,

and x lies in k((1 + γ)v, π), and it remains to show (8). We already know that 0 ≤ v ≤
(n− 1)e and vd = 0. Since xi ≥ xi+1,

vi ≥ vi+1 +
wi+1 − wi

1 + γ
≥ vi+1 −

1

1 + γ
> vj+1 − 1

and so vi ≥ vi+1, and if these are equal, then wi ≥ wi+1 and then (9) and (11) imply that
i precedes i+ 1 in π. Thus x lies in a simplex of type (c) above.

Next suppose k := π−1(d) < d. Let i be the lowest index such that

wπ(i) ≤ 1− (d− k + i− 1)γ;

note that the index k satisfies this inequality so that i ≤ k. Also,

if i > 1, for h < i, wπ(h) ≥ 1− (d− k + i− 2)γ, and hence vπ(h) < n− 1. (12)

using (10). We now increase vπ(h) by 1 for each h < i, to get v′. From the above, we still
have v′ ≤ (n − 1)e. Let w′ := x − (1 + γ)v′. For j ≥ i, w′π(j) = wπ(j), while for h < i,

w′π(h) = wπ(h) − 1− γ, and so using (9) and (12), we find

for h < i,−γ ≥ w′π(h) ≥ −(d− k + i− 1)γ.

Thus if we order the components of w′, with strings of equal components in ascending
order, we find the permutation ρ with ρ = (π(i), . . . , π(d), π(1), . . . , π(i−1)) with ρ−1(d) =
k − i+ 1 =: j′. We also have

1− (d− j′)γ ≥ w′ρ(1) ≥ · · · ≥ w
′
ρ(d) ≥ −(d− j′)γ,

and so x lies in k̂(v′, ρ), and it remains to show that v′ and ρ satisfy (8). But this follows
exactly the argument used above for the case π−1(d) = d, and so x lies in a simplex of
type (d) and the proof is complete. ut
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4 Discussion

Our results are not tight. Indeed, for d > 2 and n = 1, we have shown that S1+δ can be
covered by 2d− 1 right d-simplices, while d+ 1 suffice by using a construction also similar
to Soifer’s construction in [1, 2]:

Proposition 1 For δ := d−1, S1+δ can be covered by d+ 1 right d-simplices.

Proof: Let v0 := 0, vj = vj−1 + δej for j = 1, . . . , d. Let ι denote the identity
permutation (1, 2, . . . , d). We show that the d+1 right d-simplices k(vj , ι) for j = 0, . . . , d
cover S1+δ.

Consider any x ∈ S1+δ. Then

1 + δ =: x0 ≥ x1 ≥ · · · ≥ xd ≥ xd+1 := 0.

There are then d+ 1 nonnegative gaps xi − xi+1 , i = 0, . . . , d, summing to 1 + δ, and so
since (d + 1)δ = 1 + δ, one of these, say that indexed by i = j, must be at least δ. But
then

1 ≥ x1 − δ ≥ · · · ≥ xj − δ ≥ xj+1 ≥ · · ·xd ≥ 0

(with obvious modifications if j = 0 or j = d), so that x ∈ k(vj , ι). ut
If Lemma 2 could be extended to all n, then Proposition 1 would provide the base

case to prove that Sn+δ could be covered by nd + d unit right d-simplices. However, the
rather delicate arguments in Lemma 2 seem to require that the “bottom” simplices be
spread out to not only cover components up to n+ δ, but further up to n+ δ + (d− 1)γ
(see (7)), and this necessitates n > d.

It would be nice to complement our results with lower bounds on the number of unit
right d-simplices required to cover Sn+δ (δ > 0), but such results are rare even for d = 2.
Indeed, volume considerations ensure that at least nd + 1 are necessary, while for d = 2
and n = 1 or n = 2, considering all points in Sn+δ all of whose components are integer
multiples of 1 + δ/n, no two of which can lie in a single unit 2-simplex, shows that n2 + 2
are necessary.

Both of these techniques are special cases of bounds from measures on Rd. In general,
we can consider the moment problem

M := sup{µ(Sn+δ) : µ is a measure on Rd with µ(Σ) ≤ 1 for any right d-simplex Σ}.

Then M , rounded up to the next integer, provides a lower bound on the number of unit
d-simplices to cover S1+δ. Perhaps numerical computations on discretizations of this
problem can provide insights allowing the construction of measures yielding non-trivial
lower bounds on the number of simplices required.

Finally, we note that for d = 2, right d-simplices are isosceles right triangles, and that
Xu, Yuan, and Ding [6] consider a different problem of covering isosceles right triangles
with isosceles right triangles of possibly different sizes and allowing for rotations as well
as translations and coordinate permutations.
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