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Abstract

We consider a consumer of a resource, such as electricity, who must pay a per unit charge
to procure the resource, as well as a peak demand charge. We will assume that this consumer
has some ability to self-generate and present an efficient linear programming formulation for the
demand response of such a consumer. We will establish a monotonicity result that indicates fuel
supply of S, utilized for self generation, may be spent in successive steps adding to S.

1 Introduction

We consider a model in which a consumer of a resource over several periods must pay a per unit
charge for the resource as well as a peak usage charge. The consumer has the ability to reduce his
consumption in any period at some given cost, subject to a constraint on the total amount of reduction
possible. His problem is to decide in what periods to reduce his consumption to minimize the total
cost of procuring the resource.

Such a model could arise in several settings. We have in mind an industrial or commercial consumer
of electricity who uses a varying amount of electricity over some time horizon of T periods, for which
he incurs an energy charge (per megawatt-hour consumed) and a peak usage charge for the maximum
megawatt-hours consumed in the highest k periods. The peak usage charge is otherwise known as a
demand charge. The consumer has some onsite local generation that can be used to offset the purchases
of electricity in any period. Such a charging regime is called anytime peak pricing or “Hopkinson rate”
after the engineer who first proposed it in 1892 (see [3]).

A much simplified version of our problem was addressed in the late 1970s and early 1980s, before the
prevalence of electricity markets, in the context of public utility pricing and rationing when demand
exceeds the available supply (see for instance [1, 5, 4]). In this context, the authors attempt to
deal with the details of rationing by assuming aggregate infinitesimal consumers that would provide
a simple elastic demand curve with no constraints. This is a large point of difference from the
setting that we face, where our consumer, possibly due to manufacturing constraints, is inflexible with
respect to consumption of electricity. Furthermore, the above authors do not study properties (such
as monotonicity) of their models.

Anytime peak pricing can be contrasted with coincident peak pricing (and its relation “time-of-
use” pricing) which imposes a demand charge in periods when the system experiences peak demand
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(as modeled in [6] for example). The Hopkinson rate was originally intended to charge for electricity
when it was primarily used for lighting, and so any user’s peak demand typically coincided with the
system peak. When these are different, it is not hard to see that coincident peak charging provides
a clearer incentive to reduce the system costs incurred by increases in capacity. Notwithstanding
this, anytime peak pricing does provide benefits from peak reduction (see e.g. [7]). It is also worth
mentioning that for geographically isolated customers, coincident peak reduces to the Hopkinson rate.

Although the problem for a consumer facing an anytime peak charge is more straightforward than
tackling the coincident peak problem, it is not trivial. The peak charge will typically be made on the
total consumption over several periods, typically those k periods with the largest consumption over
some predetermined horizon. In this paper we show how these periods can be determined by a linear
programming problem, to give an overall problem of minimizing cost that is also a linear program.
This linear program is then shown to satisfy a monotonicity property that makes it amenable to
solution by a greedy algorithm. This provides some insights into how to attack the problem with
random data.

Although our problem might have applications in other settings we will couch it in the setting of
electricity procurement. Nevertheless the analysis we develop is quite general.

The paper is laid out as follows. In the next section we formulate the optimization problem we will
study, and show that it simplifies to a linear program. In Section 3 we show that this linear program
has a specific structure that enables its solution by a greedy algorithm. The algorithm is outlined in
Section 4; details can be found in [2].

2 The anytime peak demand problem

We start by defining the parameters and the variables of the problem. Throughout, we measure
electricity in terms of the units of the fuel needed to produce it.

Parameters

T = set of periods.
dt = demand in period t.
pt = spot price in period t.
ct = cost of generating one unit of electricity using fuel in period t.
at = safe operating capacity of the generator in period t. For the sake of simplicity, we

make the assumption that at ≤ dt (avoiding the case of “selling back to the grid”).
S = total fuel supply.
P = the peak demand charge.
k = the number of periods to which the maximum demand charge applies.

Variables
st = amount of fuel to allocate to generation in period t.
M = sum of the largest k load realizations.

