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Abstract
We show that the proportional response algorithm for computing an
economic equilibrium in a Fisher market model can be interpreted as it-
eratively approximating the economy by one with Cobb-Douglas utilities,
for which a closed-form equilibrium can be obtained. We also extend the
method to allow elasticities of substitution at most one.

1 Introduction

In [3] Zhang proposed the proportional response distributed algorithm to
compute an economic equilibrium for a Fisher model where each consumer
has a constant elasticity of substitution (CES) utility function, viewing
it as a method in which agents iteratively refine their bids for the goods.
Birnbaum, Devanur, and Xiao [1] consider the algorithm in the case of
linear utilities, extend it to allow spending constraint utilities, and in-
terpret it as a generalized gradient-descent or generalized proximal-point
method for an associated optimization problem. Both papers also analyze
the convergence of the method.

In this note, we show that the algorithm can be viewed as iteratively
approximating the economy by economies with Cobb-Douglas utilities,
for which the equilibrium can be obtained in closed form, and extend it
to allow elasticity coefficients of one or less. From this point of view,
the method appears as a variant of Newton’s method, in which usually
successive linearizations are made.

2 CES utility functions

Suppose there are n goods. A CES utility function assigns to a bundle of
goods x € R} the utility

o/(o—1)
u(z) = <Z a;/gx;1/0> . (1)
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Here a is a nonzero vector in R’} representing the relative desirability of
the goods, and o > 0, o # 1, is the elasticity coefficient. (For the analysis
below, we assume that all components a; are positive, but the general case
can be obtained by summing over just those j for which a; is positive.)
We say the utility function represents an agent’s preferences if in making
economic decisions she acts as if she were maximizing this function. Hence
any strictly monotonic transformation of a utility function also represents
the agent’s preferences. We can therefore assume without loss of generality

that
Z a; = 1.
J

We can also write p for 1 — 1/0 to get

1/p
u(x) = <Z a}_pr) : (2)
J
where —oco < p < 1, p # 0. For p positive, an equivalent utility function
is
u(e) =Y a; " b, 3)
J

/(e—1)

. . 1 .
and if we write w; for a; we obtain

u(z) =Y (wsz;)". (4)

This is the form that Zhang [3] assumes. If p = 1, corresponding to
o — 00, we get the linear utility function Zj W;T;.
Let us take the (natural) logarithm of u(z) in (2) above:

In (Z] a}f"x;’)

Inu(z) = ;

We can now use L’Hopital’s rule to take limits as p — 0, obtaining

cajIn(x;/a;
Inu’(z) = M = Zaj Inz; —Za]— Ina;.
2.5 J J

The constant part can be eliminated, and we obtain the limiting utility

function
Inu’(z) = Z ajlnz;, or u’(zx) = H:v;j, (5)
J J

which is a CES utility function with elasticity coefficient 1, and is called
a Cobb-Douglas utility function.

3 Economies and equilibria

Suppose now we have m agents, each with a CES utility function u; given
as above by a vector a; = (ai;) € R} and p;, and a budget b; > 0.
We assume without loss of generality that there is one unit of each good



available, that >, b; = 1, and that ), a; > 0, so that each good is desired
by some agent.

We say a price vector p € R} and allocations Z; = (Zi;) € RY, i =
1,...,m, form an equilibrium if

(a) the market clears: Y, & =e:=(1;1;...;1); and

(b) each agent maximizes her utility subject to her budget constraint:
T; solves
Hclvax{ui(xi) cp @ < biyw € R

Since each a; has a positive component, p?#; = b;, and so we have the
normalization pTe = pT DuEi= bi=1
Observe that the optimality conditions for agent i’s utility maximiza-
tion problem involve her utility function only through Vu;(Z;), and so this
is the critical part of her preferences as far as equilibrium is concerned.
Now suppose that each agent has a Cobb-Douglas utility function,
which we write for convenience in its logarithmic form:

U; (l‘l) = Z Qij In Tij. (6)

This is a concave function of z;. Suppose for a moment that all a;;’s are
positive. Then from the (necessary and sufficient) optimality conditions,
agent i’s utility maximization problem at prices p is solved by Z; with
aij/Ti; = Aip; for all j, where A; > 0 is the Lagrange multiplier associated
with her budget constraint. Hence \; is positive (and all components
of p must be positive) and Z;; = ai;/(Aip;), and then from the budget
constraint, \; = 1/b; and so Z;; = bsa;;/p;. Thus agent ¢ spends a
constant fraction a;; of her budget on good j whatever its price is. It is
easy to check that this remains true if some a;;’s are zero (and then the
corresponding prices p; can also be zero). To obtain an equilibrium, we
require Y, Z;; = 1 for each j, and this gives p; = >, bia;;. Hence we find
that p = (p; := ZZ biai;), Ti = (Tij = biaij/Pj), © = 1,...,m, give an
equilibrium.

