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Abstract. The mathematical model of the widely-used sparse covariance selection problem
(SCSP) is an NP-hard combinatorial problem, whereas it can be well approximately by a convex
relaxation problem whose maximum likelihood estimation is penalized by the L; norm. This convex
relaxation problem, however, is still numerically challenging, especially for large-scale cases. Recently,
some efficient first-order methods inspired by Nesterov’s work have been proposed to solve the convex
relaxation problem of SCSP. This paper is to apply the well-known alternating direction method
(ADM), which is also a first-order method, to solve the convex relaxation of SCSP. Due to the full
exploitation to the separable structure of a simple reformulation of the convex relaxation problem,
the ADM approach is very efficient for solving large-scale SCSP. Our preliminary numerical results
show that the ADM approach substantially outperforms existing first-order methods for SCSP.
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1. Introduction. Statistician are often interested in estimating the true covari-
ance matrix C' from a sample covariance matrix ¥ by maximizing its log-likelihood,
for n given variables drawn from a Gaussian distribution N (0,C), see, e.g., [0}, 12,
131 20] 29, [30]. Since zero entries in the inverse covariance matrix correspond to the
conditional independence of the corresponding variables, it is of desire to set a cer-
tain number of entries of the estimated covariance matrix to zero in order to improve
the stability of the estimation and highlight conditional independence relationships
among sample variables. This procedure is well known as the sparse covariance selec-
tion (see, e.g., [14]), and it captures a broad spectrum of applications in various fields
such as the speech recognition, gene networks analysis, machine learning and so on,
see, e.g., [11, 5] [0, O} [15].

Mathematically, the sparse covariance selection problem (SCSP) is to maximize
the log-likelihood which is penalized by the number of nonzero entries over a set of
some constraints on the eigenvalues:

max log(det(X)) — (X, X) — pCard(X) (1.1)
St Amind 2 X < Amax, '
where X € S™, the space of symmetric n x n matrices; ¥ € S™ is known; Card (X) is
the cardinality of X (i.e., the number of nonzero entries of X); I is the identity matrix
in R"*™; p > 0 is a given scalar controlling the trade-off between the maximality of
log-likelihood and cardinality; A, and M., are given bounds on the eigenvalues
of X; (-) is the standard trace inner product of S™; and X =< (<)Y means that
Y — X is positive semidefinite (definite). Despite that it reflecting both the maximum
likelihood and sparsity well, the model (L.1) is an NP-hard combinatorial problem
due to the presence of Card (X), see [14].
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A plausible approach to tackle the difficult problem (L.T)) is to relax (I.1) to a
convex optimization problem, by replacing the penalized term Card (X) with some
proxies. This idea motivated the authors of [14] (see [44] for a slightly different model)
to consider the following convex relaxation of (L.1)):

max log(det(X)) — (%, X) —eT|X|e (1.2)
st. Amind = X = Anax, .

where e € R™ denotes the vector whose elements are all 1. Thus, e | X |e = Z?jzl | X551

As argued in [19], the term e”|X|e can be viewed as the largest convex lower bound
on Card(X). We refer to [8, [11} [16], 40] for the rational of using e?|X|e as the proxy
of Card(X) in regression. In addition to the easier solvability, as analyzed in [14],
the convex relaxation (1.2) has many nice advantages such that it is more potential
to discover the underlying distribution’s structure; it can be viewed as the robust
maximum likelihood estimation with noise on the sample covariance matrix ¥, and
it serves as a regularization technique when the sample covariance matrix ¥ is rank-
deficient. For these reasons, this paper focuses on solving the convex relaxation (1.2])
of SCSP.

The convex problem (I.2), however, is still not easy to solve, especially when the
dimension of variables is large-scale. It is easy to verify that (1.2)) can be reformulated
as a constrained smooth convex problem that has an explicit O(n?)-logarithmically ho-
mogeneous self-concordant barrier function, see, e.g., [32], 37]. Hence, popular solvers
of interior point methods such as SeDuMe [39] and SDPT3 [42] are implementable
to solve (1.2), see, e.g., [7]. Interior point methods, however, are not numerically
practical for solving large-scale cases of (1.2), as analyzed in [I4]. This difficulty is
clear if we notice the fact that the complexity of each iteration for solving the re-
sulted subproblem with € accuracy is O(n%log(1/€)) when interior point methods are
applied to solve (1.2)). Recently, the influential work of Nesterov [34] 35] has inspired
some remarkable efforts to develop first-order methods for solving (1.2). More specif-
ically, authors of [14] applied the smoothing techniques in [35] to solve (1.2)) and thus
developed an efficient first-order method with the complexity O(1/¢). This work im-
mediately motivated the author in [32] to derive an improved first-order method with
the complexity O(1/+/€), by applying Nesterov’s smoothing techniques to solve the
dual counterpart of (1.2)).