The consumer’s problem over a time horizon T is to minimize the total cost of electricity consumed,
plus the peak charges that are incurred on the top k periods, while meeting every period’s demand
and employing a limited amount of self-generation. Without loss of generality we assume that |T | ≥ k.
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This problem can be formulated as:

[AP]: min PM +
∑

t∈T (ct − pt)st
s.t.

∑
t∈T st ≤ S

st ≤ at t ∈ T∑
t∈τ (dt − st) ≤M for all τ ⊆ T , |τ | ≤ k.

Note that there is no loss in generality in assuming that P = 1 (by scaling the objective function
of [AP]), so we normalize the peak demand charge, i.e., set P = 1, simply to make the presentation
clearer.

Observe that in [AP] all subsets of T of size k or less must be included which gives an exponentially
growing set of constraints. The problem [AP] can be formulated more concisely using the following
observation.

Given any feasible solution st, t ∈ T , for [AP], the cost of maximum demand M is the optimal
value of

[MDP]: max
∑

t∈T λt (dt − st)
s.t.

∑
t∈T λt = k, [h]

λt ≤ 1 t ∈ T [yt]
λt ≥ 0 t ∈ T .

Taking the dual of MDP gives

[MDD]: min kh +
∑

t∈T yt
s.t. h+ yt ≥ (dt − st) t ∈ T [λt]

yt ≥ 0 t ∈ T

which has the same optimal value M . Here M is the sum of the residual demands dt − st over the k
highest periods, which incurs penalty 1. Henceforth we write ∀t instead of t ∈ T for short.

In case [MDP] and [MDD] have multiple optimal solutions we need to focus on particular optimal
solutions. Let us define g(k) to be the kth largest value of dt − st for t ∈ T . We will then construct
a set of periods that constitute the top k periods (in terms of dt − st), by resolving some ties. Define
N = {t|dt − st > g(k)}. Now consider the set {t|dt − st = g(k)}, order this set by t, and select
the elements of O to be the first k − |N | periods in this (ordered) set. We will define M = N ∪ O.
Note that |M| = k, so we have determined a way of selecting “the top k periods of residual demand”
without ambiguity. We refer toM as our canonical maximum demand set. Note also thatM depends
on the vector d− s.

Lemma 1 For a given vector d− s, optimal solutions to [MDD] and [MDP] are given by

h∗ = g(k)

y∗t = max(dt − st − h∗, 0) ∀t, and

λ∗t =
{
P, if t ∈M,
0, otherwise.

We refer to these solutions as the canonical solutions for residual demand d− s.
Proof. Observe that

y∗t =
{
dt − st − h∗, if t ∈M,
0, otherwise.
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Thus the optimality conditions for [MDP] and [MDD],∑
t∈T λt = k

0 ≤ λt ≤ 1 ∀t
h+ yt ≥ dt − st ∀t
yt ≥ 0 ∀t
yt(1− λt) = 0 ∀t
λt(h+ yt + st − dt) = 0 ∀t,

are satisfied by the solution in the statement of the lemma. Hence we have optimal solutions.
It is worth noting that [MDD] will almost always have an infinite number of solutions of which the

canonical solution is only one. In fact for any 0 ≤ α ≤ 1,

h∗(α) = αg(k) + (1− α)g(k + 1),

y∗t (α) = max(dt − st − h∗(α), 0) ∀t, and

λ∗t =
{

1, if t ∈M,
0, otherwise.

will satisfy the optimality conditions of [MDP] and [MDD] and are therefore optimal.
Following [MDP] and [MDD], we can formulate [AP] as a linear program without having to consider

an exponentially growing set of constraints. Define ft := pt − ct. The problem [AP] is equivalent to

[P]: min kh +
∑

t∈T yt −
∑

t∈T ftst
s.t.

∑
t∈T st ≤ S [−π]

st ≤ at ∀t [−ηt]
h + yt + st ≥ dt ∀t [λt]

yt, st ≥ 0 ∀t.

Problem [P] can also be equivalently viewed as a bi-level LP

[P]: min −
∑

t∈T ftst +Q(s)
s.t.

