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Abstract. We introduce a new class of algorithms for solving linear semidefinite programming
(SDP) problems. Our approach is based on classical tools from convex optimization such as quadratic
regularization and augmented Lagrangian techniques. We study the theoretical properties and we
show that practical implementations behave very well on some instances of SDP having a large
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1. Introduction.

1.1. Motivations. Semidefinite programming (SDP) has been a very active re-
search area in optimization for more than a decade. This activity was motivated by
important applications, especially in combinatorial optimization and in control theory.
We refer to the reference book [WSV00] for theory and applications.

The key object in semidefinite programming is the set of positive semidefinite
matrices, denoted by S+

n , which constitutes a closed convex cone in Sn, the space
of n-by-n symmetric matrices. Denoting by 〈X, Y 〉 = trace(XY ) the standard inner
product in Sn, one writes the standard form of a (linear) semidefinite program as

(1)
{

min 〈C, X〉
AX = b, X � 0,

where b ∈ R
m, A : Sn → R

m is a linear operator, and X � 0 stands for X ∈ S+
n . The

problem dual to (1) is

(2)
{

max b�y
C −A∗y = Z, Z � 0,

where the adjoint A∗ : R
m → Sn satisfies

(3) ∀y ∈ R
m, ∀X ∈ Sn, y�AX = 〈A∗y, X〉.

The matrix X ∈ Sn is called the primal variable and the pair (y, Z) ∈ R
m×Sn forms

the dual variable.
The success of semidefinite programming was also spurred by the development of

efficient algorithms to solve the pair of dual problems (1), (2). A pleasant situation
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to develop algorithms is when strong duality holds, for instance under the classical
technical Slater constraint qualification: If we assume that both primal and dual
problems satisfy the Slater condition (meaning that there exists a positive definite
matrix X with AX = b and a vector y such that C −A∗y is positive definite), then
there is no duality gap and there exist primal and dual optimal solutions; moreover
(X, y, Z) is optimal if and only if

(4)
{ AX = b, C −A∗y = Z,

X � 0, Z � 0, 〈X, Z〉 = 0.

It is widely accepted that interior-point based approaches are among the most efficient
methods for solving general SDP problems. The primal-dual interior-point path-
following methods are based on solving the optimality conditions (4) with 〈X, Z〉 = 0
replaced by a parameterized matrix equation ZX = μI, or some variant of this
equation. As μ > 0 approaches 0, optimality holds with increasing accuracy. The key
operation consists in applying Newton’s method to these equations, resulting in the
following linear system for ΔX, Δy, ΔZ:

A(Z−1A∗(Δy)X) = b− μA(Z−1),
ΔZ = −A∗(Δy),
ΔX = μZ−1 −X − Z−1ΔZX.

The specific form of the first equation, often called the Schur–Complement equation,
depends on how exactly ZX − μI is symmetrized. We refer to [Tod01] for a thor-
ough treatment of this issue. The main effort consists in setting up and solving this
Schur equation. Several public domain packages based on this approach are available.
The Mittelmann website (http://plato.asu.edu/ftp/sdplib.html) reports benchmark
computations using several implementations of this idea. Looking at the results, it
becomes clear that all of these methods have their limits once the matrix dimension
n goes beyond 1000 or once the number m of constraints is larger than, say, 5000.
These limitations are caused by the dense linear algebra operations with matrices of
order n and by setting up and solving the Schur complement equation of order m. By
using iterative methods to solve this equation, [Toh04] manages to solve certain types
of SDP problems with m up to 100,000. Similarly [KS07] combines an iterative solver
with a modified barrier formulation of the dual SDP and also reports computational
results with the code PENNON with m up to 100,000. Another approach to solve
the pair of dual SDP problems (1),(2) is to use nonlinear optimization techniques.
For instance, [HR00], [BM03], [Mon03], or [BV06] solve (1),(2) after rewriting them
as nonlinear programs. Strong computational results on large problems with medium
accuracy have been reported for these algorithms. We also mention the mirror-prox
method recently proposed in [LNM07] as a (first order) method tailored for large scale
structured SDP.