The success application of these efficient work [14], [32] enhances the promising
role of first-order methods, and it urges us to focus on the approach of first-order
methods for solving (I.2). On the other hand, as pointed out by Nesterov in [36]: ”It
was becoming more and more clear that the proper use of the problem’s structure
can lead to very efficient optimization methods......”. Hence, this paper is devoted
to the effort of developing first-order methods for solving (1.2) by fully exploiting
its intrinsic structure. More specifically, we shall show that a simple reformulation of
(L2) (see (2.1))) is readily implementable by the classical alternating direction method
(ADM), which is also a first-order method and has been widely used in many areas
such as convex programming, variational inequalities, image processing [4, 10, 17} 18|
211, 122], 23], 241, 125], 27, 31}, 33, [41]. By taking full advantage of its high-level separable
structure of the ADM-oriented reformulation, the ADM approach will be verified to
be very efficient for solving large-scale (1.2). In particular, when the ADM approach
is applied to solve (1.2), the computational load of each iteration is dominated by
the computation of only one eigenvalue decomposition of an n X n matrix whose
complexity is O(n?®). Therefore, the complexity for one single iteration of the ADM
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approach is the same as the variant of smooth minimization method in [32], and it is
much lower than that of the Nesterov’s method in [14] which requires two eigenvalue
decompositions and one inverse matrix computation. Indeed, as pointed out in [14]:
"we cannot expect to do better than O(n?), which is the cost of solving the non-
penalized problem for dense covariance matrices 7. At the same time, we will show,
by numerical comparison for solving large-scale cases of (1.2)), that the total number
of iterations of the ADM approach is significantly smaller than those of [14] [32]. We
hence believe that the ADM approach is a simple, yet powerful, approach for solving
well-structured problems such as (1.2).

The rest of the paper is as follows. In Section 2, we first provide a reformulation
of problem (I.2) with high-level separable structure. Then, we propose the ADM
approach for solving this reformulation, and elaborate the procedure of solving the
resulted subproblems. An appropriate stopping criterion to implement the ADM
approach to solve (L.2)) is finally presented in this section. In Section 3, we analyze
some properties of the sequence generated by the ADM approach for solving (1.2).
In Section 4, we propose two concrete ADM type algorithms for solving (L.2) and
prove the convergence. In Section 5, we report some numerical results of the ADM
approach for solving some large-scale cases of (1.2) and the comparison with some
existing methods. Finally, some conclusions are drawn in Section 6.

2. The ADM approach. In this section, we first present a reformulation of
(L.2) which exhibits nice separable structure in both the objective function and the
constraints. Thus, the ADM approach becomes implementable. Then, we elaborate
the procedure of solving the subproblems emerging in the implementation of ADM,
and analyze its complexity. At the end, we present a stopping criterion in order to
implement ADM.

2.1. An ADM-oriented reformulation. By introducing an auxiliary variable
y, the convex relaxation of SCSP (1.2) is obviously equivalent to the following problem:

min (¥, X) — log(det(X)) + peT|Y]e
st X—-Y =0, (2.1)
X eSSy :={X>0]| Aind =X < ApaxI}.

2.2. The ADM approach for (2.1). Then, the Augmented Lagrangian func-
tion of (2.1)) is

L(X.Y, Z) i= (8, X) ~ log(det(X)) + pe"[Y|e — (2, X ~ ¥} + DX ~ Y|

where Z € R™*"™ is the multiplier of the linear constraint X —Y = 0 and § > 0 is the
penalty parameter for the violation of the linear constraint. Obviously, the classical
Augmented Lagrangian method (see, e.g., [3, [38]) is applicable for solving (2.1), and
its iterative scheme is:

(XFHL YR+ ¢ argminy ¢ gy egnxn {L(X,Y,Z")},
Zk+1 — Zk _ 6(Xk+1 _ }/k—i—l)7 (22)
where (X* Y* Z*) is the given triple of iterate. The direct application of the Aug-
mented Lagrangian method, however, treats (2.1)) as a generic minimization problem
with linear constraints, and ignores its favorable separable structure emerging in both
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the constraints and the objective function. Hence, the variables X and Y are min-
imized simultaneously in (2.2). This ignorance of Augmented Lagrangian method,
however, can be made up by the well-known ADM method (see [22] 23] 24 [25]) which
minimizes the variables X and Y serially. More specifically, ADM solves the following
problems to generate the new iterate:

XM € argming cgp {L(X, YF, ZF)}, (2.3a)
{ YHH € argming oo {L(XEH,Y, 25}, (2.3b)
Zk+1 — Zk _ ﬁ(Xk+1 _ Yk+1). (23C)

Therefore, the ADM method (2.3) is virtually a practical version of the Aug-
mented Lagrangian method (2.2) by taking advantage of the high-level separable
structure of the problem (2.1) to the full extent.

2.3. Solving subproblems of ADM. According to (2.3), when the ADM ap-
proach applied to solve (2.1), the main computation of each iteration is to solve two
minimization problems. We now elaborate the strategies of solving these sub prob-
lems, and derive the computational complexity of ADM for solving (2.1)).

First, we consider the first minimization problem (2.3a). It is easy to verify that
it is equivalent to the following minimization problem:

R L
g

For the case of that Apin = 0 and Apax = 400 (in this case, S¥ reduces to the ST,
the cone of positive semidefinite matrices), we have actually X**! = 0 due to the log
term in the objective function of (2.1). Hence, solving (2.4) reduces to solving the
following matrix equation:

1
SIX =Y

: (5= 29 - Glog@et(X))}.  (24)

k+1 _ :
X = argmin y ¢ gn {

1 1
X—(Yk——E—Zk)——X”:O. 2.5
5( ) 3 (2.5)
For convenience, we denote by
1
A=Y+ - (2 - 2" (2.6)
B
and let
A=VAVT with A =diag(\1,...,\,) (2.7)
be the the symmetric Schur decomposition of A; V' = (vy,...,v,) be an orthogonal
matrix whose column vector v;(i = 1,...,n) are eigenvectors of A; and \;(i = 1,...,n)

be the corresponding eigenvalues. Then, the solution of (2.5) should have the same
eigenvectors as A. Let

X =VAVT with A =diag(A1,...,\n). (2.8)

be the symmetric Schur decomposition of X where V is identical with that in (2.7)
and A; (i = 1,2,-,n) are to be determined. In fact, substitute (2.7) and (2.8) into
(2.5), it turns out that (2.5) reduces to the following easier equation:

A-A—=-A"1=0.

| =
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Recall that both A and A are diagonal matrices. Hence, we have

A+ A2+ (4
\j = i e j=1,...,n. (2.9)

J D) )

Obviously, 5\j > 0. Therefore, the solution of (2.3a) is: X*+! = VAVT where V is
obtained by (2.7) and A is obtained by (2.9).

For the general case that Apax > Amin > 0, it is analogous that the solution of
(2.3al) is given by

X =VAVT with A =diag(A1,..., \n),

where

\; = mi
j min B

\ (max(Amin, Nt /\? i (4/6)), /\max>, 7=1...,n;

V and A; are obtained by (2.7).

For the second subproblem (2.3b)), it is easy to verify that it is actually a shrinkage
problem which usually arises in image processing (see, e.g., [8]). In fact, (2.3h) is
characterized by the following inclusion:

0€pa(|Y]) + (2" - B(X*H —Y)).

Here, O(|Y]) := (si;) € R™*™ with s;; € O(yi;) where J(-) denotes the subgradient
operator of the nondifferentiable convex function |- |. Hence, we conclude that (2.3b)
can be solved easily with explicit solution:

YR = S{(BXM = 28 = Py [BXM - 24}

where
B, ={X e R""| - p< Xj; <p}.

Therefore, the computation load of each iteration of the ADM approach is dom-
inated by the eigenvalue decomposition of A (see (2.6)-(2.7)). Recall that the com-
plexity of implementing the symmetric QR Algorithm (Algorithm 8.3.3 in [26]) to
compute an approximate symmetric Schur decomposition is about 9n> flops.