∑
t∈T st ≤ S

0 ≤ st ≤ at ∀t

where
[Stage2]: Q(s) := min kh+

∑
t∈T yt

s.t. h+ yt + st ≥ dt ∀t [λt]
yt ≥ 0 ∀t.

It is easy to see from Lemma 1 that for a fixed vector s, an optimal solution to [Stage2] is given by

h∗ = g(k)

y∗t = max(dt − st − h∗, 0) ∀t.
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3 Monotonicity properties

In this section we explore the monotonicity properties of the solution of [P] as a function of the total
fuel resource limit S. The optimality conditions for [P] are given by

[Primal Feasibility] h+ yt + st ≥ dt ∀t (PF1)
st ≤ at ∀t (PF2)∑

t∈T st ≤ S (PF3)
yt, st ≥ 0 ∀t (PF4)

(1)

[Dual Feasibility]
∑

t∈T λt = k (DF1)
λt ≤ 1 ∀t (DF2)
π + ηt − λt ≥ ft ∀t (DF3)
λt, ηt, π ≥ 0 ∀t (DF4)

(2)

[Complementarity] λt(h+ yt + st − dt) = 0 ∀t (CS1)
ηt(at − st) = 0 ∀t (CS2)
π(S −

∑
t∈T st) = 0 (CS3)

yt(1− λt) = 0 ∀t (CS4)
st(π + ηt − λt − ft) = 0 ∀t. (CS5)

(3)

Consider an amount of fuel S to be allocated optimally to the periods in T . Let S = S1 + S2

with S1, S2 > 0 and let us introduce the following two problems.

[P1] min kh +
∑

t∈T yt −
∑

t∈T ftst
s.t.

∑
t∈T st ≤ S1 [−π1]

st ≤ at ∀t [η1
t ]

h + yt + st ≥ dt ∀t [λ1
t ]

yt, st ≥ 0 ∀t.

[P2] min kh +
∑

t∈T yt −
∑

t∈T ftst
s.t.

∑
t∈T st ≤ S2 [−π2]

st ≤ at − s1t ∀t [η2
t ]

h + yt + st ≥ dt − s1t ∀t [λ2
t ]

yt, st ≥ 0 ∀t.

Note that in the definition of [P2], we use s1t which is optimal for [P1]. In the next set of results,
we prove that the optimal expenditure of the total fuel supply S = S1 + S2 is equivalent to utilizing
S1 optimally first then continuing from there with the additional S2 amount. This shows that the
optimal st’s are monotonic in S.

Lemma 2 Suppose that s1t , y
1
t , h

1 solve [P1] and that
∑

t∈T s
1
t < S1. Then ĥ = h1, ŷt = y1

t , and
ŝt = s1t is an optimal solution for [P], and h2 = h1, y2

t = y1
t , and s2t = 0 is an optimal solution for

[P2].

Proof.
Suppose that

∑
t∈T s

1
t < S1 where λ1

t , η
1
t , and π1 comprise an optimal dual solution for [P1]. The

problem set up of [P1] and [P2], together with S1 + S2 = S imply primal and dual feasibility of the
left hand sides for problem [P]. Notice also that complementarity conditions (CS1), (CS2), (CS4) and
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(CS5) clearly hold. To prove (CS3), we note that
∑

t∈T s
1
t < S1, hence to obtain (CS3) for problem

[P1], it must be that π1 = 0. This clearly yields (CS3) for [P].
Furthermore, h2 = h1, y2

t = y1
t , and s2t = 0 together with λ2

t = λ1
t , η

2
t = η1

t , and π2 = π1 = 0
constitute optimal solutions (and duals) for [P2] as these satisfy the optimality conditions of [P2].

Lemma 3 Consider the canonical solutions of [P1] and [P2] with residual demands d − s1 and d −
s1 − s2 respectively. Suppose that there exists t such that s2t > 0. Then there exists a period t such
that s2

t
> 0 and λ1

t
≥ λ2

t
.