In this paper, we study alternatives to all these methods, using quadratic regu-
larization of SDP problems. As linear problems, the primal problem (1) and the dual
problem (2) can indeed admit several solutions which can be moreover very sensitive
to small perturbations of the data C, A, and b. A classical and fruitful idea in non-
smooth or constrained optimization (which can be traced back to [BKL66], [Mar70]) is
to stabilize the problems by adding quadratic terms: this will ensure existence, unique-
ness, and stability of solutions. Augmented Lagrangian methods [PT72], [Roc76a]
are well-known important regularization techniques. Regarding SDP, an augmented
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Lagrangian on the primal problem (1) was considered in [BV06] and an augmented
Lagrangian on the dual (2) in [Ren05] and [PRW06], introducing the so-called “bound-
ary point method”. More recently, [JR08] propose an augmented primal-dual method
which is similar to the present approach, and report computational results for large-
scale random SDP. The idea to apply a proximal regularization to SDP is mentioned
in [Mal05].

The main contributions of this paper are the following. We introduce and study a
new class of regularization methods for SDP and we show that our new methods are
efficient on several classes of large-scale SDP problems (n not too large, say n ≤ 1000,
but with a large number of constraints). We also show that the boundary point
method [PRW06] has a natural interpretation as one particular instantiation of our
general class of methods; thus we put this method into perspective.

Here is a brief outline of the paper. In the following subsection, we finish the
introduction by presenting two quadratic regularizations for SDP problems. They will
eventually result in a general regularization algorithm for SDP (Algorithm 4.3, studied
in section 4). The connection of this algorithm with the boundary point method will
be made explicit by Proposition 4.4 (and Proposition 3.4). Before this, sections 2
and 3 are devoted to the study of a particular type of a nonlinear SDP problem—the
“inner problem”—appearing in the two regularizations. Section 2 studies optimality
condition for this type of nonlinear SDP problems, while section 3 presents a general
approach to solve them. Section 4 then uses these elements to set up the regularization
algorithm. Finally in section 5 we report computational experiments on randomly
generated instances as well as instances from publicly available libraries. A simple
instance of the regularization algorithm compares favorably on these instances with
the best SDP solvers.

1.2. Quadratic regularizations. We focus on two quadratic regularizations:
Moreau–Yosida regularization for the primal problem (1) and augmented Lagrangian
method for the dual problem (2). It is known that these two regularizations are
actually equivalent, as primal and dual views of the same process. We recall them
briefly as we will constantly draw connections between the primal and the dual point
of view.

Primal Moreau–Yosida regularization. We denote by ‖ · ‖ the norms as-
sociated with standard inner products for both spaces Sn and R

n. We begin with
considering, for given t > 0, the following problem

(5)

⎧⎨⎩ min 〈C, X〉+ 1
2t
‖X − Y ‖2

AX = b, X � 0, Y ∈ Sn,

which is clearly equivalent to (1) (by minimizing first with respect to Y and then with
respect to X). The idea is then to solve (5) in two steps: For Y fixed, we minimize
first with respect to X and the result is then minimized with respect to Y . Thus
we consider the so-called Moreau–Yosida regularization Ft : Sn → R defined as the
optimal value

(6) Ft(Y ) = min
X�0,AX=b

〈C, X〉+ 1
2t
‖X − Y ‖2,

and therefore we have

(7) min
Y ∈Sn

Ft(Y ) = min
X�0,AX=b

〈C, X〉.
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By the strong convexity of the objective function of (6), the point that achieves the
minimum is unique; it is called the proximal point of Y (with parameter t) and it
is denoted by Pt(Y ). The next proposition recalls the well-known properties of the
Moreau–Yosida regularization Ft (see the section XV.4 of [HUL93] for instance).