2.4. Stopping criterion of ADM. Note that the reformulation (2.1)) is equiv-
alent to the following problem:

Xesy, (X'—X,X—X"1-2)>0, VX €Sy,
0€ pa(|Y]) + Z, (2.10)
XY =0.

Therefore, the problem (2.1) has the following variational inequality characterization:
Find v € 2 := S} x R™*"™ x R™™ such that

u € Q, (u —u, F(u)) >0, V' eQ, (2.11)
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where
X LT-X1t1-7Z
u=|Y and  F(u) = po(lYN+2Z . (2.12)
A X-Y

Let (XF+1 YR+ Zk+1) € O be generated by the ADM approach (2.3). Note that
(2.3al) is characterized by

(X' = xkFL s (xR 7Lz — g(XEFL YR >0, VX' e Sy

Then, we have

X' — Xk+1 - (Xk+1)—1 _ gk+1 ﬁ(yk _ Yk+1)
([ YV =Yk || po(Y*+Y) + 2K+ |- 0 ) > 0,V(X' Y, Z") e .
7! _ gk+1 Xk+1 _ yk+1 %(Zk _ Zchrl)

(2.13)
Therefore, it is clear that (X**1 Y*+l Zk+1) i5 a solution of (2.10) if and only if
Y# = Y**! and Z*F = Z*+1. This observation motivates us to develop the stopping
criterion for implementing ADM in the following manner:

max{ey, ez} <, (2.14)
where € > 0 and

ey = max{|(VF = VE ) and ez = max{|(2F - 25l (215)
2,]) tJ

3. Contractive Properties of the ADM approach. In this section, we prove
a contractive property of the sequence generated by the ADM approach (2.3), which
ensures convergence for the ADM type algorithms to be developed.

LEMMA 3.1. Let (XFFL Yk ZF1) € O be the iterate generate by the ADM
approach (2.3) and (X*,Y*, Z*) be a solution of (2.1). Let

i (Y . [ Y* ([ BIL,
v(Zi>’ v<Z*) and G( éIn>

Then, we have

(WP —v*, G(F =" 1)) > (P, P = || —oF TG — (ZF = ZF L YRy R (31)

Proof. Recall (2.13). For any u* = (X*,Y*, Z*), we have

X* — Xk+1 P (Xk—i-l)—l _ Zk+1 B(Yk: _ YkJrl)
< V* — Yk'+1 , P8<‘Yk+1|) 4 Zk+1 _ 0 > > 0’
7% _ Zk—i—l Xk+1 _ Yk+1 %(Zk _ ZkJrl)

which can be rewritten as

. ) . Xk+1 _ X —ﬂ(Yk _ Yk+1)
(WGP —oF 1)) > (W ,F(uk+1)>+<( YLy ) ; ( BV — yh+1) )
(3.2)
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Now, we observe the right-hand-side of (3.2)). First, since (u**1 —u*, F(u*)) > 0 and
F(u) is monotone (which is an immediate fact from (2.11)-(2.12)), we have (uf*+1 —
u*, F(uF*1)) > 0. For the second term of the right-hand-side of (3.2), using X*—Y* =
0 and B(XkFTL — Yk+l) = ZF — Zk+1 e have

k+1 _ y* _ k _ yvk+1
<(§k+1 B i,(* ) 7 ( ﬁ[-(]g/}; - Yi+1)))> _ _(gk gk yk _yhey,

Therefore, the inequality (3.1) is derived immediately from the above inequality and
3:2)0

4. ADM-based Algorithms. Based on the previous analysis, we propose two
concrete ADM type algorithms for solving (2.1)), i.e., the original ADM and the
extended ADM. For notational convenience, in this section, we denote by Wk =
()N(k', Yk, Zk) the triple generated by the iterative scheme (2.3) from the given w* =
(XF Yk ZF) C St x Sp x S

4.1. The original ADM. The original ADM takes the following schemes to
generate the new triple W+l = (XF+1 yk+l zk+1)y.

The original ADM in [22] 23]:

X+l — Xk;
Ykl = Yk, (4.1)
Zh1 = 7%,

Convergence of the original ADM is referred to [4, 22, 23] 24]. In fact, the con-
vergence is alternatively clear via the following analysis.

THEOREM 4.1. The sequence generated by the original ADM method (/.1) is
Féjer monotone with respect to the solution set.

