Can $n^{d}+1$ unit right d-simplices cover a right d-simplex with shortest side $n+\epsilon$?

Michael J. Todd *

July 2, 2023

Abstract

In a famous short paper, Conway and Soifer show that $n^{2}+2$ equilateral triangles with edge length 1 can cover one with side $n+\epsilon$. We provide a generalization to d dimensions.

1 Introduction

We denote by e^{1}, \ldots, e^{d} the unit coordinate vectors in \mathbb{R}^{d}, and by $e:=\sum_{j} e^{j}$ the vector of ones. A unit right d-simplex is defined to be the convex hull of $0, e^{1}, e^{1}+e^{2}, \ldots$, $e^{1}+e^{2}+\cdots+e^{d}$, or any of its images under coordinate permutations and translations. A right d-simplex is a dilation of a unit right d-simplex; if the dilation is by a factor $\alpha>0$, its shortest side has length α.

We are not able to answer the question in the title, but we first show that, if $\epsilon \leq \delta:=$ $(n+2)^{-1}$, then $(n+1)^{d}+(n-1)^{d}-n^{d}$ suffice. (This fails for the trivial case $d=1$; we assume implicitly throughout that $d>1$.) Notice that, under the transformation $x \mapsto M x$, where

$$
M:=\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & \sqrt{3} / 2
\end{array}\right],
$$

right 2 -simplices are transformed into equilateral triangles, so that our result implies that of Conway and Soifer [1]. However, while this theorem matches the known result for $d=2$, we observe that for larger dimensions the excess of $(n+1)^{d}+(n-1)^{d}-n^{d}$ over n^{d} is increasing with n. Our second result is that, when $n>d, n^{d}+(d+1)^{d}-2 d^{d}+(d-1)^{d}$ suffice, though with a much smaller ϵ. Both of these arguments generalize those of Conway and Soifer, although inevitably they are longer. (Note that, in its original form [2], the text of the paper contains just two words: " $n^{2}+2$ can," although with the two figures and the usual rate of exchange, there are a total of 2002 words, exceeding the length of [3].)

We need a convenient notation for right d-simplices. For $v \in \mathbb{R}^{d}$ and π a permutation of $\{1, \ldots, d\}$, we use $k(v, \pi)$ to denote the convex hull of $v, v+e^{\pi(1)}, v+e^{\pi(1)}+e^{\pi(2)}$, $\ldots, v+e$. It is easy to see that

$$
k(v, \pi)=\left\{x \in \mathbb{R}^{d}: 1 \geq(x-v)_{\pi(1)} \geq(x-v)_{\pi(2)} \geq \cdots \geq(x-v)_{\pi(d)} \geq 0\right\}
$$

[^0]It is well known that the set of all $k(0, \pi)$'s, as π ranges over all permutations, triangulates the unit cube, while the set of all $k(v, \pi)$'s, with v an integer vector and π a permutation, triangulates \mathbb{R}^{d}. See, for example, [5]. These simplices are exactly the d-dimensional pieces when \mathbb{R}^{d} is partitioned by all hyperplanes of the form $x_{j}=z$ or $x_{i}-x_{j}=z$, with z an integer. More relevant to our purposes, the set of all $k(v, \pi)$'s, with v an integer vector and π a permutation, that lie in the right d-simplex

$$
S^{n}:=\left\{x \in \mathbb{R}^{d}: n \geq x_{1} \geq x_{2} \geq \cdots \geq x_{d} \geq 0\right\}
$$

covers (indeed, triangulates) that set. In fact, $k(v, \pi)$ lies in this set iff $v \in S^{n-1}$ and, if $v_{j}=v_{j+1}, j$ precedes $j+1$ in the permutation π. By volume considerations, there are n^{d} such unit right d-simplices.