4 The proportional response algorithm

This method proceeds as follows (assuming for now that all p;’s are pos-
itive, as does Zhang). At each stage, the agents make bids b;; for each
good, where b;; is positive if a;; is and Zj bi; = b;. These bids then de-
termine the prices p via p; = > b;;, and the corresponding allocations are
zi = (zij), 1 = 1,...,m, where z;; = b;;/pj. Agent i obtains the utility
(in the form (3))

U,Z(l‘l) = Zaif‘”xf} =: Zu”(x”)
J J

(An analogous analysis, with the same result, goes through if the utilities
are written in the form (4).) At the next stage, the agents make bids



proportional to the fraction of utility they obtained from each good in the
previous round:
+ . iy (Tiy)
Y ()
We now show how this algorithm can be interpreted as successive
approximation by Cobb-Douglas economies. Indeed, suppose at some
stage the agents are considering allocations z; = (z;5), 4 = 1,...,m. The
components of the gradient of u; at x; are then

Oui(z:) 1—p;

pi—1
= p; i 7
ry, PTG (M)

i ij
while those of the Cobb-Douglas utility function @;(z:) = >_; ai; Inwy;
are Bia(z:)
Ui (x; .
These two gradients will be proportional to each other if we set
1=pi g
i ij
1—pi .pi
Dk G

(the normalization is added so that 3, a;; = 1). We now consider the
economy where each agent’s utility function w; is replaced by the approx-
imating utility function ; with the a;;’s as above. By the results of the
previous section, the equilibrium in this approximating economy is easy
to write down: agent 7 spends an amount

a, x

Qij =

bij = bl@”
on good j and the resulting equilibrium price vector is p = (p; = >, I;,J)
But by substituting the expression for a;; in that for gij, we find that the
latter agrees with bz;- in the proportional response algorithm. And then
so does the next price vector and the corresponding allocations.

We can extend the algorithm to the case that some agents’ elasticity
coefficients are one or less, or some p;’s are zero or less. First suppose
that some p; is negative. Then u; in the form (3) is not a monotonic
transformation of u; in the form (2). Instead, we can use the monotonic
transformation

ui(wi) = Z(—agfpiwf}) = Zuij(wij)- (8)

We can then, exactly as above, define the new bids by

7.

; =

v uwi(mig),  —uig ()
b = b
7 u; (23) —ui(x;)

We have included the second expression because it may be more natural
to think of the agent’s bid for good j as the fraction of the total (positive)
disutility attributable to the jth good times her budget b;, rather than
as a ratio of negative utilities times her budget. If we now take the
gradient of the utility function above, we find that its jth component

is |p¢|a}f”ixfj?71 in contrast to (7). Proceeding exactly as above, we find



G;j is as before, and so the amounts spent on each good at equilibrium in
the approximating economy are again IA)Z-]-, and these still agree with the
new bids bjj

Finally, suppose some agent i has a Cobb-Douglas utility function. Of
course, this needs no approximating by a Cobb-Douglas utility function,
and so we would have i)ij = a;;b;. To make this agree with the propor-
tional response algorithm, we need a;; to be the proportion of total utility
attributed to the jth good. This is true for neither the logarithmic nor the
product form of the utility function (see (5)). It is true for the “function”
>, @iz, which is the limit as p — 0 of the form (3), but since this is a
constant, it does not represent the agent’s preferences. The only way to
salvage the algorithm is to just define

+
bij = aijbi

for agents i with Cobb-Douglas utility functions.
With these modifications, we have proved

Theorem 1 The proportional response algorithm for agents with CES
utility functions generates exactly the same bids, price vectors, and allo-
cations as the algorithm that at each iteration approximates the agents’
utility functions as above by Cobb-Douglas utility functions and moves to
the equilibrium of the resulting approrimating equilibrium.

The discussion preceding the theorem highlights a difficulty with the
proportional response algorithm: it depends crucially on the particular
form taken for the agents’ utility functions, whereas several other forms
are also perfectly adequate representations of their preferences.

As a final observation, we note that approximating a nonlinear problem
for which an analytical solution cannot be obtained by a simpler problem
for which it can is exactly the principle behind Newton’s method. In
Newton’s method for finding a zero of a function, a linear approximation
is made; in Newton’s method for minimizing a function, a quadratic ap-
proximation is used. In the pure exchange economy, approximating utility
functions by Cobb-Douglas utility functions seems natural because the re-
sulting simpler problems can be solved explicitly. This general philosophy
of Newton-like methods and its application to computing economic equi-
libria were described in [2]. Since we are approximating the objective
function of an optimization problem (the utility maximization problem)
by a function whose gradient agrees with the nominal function but whose
Hessian matrix may be much different, we cannot expect faster than linear
or even sublinear convergence, and this is what Zhang [3] and Birnbaum,
Devanur, and Xiao [1] obtain.
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