Proof. . Tt follows from (2.3)) that

0 € po(|YF)) + ZF+t
Thus, we have
(VP —y*L pa(jYyEHL ) + ZFFL) = 0. (4.2)
Analogously, we get
(YR vk pa(|Y*) + ZF) = 0. (4.3)
Adding (4.2) and (4.3), we obtain
(VF = YR 2R 78 > p(vh = YR (v ) — oY) > 0,

where the second inequality comes from the fact that |Y| is a convex function. Hence,
from (3.1)), we have

A P L % (4.4)
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By using (4.4]), we obtain
[ =[G = (0" = v*) = (0* = M
= [[v* = v|[E = 200" — v, 0" — o) - loF — MG
< [lo* = v [IE = 20(0*, 05T + ot — oM
= [lv* = vl = 0" = o2

Therefore, the sequence {v*} generated by the original ADM (4.1) is Féjer monotone,
which implies the convergence of OADM immediately, see, e.g., [2].0

4.2. The extended ADM. To solve a class of variational inequalities with
separable structures, the original ADM (2.3)) was extended in [43] and thus an ADM
based descent method was developed therein. This technique can be readily used to
solve (2.1). Accordingly, we present the following extended ADM, based on the idea
of [43].

The extended ADM in [43]:

yk+1 yk [ YE_YF
gkl | = gk | T 7% gk _ gk ) (4.5)

where

o(v*, o)

* p—
T R =5

(4.6)

o(v¥, o) is defined in (3.1) and v € (0, 2).

Based on (3.1) and (4.4), it is implied that (v* —*) is a descent direction of [v —
v*||? at v = v*. Hence, it is reasonable to derive the descent step (4.5) with the step
size (4.0). Convergence of the extended ADM method (4.5) is implied immediately
from the following result.

THEOREM 4.2. The sequence generated by the extended ADM method (4.5) is
Féjer monotone with respect to the solution set.
Proof. Note that the iterative scheme (4.5) can be written as

Rt =k — fyozZ(vk — k).

It follows from (3.1)) and (4.6)) that
W — o[ = [|(0* = v*) = yag (0" — )1
= [[o" = o1& = 2yag (0" — v, G* ) + 4% (ap)? 0" — TG
< lo* = o*|1G = 2yagp(0®, °) + 4 (af)? 0" — oF I
= [lo* = v lIE =42 = Vaew®, 7).

On the other hand, it is very easy to derive that
1
k ~k k_ ~k
p(v*,5%) = S [lv* =¥, (4.7)
which obviously implies that aj > % Thus, we obtain

k k Y2 =)k ak
0" —u* |G < JloF — oG - TH” alr



ADM for Sparse Covariance Selection 9

Therefore, the sequence {v*} generated by the extended ADM (4.5) is Féjer monotone,
which implies the convergence immediately, see, e.g., [2].0

5. Numerical Results. In this section, we focus on the numerical performance
of the proposed ADM approach and its comparison with the efficient Variant Smooth-
ing Minimization (VSM) method proposed in [32]. For the purpose of comparison, we
shall test the identical case of (I.2) as that tested by existing first-order methods in
[14, 32]. Note that in [32], the VSM method was shown to be more efficient than the
Nesterov’s smooth approximation scheme and the block-coordinate descent method
developed in [14].

In particular, the sample covariance matrix ¥ in (1.2) is generated by

Y=A" 47V —min{\pin(A +7V) = 9,0}Z,

where V' € S™ is an independent and identically distributed uniform random matrix;
A € S™ is a sparse invertible matrix with positive diagonal entries and the density is
prescribed by the constant g; 7 is the identity matrix in R™*"™; 7 and 9 are both small
positive constants. For comparison, we take the same values as in [32], i.e., o = 0.01,
7 =0.15, ¥ = 0.0001; and in (L.2) we take Apin = 0, Az = +00 and p = 0.5.

To implement the ADM approach, we take the initial iterate as (Y° = I,,, Z2° =
0,), and v = 1.5 for the extend ADM (4.5). Note that ADM are theoretically conver-
gent for any constant 5 > 0. In numerical experiments, the initial value of 3 is taken
as max(0.15n,50), and we reduce the value of § by multiplying the constant 2/3 if
ez < 0.8 (see (2.15)) for the definitions of ey and ez). We refer to, e.g., [28], for the
convergence of ADM with variable 3.