We can also easily see that the "base" of S^{n}, where x_{d} lies between 0 and 1 , can also be triangulated, by $n^{d}-(n-1)^{d}$ of these simplices, those with $v_{d}=0$. In general, we define the base

$$
B_{\alpha}^{\beta}:=\left\{x \in S^{\beta}: x_{d} \leq \alpha\right\}
$$

of the right d-simplex

$$
S^{\beta}:=\left\{x \in \mathbb{R}^{d}: \beta \geq x_{1} \geq x_{2} \geq \cdots \geq x_{d} \geq 0\right\}
$$

and similarly the "top"

$$
T_{\alpha}^{\beta}:=\left\{x \in S^{\beta}: x_{d} \geq \alpha\right\} .
$$

We say B_{α}^{β} has height α. The base discussed above is B_{1}^{n}, while in the sequel we consider bases $B_{\alpha}^{n+\delta}$ with height α either slightly more than or slightly less than 1 .

2 The Conway Construction

The first (graphical) proof in [1, 2] — due to Conway according to Chapter 9 of [4] shows how to cover a 2 -dimensional base slightly taller than 1 with $2 n+1$ triangles. We generalize this construction to establish
Theorem 1 For $\delta:=(n+2)^{-1}$, the right d-simplex

$$
S^{n+\delta}:=\left\{x \in \mathbb{R}^{d}: n+\delta \geq x_{1} \geq x_{2} \geq \cdots \geq x_{d} \geq 0\right\}
$$

with shortest side $n+\delta$, can be covered by

$$
(n+1)^{d}+(n-1)^{d}-n^{d}
$$

unit right d-simplices.
Proof: We divide $S^{n+\delta}$ into its base

$$
B_{1+\delta}^{n+\delta}:=\left\{x \in S^{n+\delta}: x_{d} \leq 1+\delta\right\}
$$

and its top

$$
T_{1+\delta}^{n+\delta}:=\left\{x \in S^{n+\delta}: x_{d} \geq 1+\delta\right\} .
$$

Note that the top can be written as

$$
T_{1+\delta}^{n+\delta}=\left\{x \in \mathbb{R}^{d}: n+\delta \geq x_{1} \geq \cdots \geq x_{d} \geq 1+\delta\right\}
$$

which is just the translation by $(1+\delta) e$ of S^{n-1}, and can therefore be triangulated by $(n-1)^{d}$ unit right d-simplices as above. The proof is completed by applying the lemma below, which we separate to contrast it to the second construction.

Lemma 1 For $\delta:=(n+2)^{-1}$, the base $T_{1+\delta}^{n+\delta}$ can be covered by $(n+1)^{d}-n^{d}$ unit right d-simplices.

Proof: Note that the base is somewhat similar to the base

$$
B_{1}^{n+1}:=\left\{x \in S^{n+1}: x_{d} \leq 1\right\}
$$

which as we noted above, can be triangulated by exactly this many unit right d-simplices. Indeed, the base we are interested in has its first $d-1$ components squeezed in (from $n+1$ to $n+\delta$) and its last component stretched out (from 1 to $1+\delta$). We therefore apply an operation to the individual simplices in this triangulation, roughly as the individual cloves are transformed by squeezing the head of a roasted garlic.

As we observed above, the simplices of the triangulation of B_{1}^{n+1} are those $k(v, \pi)$ where

$$
\begin{equation*}
v \in S^{n} \cap \mathbb{Z}^{d} ; \quad v_{d}=0 ; \quad \text { if } v_{j}=v_{j+1}, j \text { precedes } j+1 \text { in } \pi \tag{1}
\end{equation*}
$$

We squeeze these simplices as follows:

$$
(a) \text { If } \pi^{-1}(d)=d, \tilde{k}(v, \pi):=k((1-\delta) v, \pi)
$$

(b) if $\pi^{-1}(d)<d, \tilde{k}(v, \pi):=k((1-\delta) v+\delta e, \pi)$.

We need to show that every $x \in B_{1+\delta}^{n+\delta}$ is covered by at least one such $\tilde{k}(v, \pi)$, where (v, π) satisfies (1).