Proof. Let M1 and M2 be canonical maximum demand sets, as introduced in the previous section,
for residual demands d− s1 and d− s1 − s2 respectively. If t ∈M1 then λ1

t = 1, and so the lemma is
proved with t = t. If t 6∈ M1 and t 6∈ M2 then λ1

t = 0 and λ2
t = 0, so again the lemma is proved with

t = t.
We now focus on the case where t ∈M2 \M1. Consider all r ∈M1.

1. If s2r = 0 ∀r ∈M1, then for all such r, (d− s1 − s2)r = (d− s1)r so these remain the k largest
values, i.e., M1 =M2 contradicting the existence of t.

2. Otherwise, there exists r ∈M1 with s2r > 0. In this case the lemma is proved by setting t = r.

We can now show that the marginal value of fuel cannot increase as we move from the canonical
solution of [P1] to that of [P2].

Lemma 4 The canonical solutions of [P1] and [P2] give π2 ≤ π1.

Proof. If ∑
t∈T

s2t < S2

then π2 = 0 by (CS3), which gives the result. Otherwise there is some t ∈ T with s2t > 0, which by
Lemma 3 may be chosen without loss of generality so that λ1

t ≥ λ2
t . Since s2t > 0, we must have had

s1t < at, and so η1
t = 0. Thus (DF3) for [P1] gives

π1 ≥ ft + λ1
t . (4)

Furthermore, since s2t > 0, (CS5) for [P2] provides

π2 = ft + λ2
t − η2

t ≤ ft + λ2
t ≤ ft + λ1

t . (5)

Equations (4) and (5) yield π2 ≤ π1.

Lemma 5 Suppose that s1t , y
1
t , h

1 and s2t , y
2
t , h

2 are canonical solutions to [P1] and [P2] respectively.
If
∑

t∈T s
1
t = S1 then ĥ = h2, ŷt = y2

t , and ŝt = s1t + s2t is an optimal solution for [P].

Proof. Recall from Lemma 1 that
h1 = g1(k),

y1
t = max(dt − s1t − h1, 0) ∀t, and
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λ1
t =

{
1, if t ∈M1,
0, otherwise,

where g1(k) denotes the size of the kth largest element of d1 − s1 and M1 denotes the canonical
maximum demand set for the vector d1 − s1. Similarly,

h2 = g2(k),

y2
t = max(dt − s1t − s2t − h2, 0) ∀t, and

λ2
t =

{
1, if t ∈M2,
0, otherwise,

where g2(k) is the size of the kth largest value of vector d − s1 − s2 and M2 denotes the canonical
maximum demand set for the vector d− s1 − s2.

For [P2], for any t such that s1t = at, we have a degenerate solution (since s2t = 0 = at − s1t ). In
this case we specify η2

t as follows

η2
t = max(λ2

t + ft − π2, 0) ∀t.

Clearly the optimality conditions of [P2] are satisfied with the above.
Now recall that

∑
t∈T s

1
t = S1 and we set

ĥ = h2

ŷt = y2
t ∀t

ŝt = s1t + s2t ∀t
λ̂t = λ2

t ∀t
η̂t = η2

t ∀t
π̂ = π2.

Similar to the argument for Lemma 2, it is clear that primal and dual feasibility conditions for
[P] naturally follow from the optimality of problem [P2] at the stated solution. Also conditions
(CS1), (CS2) and (CS4) follow immediately. To see (CS3), note here that optimality of [P2] at the
solution above implies π2(S2 −

∑
t∈T s

2
t ) = 0. Since here we have

∑
t∈T s

1
t = S1, it follows that

π2(S −
∑

t∈T (s1t + s2t ) = π2(S2 −
∑

t∈T s
2
t ) = 0.

It remains to ensure that

ŝt(π2 + η2
t − λ2

t − ft) = 0 (CS5)

is satisfied for all t. Here again if s2t > 0, we must have had, from the optimality of [P2], that
π2 + η2

t − λ2
t − ft = 0 and this clearly yields (CS5) for problem [P] as well. What is left to do is

to examine all t for which s2t = 0. If s1t = 0 as well then (CS5) is immediately established since
ŝt = s1t + s2t = 0.