All the codes of the ADM approach were written by Matlab 7.1. On the other
hand, we run the matlab codes which were downed from the author’s website of [32]
to implement the smoothing minimization approach in [32]. All the codes were run
on on a Dell Poweredge 1950 dual processors server equipped with Quad Core Xeon
3.0GHz CPU, 16GB RAM running Fedora 8 Linux.

Note that we adopt (2.14) as the stopping criterion, while VSM in [32] terminates
iterations when the duality gap of (1.2) is less than 0.1. For the purpose of comparison,
we also measure the duality gap of (1.2) when the new iterate is generated by the ADM
approach. More specifically, it is easy to know that the solution of (2.10) (X*,Y™*, Z*)
should satisfy

X* =0, Y- (Xt -Z" =0, (X", 2 — (X9 t-z"=o.

For uF = (X k7Yk,Zk) generated by the ADM approach, the duality gap between
(1.2) and its dual counterpart is (X*, 3 — (X*)~1 — Z*). We denote

Fx (k) =% — (X"~ - z¥ (5.1)

F3 (uh) = Poy [Fx (ub));
and
Fy(ub) = FY(u?) — Fx (ud").

Then, both Fif (%) and Fy (@*) are positive semi-definite. Note that it is reasonable
to measure the duality gap for the iterate u* generated by the ADM approach by the
following:

Dgapl := (xk, F;g(uk) + F)}(uk»
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and
Dgap?2 := The maximal eigenvalue of Fy (u*).

In the numerical experiment, we take e = 1072 in (2.14). We compare the original
ADM (OADM) and the extended ADM (EADM) with VSM in [32]. In the following
table, we report the respective iteration number (It.) and the computing time in
seconds (CPU.) for VSM, OADM and EADM. For VSM, we report the duality gap
(Gap); while for OADM and EADM, we report both "Dgapl” and "Dgap2”.

Table 1. Numerical Comparison of VSM and ADM

VSM OADM EADM

n It. CPU. Gap It. CPU. Dgapl Dgap2 It. CPU. Dgapl Dgap 2
100 32 0.6 9.61e-02 || 21 0.11 1.37e-02  2.09e-05 || 21 0.11  3.15e-03  2.24 e-05
200 || 108 9.7 9.89e-02 || 36 0.76  1.13e-02  9.25e-05 || 28 0.62  2.57e-03 9.61e-04
300 || 145 34.6  9.97e-02 || 34 1.76  4.95e-02 4.63e-04 || 26 1.40 3.91e-03 9.95e-04
400 || 153 81.6  9.82e-02 || 33 3.56 1.59e-02 6.84e-04 || 26 1.87 2.73e-03 8.02e-04
500 || 153 153.2  9.46e-02 || 36 6.96 3.48e-03 1.13e-03 || 27 5.24  3.57e-03 1.29e-03
600 164 279.8  9.89e-02 35 10.29 5.23e-02  2.59e-03 29 9.04 3.07e-03 1.42e-03
700 || 162 437.5  9.80e-02 || 48 21.25 5.80e-04 5.15e-04 || 34 16.11  8.72e-04 7.74e-04
800 || 168 671.5  9.95e-02 || 55 34.91 7.81e-04 1.07e-03 || 41 27.58  7.74e-04  4.86e-04
900 || 160 918.3  9.99e-02 || 48 41.97  2.14e-04  3.65e-04 || 35 32.23  2.87e-03 1.62e-03
1,000 || 160 1,271.0  9.99e-02 || 60 70.19  2.00e-04 1.58e-04 || 43 52.66  3.57e-03 2.42e-03
2,000 || 171 11,017.2 9.99e-02 || 62 637.30 4.66e-04 2.43e-04 || 55 566.26 6.29e-04 1.94e-04

The data in Table 1 shows that for solving SCSP, the ADM approach substantially
outperforms VSM in terms of both iterative numbers and computing time.

6. Conclusions. In this paper, the well known alternating direction method
(ADM) is applied to solve the sparse covariance selection problem (SCSP), and its
numerical performance significantly outperforms existing first-order methods. The
ADM approach is eligible for solving large-scale SCSP, because of its numerical effi-
ciency and easy implementation. The efficiency of the ADM approach for SCSP, which
is mainly due to the full exploitation to the favorable separable structure of a reformu-
lation of SCSP, emphasizes the rationale of developing attractive first-order methods
for some particular problems by taking advantage of their inherent structures.
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