For any such x, we can choose $v \in \mathbb{Z}_{+}^{d}, v_{d}=0$, so that all components of

$$
w:=x-(1-\delta) v
$$

except possibly the last, lie between 0 and 1 . We then order these components using the permutation π. Suppose first we can choose π so that d comes last:

$$
\begin{equation*}
1 \geq w_{\pi(1)} \geq \cdots \geq w_{\pi(d)} \geq 0, \quad \pi^{-1}(d)=d \tag{2}
\end{equation*}
$$

Note that there is some choice involved for $j<d$; if $v_{j}>0$ and $0 \leq w_{j} \leq \delta$, we can decrease v_{j} by 1 so that $1-\delta \leq w_{j} \leq 1$ and then adjust π accordingly. Then we have

$$
\begin{equation*}
\text { if } v_{j}>0 \text { for } 1 \leq j<d, w_{j}>\delta \tag{3}
\end{equation*}
$$

Moreover, if there is a set of components of w that are equal, we may modify π so that their indices appear in ascending order:

$$
\begin{equation*}
\text { if } w_{\pi(j)}=w_{\pi(j+1)} \text { for } 1 \leq j<d, \pi(j)<\pi(j+1) \tag{4}
\end{equation*}
$$

We show that, if v and π can be chosen so that (2)-(4) hold, then x lies in the simplex $\tilde{k}(v, \pi)$ of type (a). By the first of these conditions, it is only necessary to check (1).

First, we have $w_{1} \geq 0$, so that

$$
v_{1} \leq(1-\delta)^{-1} x_{1} \leq(1-\delta)^{-1}(n+\delta)=n+1
$$

Moreover, if $v_{1}=n+1$, we have equality throughout, so that $v_{1}>0$ and $w_{1}=0$, contradicting (3). Hence $v_{1} \leq n$.

Next, consider the condition $v_{j} \geq v_{j+1}$. If $v_{j+1}=0$, then this holds by default. If not, then $j+1<d$ and by (3), $w_{j+1}>\delta$, so that $w_{j}<w_{j+1}+1-\delta$ and thus

$$
v_{j}>v_{j+1}-1+(1-\delta)^{-1}\left(x_{j}-x_{j+1}\right) \geq v_{j+1}-1
$$

and we obtain $v_{j} \geq v_{j+1}$.
Finally, if $v_{j}=v_{j+1}$, then since $x_{j} \geq x_{j+1}$ we have $w_{j} \geq w_{j+1}$. Thus j precedes $j+1$ in π, either by (2) if these components are unequal, or by (4) if they are equal. This completes the verification of (1), and so x is covered.

Note that, if $x_{d} \leq \delta$, then we can find v and π so that (2) holds. Indeed, we order the components of w as above, and ensure that if $v_{j}>0$ and $j<d$, then $w_{j}>\delta$ and j precedes d in π. But if $v_{j}=0$ for $j<d$, then $x_{j} \geq x_{d}$ ensures that $w_{j} \geq w_{d}$, and thus we can arrange that d comes last in π. Thus the bottom sliver of the base is covered by simplices of type (a).

Now we assume that x cannot be covered by such a simplex. Then $x_{d}>\delta$, and hence $x_{j}>\delta$ for all j. We can then find $v \in \mathbb{Z}_{+}^{d}$ with $v_{d}=0$ and a permutation π so that, with w again defined as $x-(1-\delta) v$, we have

$$
\begin{equation*}
1+\delta \geq w_{\pi(1)} \geq \cdots \geq w_{\pi(d)} \geq \delta \tag{5}
\end{equation*}
$$

Moreover, as above, if $1 \leq w_{j} \leq 1+\delta$ for $j<d$, we can increase v_{j} by 1 so that $\delta \leq w_{j} \leq 2 \delta$ and then adjust π accordingly, so that

$$
\begin{equation*}
\text { for } j<d, w_{j}<1 \tag{6}
\end{equation*}
$$

We can also ensure that equal components of w are suitably ordered, so that (4) holds.
If $w_{d}>1$, then because of $(6), \pi^{-1}(d)=1$. If instead $w_{d} \leq 1$, then (11) and (6) show that (2) holds, so that if $\pi^{-1}(d)=d, x$ could be covered by a simplex of type (a). Thus in either case, $\pi^{-1}(d)<d$, so that, if $w^{\prime}:=x-(1-\delta) v-\delta e$,

$$
1 \geq w_{\pi(1)}^{\prime} \geq \cdots \geq w_{\pi(d)}^{\prime} \geq 0, \quad \pi^{-1}(d)<d
$$

and x will be covered by a simplex of type (b) if we can verify (1).
Suppose (4)-(6) hold. Then $w_{1} \geq \delta$, so