We will establish (CS5) by considering the two remaining cases where 0 < s1t < at, and s1t = at,
separately.

Case I (0 < s1t < at)
Consider t such that 0 < s1t < at, and s2t = 0. From (CS2) for problem [P1] then we have that

η1
t = 0. Furthermore since s2t = 0 < at − s1t we also have η2

t = 0.
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Now η1
t = 0, together with (CS5) for [P1] yields that

π1 = ft + λ1
t .

Therefore by the choice of our canonical optimal solutions outlined above, we will have:

π1 =
{
ft + 1, if t ∈M1,
ft, otherwise

(6)

1. Case I.1: Suppose t ∈M1. Then π1 = ft + 1.

Since s2t = 0, we must have t ∈ M2, because t was a highest peak after s1t and must remain so
if no further reduction in load is made. Therefore λ1

t = λ2
t = 1. Also, η2

t = 0 and (DF3) for [P2]
provides

π2 ≥ ft + 1 = π1

By Lemma 4 we get π2 = π1 so

π2 + η2
t − λ2

t − ft = π1 + η1
t − λ1

t − ft = 0

and thus (CS5) is established.

2. Case I.2: Suppose now that t 6∈ M1, so that λ1
t = 0 and from (6) π1 = ft. If t 6∈ M2 then

λ2
t = 0. Then (DF3) for [P2] will give

π2 ≥ ft = π1.

Lemma 4 yields π2 = π1 so

π2 + η2
t − λ2

t − ft = π1 + η1
t − λ1

t − ft = 0

and thus (CS5) is established. If on the other hand t ∈ M2 then λ2
t = 1. However (DF3) then

yields
π2 ≥ ft + 1 > ft = π1

contradicting Lemma 4 .

Case II (s1t = at)
Lastly we must consider t such that s1t = at, and s2t = 0. Conditions (DF3) and (DF4) give

η2
t = max(λ2

t + ft − π2, 0)

If η2
t = λ2

t + ft − π2 then clearly (CS5) for [P] is established.
If on the other hand η2

t = 0 then (DF3) for [P2] provides π2 ≥ ft + λ2
t . However (CS5) for [P1]

gives π1 = ft + λ1
t − η1

t ≤ ft + λ1
t .

Now if λ1
t > λ2

t then we must have t ∈ M1 but t 6∈ M2. However this cannot happen as s2t = 0
(see the argument in Case I.1).

Therefore it must be that λ1
t ≤ λ2

t , which gives π1 ≤ ft + λ1
t ≤ ft + λ2

t ≤ π2 and so by Lemma 4
π1 = π2 and λ1

t = λ2
t . It follows that ft + λ2

t − π2 = 0 so η2
t = ft + λ2

t − π2 giving (CS5) for [P].

Theorem 6 The canonical solutions to [P1] and [P2] provide an optimal (canonical) solution to [P].

Proof. The proof follows immediately from Lemmas 2 and 5.
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4 The algorithm

The greedy peak shaving algorithm outlined below is detailed in chapter 5 of [2]. Assume without
loss of generality that the periods are ordered by decreasing spot price and st < min{at, d t} for all t.
The optimal marginal allocation of fuel will be to a subset ψ of periods: this is either the period(s)
with highest price if none of these are in χ = {t|dt − st = g(k)}, or to a subset of χ consisting of its
first l periods for some l. We choose ψ with the largest savings per unit of fuel allocated. Observe
that this involves computing savings for at most |χ| + 1 sets. The algorithm then allocates fuel in
equal increments to periods in ψ until st = min{at, d t}, for some t ∈ ψ, or χ changes. Formally, the
algorithm performs the following steps.

Peak Shaving Algorithm
While fuel quantity S > 0 and ψ is non-empty

1. Compute ψ with largest savings;

2. Allocate fuel to all periods t in ψ until st = min{at, d t}, for some t ∈ ψ, or χ changes;

3. Decrease S by fuel allocated;

4. If st = min{at, d t} remove t from the problem and update χ.
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