Proposition 1.1 (properties of the regularization). The function Ft is finite
everywhere, convex, and differentiable. Its gradient at Y ∈ Sn is

(8) ∇Ft(Y ) =
1
t
(Y − Pt(Y )).

The functions ∇Ft(·) and Pt(·) are Lipschitz continuous.

Dual regularization by augmented Lagrangian. The augmented Lagrangian
technique to solve (2) (going back to [Hes69], [Pow69], and [Roc76a]) introduces the
augmented Lagrangian function Lσ with parameter σ > 0:

Lσ(y, Z; Y ) = b�y − 〈Y,A∗y + Z − C〉 − σ

2
‖A∗y + Z − C‖2.

This is just the usual Lagrangian for the problem

(9)

{
max b�y − σ

2
‖A∗y + Z − C‖2

C −A∗y = Z, Z � 0,

that is (2) with an additional redundant quadratic term. The (bi)dual function is in
this case

(10) Θσ(Y ) = max
y,Z�0

Lσ(y, Z; Y ).

A motivation for this approach is that Θσ is differentiable everywhere, in contrast to
the dual function associated with (2). Solving this latter problem by the augmented
Lagrangian method then consists in minimizing Θσ.

Connections. The bridge between the primal and the dual regularizations is
formalized by the following proposition. It is a known result (see [HUL93, XII.5.1.1]
for the general case), and it will be a straightforward corollary of the forthcoming
Proposition 2.1.

Proposition 1.2 (outer connection). If t = σ, then Θσ(Y ) = Ft(Y ) for all
Y ∈ Sn.

The above two approaches thus correspond to the same quadratic regularization
process viewed either on the primal problem (1) or on the dual (2). The idea to solve
the pair of SDP problems is to use the differentiability of Ft (or Θσ). This can be
seen from the primal point of view: The constrained program (1) is replaced by (7),
leading to the unconstrained minimization of the convex differentiable function Ft.
The proximal algorithm [Roc76b] consists in applying a descent method to minimize
Ft, for instance, the gradient method with fixed step size t. In view of (8), this gives
the simple iteration Ynew = Pt(Y ).

In summary, the solution of the semidefinite program (1) by quadratic regulariza-
tion requires an iterative scheme (outer algorithm) to minimize Ft or Θσ. Evaluating
Ft(Y ) or Θσ(Y ) is itself an optimization problem, which we call the “inner prob-
lem”. From a practical point of view, we are interested in efficient methods that yield
approximate solutions of the inner problem. In the following section we therefore in-
vestigate the optimality conditions of (6) and (10). These are then used to formulate
algorithms for the inner problem. We will then be in position to describe the overall
algorithm.
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2. Inner problem: Optimality conditions. In this section and the next one,
we look at the problem of evaluating Ft(Y ) for some given Y . Since Ft(Y ) is itself
the result of the minimization problem,

(11)

⎧⎨⎩ min 〈C, X〉+ 1
2t
‖X − Y ‖2

AX = b, X � 0,

we consider various techniques to carry out this minimization at least approximately.
In this section we study Lagrangian duality of (11) and we take a closer look at the
optimality conditions. The next section will be devoted to algorithms based on these
elements.

We start by introducing the following notation that will be used extensively in
the sequel. The projection of a matrix A ∈ Sn onto the (closed convex) cone S+

n and
its polar cone S−n are denoted, respectively, by

A+ = argmin
X�0

‖X −A‖ and A− = argmin
X�0

‖X −A‖.

Theorem III.3.2.5 of [HUL93], for instance, implies that

(12) A = A+ + A− .

In fact, we have the decomposition explicitly. Let A =
∑

i λipip
T
i be the spectral

decomposition of A with eigenvalues λi and eigenvectors pi, which may be assumed
to be pairwise orthogonal and of length one. Then it is well known that

A+ =
∑
λi>0

λipipi
� and A− =

∑
λi<0

λipipi
�.