$$
v_{1} \leq(1-\delta)^{-1} x_{1}-(1-\delta)^{-1} \delta<(1-\delta)^{-1}(n+\delta)=n+1,
$$

and we have $v_{1} \leq n$.
Next, consider the condition $v_{j} \geq v_{j+1}$. If $v_{j+1}=0$, then this holds by default. If not, then $j+1<d$ and by (11) and (6), $w_{j+1} \geq \delta$ and $w_{j}<1$, so that $w_{j}<w_{j+1}+1-\delta$ and thus

$$
v_{j}>v_{j+1}-1+(1-\delta)^{-1}\left(x_{j}-x_{j+1}\right) \geq v_{j+1}-1
$$

and we obtain $v_{j} \geq v_{j+1}$. The proof that if $v_{j}=v_{j+1}$ then j precedes $j+1$ in the permutation π is identical to that above.

Thus x is covered either by a simplex of type (a) or one of type (b), and the theorem is proved.

3 The Soifer Construction

The second (graphical) proof in [1, 2], due to Soifer according to Chapter 9 of [4], demonstrates how to cover a 2 -dimensional base slightly shorter than 1 with $2 n-1$ triangles. We generalize this construction to prove

Theorem 2 For $n \geq d$ and $\delta \leq(d+2)^{-1} d^{-(n-d)}$, $S^{n+\delta}$ can be covered by

$$
n^{d}+(d+1)^{d}-2 d^{d}+(d-1)^{d}
$$

unit right d-simplices.
Proof: We proceed by induction on n. For $n=d$, the result follows from Theorem 1. Now suppose $n>d$, and that the theorem holds for $n-1$. Let

$$
\gamma:=\frac{1}{n-d} \delta \leq \delta
$$

and divide $S^{n+\delta}$ into its base $B_{1-(d-1) \gamma}^{n+\delta}$ and its top $T_{1-(d-1) \gamma}^{n+\delta}$. Note that

$$
T_{1-(d-1) \gamma}^{n+\delta}=\left\{x \in \mathbb{R}^{d}: n+\delta \geq x_{1} \geq \cdots \geq x_{d} \geq 1-(d-1) \gamma\right\}
$$

is a translation of $S^{n-1+\delta+(d-1) \gamma}$, and since

$$
\delta+(d-1) \gamma \leq d \delta \leq(d+2)^{-1} d^{-(n-d-1)},
$$

it can be covered by $(n-1)^{d}+(d+1)^{d}-2 d^{d}+(d-1)^{d}$ unit right simplices by the inductive hypothesis. Thus the result will follow from the lemma below.

Lemma $2 B_{1-(d-1) \gamma}^{n+\delta}$ can be covered by $n^{d}-(n-1)^{d}$ unit right d-simplices.
Proof: In the proof of Lemma 1, we took the "bottom" simplices of the triangulation of B_{1}^{n+1} and squeezed them together, pushing up the remaining simplices to cover a base slightly higher than 1 . Now we take the bottom simplices of the triangulation of B_{1}^{n} and spread them out, letting the remaining simplices rattle down filling the gaps to cover a base slightly shorter than 1 .

With γ as above, note that

$$
\begin{equation*}
(n-1)(1+\gamma)+1=n+\delta+(d-1) \gamma \tag{7}
\end{equation*}
$$

The simplices of the triangulation of B_{1}^{n} are those $k(v, \pi)$ where

$$
\begin{equation*}
v \in S^{n-1} \cap \mathbb{Z}^{d} ; \quad v_{d}=0 ; \quad \text { if } v_{j}=v_{j+1}, j \text { precedes } j+1 \text { in } \pi . \tag{8}
\end{equation*}
$$

We spread out and rattle down these simplices as follows:

$$
\begin{gathered}
(c) \text { If } \pi^{-1}(d)=d, \hat{k}(v, \pi):=k((1+\gamma) v, \pi) ; \\
(d) \text { if } \pi^{-1}(d)=j<d, \hat{k}(v, \pi):=k((1+\gamma) v-(d-j) \gamma e, \pi) .
\end{gathered}
$$

We need to show that every $x \in B_{1-(d-1) \gamma}^{n+\delta}$ is covered by at least one such $\hat{k}(v, \pi)$, where (v, π) satisfies (8). Given such an x, we can choose $v \in \mathbb{Z}_{+}^{d}$ with $v_{d}=0$ and $v \leq(n-1) e$ so that all the components of

$$
w:=x-(1+\gamma) v
$$

lie between $-\gamma$ and 1 . We then order these components using the permutation π so that

$$
\begin{equation*}
1 \geq w_{\pi(1)} \geq \cdots \geq w_{\pi(d)}>-\gamma \tag{9}
\end{equation*}
$$

Since $x \leq(n+\delta) e$, equation (7) implies that

$$
\begin{equation*}
\text { if } v_{i}=n-1 \text { for } 1 \leq i<d, w_{i} \leq 1-(d-1) \gamma . \tag{10}
\end{equation*}
$$

Also, since $x \in B_{1-(d-1) \gamma}^{n+\delta}, w_{d} \leq 1-(d-1) \gamma$. Finally, if there is a set of components of w that are equal, we may modify π so that their indices appear in ascending order:

$$
\begin{equation*}
\text { if } w_{\pi(i)}=w_{\pi(i+1)} \text { for } 1 \leq i<d, \pi(i)<\pi(i+1) \tag{11}
\end{equation*}
$$

Let us first assume that $\pi^{-1}(d)=d$, Then $w_{d} \geq 0$, so that

$$
1 \geq w_{\pi(1)} \geq \cdots \geq w_{\pi(d)} \geq 0
$$

and x lies in $k((1+\gamma) v, \pi)$, and it remains to show (8). We already know that $0 \leq v \leq$ $(n-1) e$ and $v_{d}=0$. Since $x_{i} \geq x_{i+1}$,

$$
v_{i} \geq v_{i+1}+\frac{w_{i+1}-w_{i}}{1+\gamma} \geq v_{i+1}-\frac{1}{1+\gamma}>v_{j+1}-1
$$

and so $v_{i} \geq v_{i+1}$, and if these are equal, then $w_{i} \geq w_{i+1}$ and then (9) and (11) imply that i precedes $i+1$ in π. Thus x lies in a simplex of type (c) above.

Next suppose $k:=\pi^{-1}(d)<d$. Let i be the lowest index such that

$$
w_{\pi(i)} \leq 1-(d-k+i-1) \gamma ;
$$

note that the index k satisfies this inequality so that $i \leq k$. Also,

$$
\begin{equation*}
\text { if } i>1, \quad \text { for } h<i, \quad w_{\pi(h)} \geq 1-(d-k+i-2) \gamma, \text { and hence } v_{\pi(h)}<n-1 . \tag{12}
\end{equation*}
$$

using (10). We now increase $v_{\pi(h)}$ by 1 for each $h<i$, to get v^{\prime}. From the above, we still have $v^{\prime} \leq(n-1) e$. Let $w^{\prime}:=x-(1+\gamma) v^{\prime}$. For $j \geq i, w_{\pi(j)}^{\prime}=w_{\pi(j)}$, while for $h<i$, $w_{\pi(h)}^{\prime}=w_{\pi(h)}-1-\gamma$, and so using (9) and (12), we find

$$
\text { for } h<i,-\gamma \geq w_{\pi(h)}^{\prime} \geq-(d-k+i-1) \gamma \text {. }
$$

Thus if we order the components of w^{\prime}, with strings of equal components in ascending order, we find the permutation ρ with $\rho=(\pi(i), \ldots, \pi(d), \pi(1), \ldots, \pi(i-1))$ with $\rho^{-1}(d)=$ $k-i+1=: j^{\prime}$. We also have

$$
1-\left(d-j^{\prime}\right) \gamma \geq w_{\rho(1)}^{\prime} \geq \cdots \geq w_{\rho(d)}^{\prime} \geq-\left(d-j^{\prime}\right) \gamma
$$

and so x lies in $\hat{k}\left(v^{\prime}, \rho\right)$, and it remains to show that v^{\prime} and ρ satisfy (8). But this follows exactly the argument used above for the case $\pi^{-1}(d)=d$, and so x lies in a simplex of type (d) and the proof is complete.

4 Discussion

Our results are not tight. Indeed, for $d>2$ and $n=1$, we have shown that $S^{1+\delta}$ can be covered by $2^{d}-1$ right d-simplices, while $d+1$ suffice by using a construction also similar to Soifer's construction in [1, 2]:

Proposition 1 For $\delta:=d^{-1}, S^{1+\delta}$ can be covered by $d+1$ right d-simplices.
Proof: Let $v^{0}:=0, v^{j}=v^{j-1}+\delta e^{j}$ for $j=1, \ldots, d$. Let ι denote the identity permutation $(1,2, \ldots, d)$. We show that the $d+1$ right d-simplices $k\left(v^{j}, \iota\right)$ for $j=0, \ldots, d$ cover $S^{1+\delta}$.

Consider any $x \in S^{1+\delta}$. Then

$$
1+\delta=: x_{0} \geq x_{1} \geq \cdots \geq x_{d} \geq x_{d+1}:=0
$$

There are then $d+1$ nonnegative gaps $x_{i}-x_{i+1}, i=0, \ldots, d$, summing to $1+\delta$, and so since $(d+1) \delta=1+\delta$, one of these, say that indexed by $i=j$, must be at least δ. But then

$$
1 \geq x_{1}-\delta \geq \cdots \geq x_{j}-\delta \geq x_{j+1} \geq \cdots x_{d} \geq 0
$$

(with obvious modifications if $j=0$ or $j=d$), so that $x \in k\left(v^{j}, \iota\right)$.
If Lemma 2 could be extended to all n, then Proposition 1 would provide the base case to prove that $S^{n+\delta}$ could be covered by $n^{d}+d$ unit right d-simplices. However, the rather delicate arguments in Lemma 2 seem to require that the "bottom" simplices be spread out to not only cover components up to $n+\delta$, but further up to $n+\delta+(d-1) \gamma$ (see (7)), and this necessitates $n>d$.

It would be nice to complement our results with lower bounds on the number of unit right d-simplices required to cover $S^{n+\delta}(\delta>0)$, but such results are rare even for $d=2$. Indeed, volume considerations ensure that at least $n^{d}+1$ are necessary, while for $d=2$ and $n=1$ or $n=2$, considering all points in $S^{n+\delta}$ all of whose components are integer multiples of $1+\delta / n$, no two of which can lie in a single unit 2 -simplex, shows that $n^{2}+2$ are necessary.

Both of these techniques are special cases of bounds from measures on \mathbb{R}^{d}. In general, we can consider the moment problem

$$
M:=\sup \left\{\mu\left(S^{n+\delta}\right): \mu \text { is a measure on } \mathbb{R}^{d} \text { with } \mu(\Sigma) \leq 1 \text { for any right } d \text {-simplex } \Sigma\right\} .
$$

Then M, rounded up to the next integer, provides a lower bound on the number of unit d-simplices to cover $S^{1+\delta}$. Perhaps numerical computations on discretizations of this problem can provide insights allowing the construction of measures yielding non-trivial lower bounds on the number of simplices required.

Finally, we note that for $d=2$, right d-simplices are isosceles right triangles, and that Xu, Yuan, and Ding [6] consider a different problem of covering isosceles right triangles with isosceles right triangles of possibly different sizes and allowing for rotations as well as translations and coordinate permutations.

References

[1] J. H. Conway and A. Soifer, Covering a triangle with triangles, American Mathematical Monthly, 112 (2005), p. 78.
[2] J. H. Conway and A. Soifer, Can $n^{2}+1$ unit equilateral triangles cover an equilateral triangle of side $>n$, say $n+\epsilon$?, https://fermatslibrary.com/s/shortest-paper-ever-published-in-a-serious-math-journal-john-conway-alexander-soifer
[3] L. J. Lander, T. R. Parkin, Counterexample to Euler's conjecture on sums of like powers, Bull. Amer. Math. Soc. 72(6) (1966), p. 1079.
[4] A. Soifer. How does one cut a triangle. Springer, New York, 2009.
[5] M. J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in Economics and Mathematical Systems 124, Springer, Berlin-Heidelberg, 1976.
[6] C. Xu, L. Yuan, and R. Ding, Covering Isosceles Right Triangles with Isosceles Right Triangles, Geombinatorics 14(4) (2005), pp. 194-200.

[^0]: *School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA. E-mail mjt7@cornell.edu.