Observe also that we have for any A ∈ Sn and t > 0,

(13) (tA)+ = tA+ and (−A)+ = −(A−) .

We dualize in (11) the two constraints by introducing the Lagrangian

Lt(X ; y, Z) = 〈C, X〉+ 1
2t
‖X − Y ‖2 − 〈y,AX − b〉 − 〈Z, X〉,

a function of the primal variable X ∈ Sn and the dual (y, Z) ∈ R
m × S+

n . The dual
function defined by

(14) θt(y, Z) = min
X∈Sn

Lt(X ; y, Z)

is then described as follows.
Proposition 2.1 (inner dual function). The minimum in (14) is attained at

(15) X(y, Z) = t(Z +A∗y − C) + Y.

The dual function θt is equal to

(16) θt(y, Z) = b�y − 〈Y, Z +A∗y − C〉 − t

2
‖Z +A∗y − C‖2.
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Moreover θt is differentiable: Its gradient with respect to y is

(17) ∇y θt(y, Z) = b−A(t(Z +A∗y − C) + Y ),

and its gradient with respect to Z is

∇Z θt(y, Z) = −(t(Z +A∗y − C) + Y ).

Proof. Let (y, Z) ∈ R
m × S+

n fixed. The function X �→ Lt(X ; y, Z) is strongly
convex and differentiable. Then it admits a unique minimum point X(y, Z) satisfying

0 = ∇XLt

(
X(y, Z); y, Z

)
= C +

1
t
(X(y, Z)− Y )−A∗y − Z,

which gives (15). Thus the dual function can be rewritten as

θt(y, Z) = Lt(X(y, Z); y, Z)

= b�y + 〈C −A∗y − Z, t(Z +A∗y − C) + Y 〉+ t

2
‖Z +A∗y − C‖2

= b�y − 〈Y, Z +A∗y − C〉 − t

2
‖Z +A∗y − C‖2.

This function is differentiable with respect to (y, Z). For fixed Z, the gradient of
y �→ θt(y, Z) is

∇y θt(y, Z) = b−AY − tA(Z +A∗y − C) = b−A(t(Z +A∗y − C) + Y ),

and the one of Z �→ θt(y, Z) is

∇Z θt(y, Z) = −(t(Z +A∗y − C) + Y ).

This completes the proof.
In view of (16), the dual problem of (11) can be formulated as

(18) max
y∈Rm,Z�0

b�y − 〈Y, Z +A∗y − C〉 − t

2
‖Z +A∗y − C‖2.

Observe that (18) is exactly (10). Proposition 1.2 now becomes obvious, and is for-
malized in the following remark.

Remark 2.2 (proof of Proposition 1.2). Proposition 2.1 and [HUL93, XII.2.3.6]
imply that there is no duality gap. Thus for t = σ we have Ft(Y ) = Θσ(Y ) by (6)
and (10).

We also get the expression of the proximal point and of the gradient of the Moreau
regularization Ft in terms of solutions of (18).

Corollary 2.3 (gradient of Ft). Let (ȳ, Z̄) be a solution of (18). Then

Pt(Y ) = t(Z̄ +A∗ȳ − C) + Y and ∇Ft(Y ) = −(Z̄ +A∗ȳ − C).

Proof. Given a solution (ȳ, Z̄) of (18), the general duality theory (see, for example,
[HUL93, XII.2.3.6]) yields that X(ȳ, Z̄) = t(Z̄ +A∗ȳ−C) + Y is the unique solution
of the primal inner problem (11), that is, Pt(Y ) by definition. Moreover, (8) gives the
desired expression for the gradient.

The following technical lemma specifies the role of the primal Slater assumption.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

342 J. MALICK, J. POVH, F. RENDL, AND A. WIEGELE

Lemma 2.4 (coercivity). Assume that there exist X̄ � 0 such that AX̄ = b
and that A is surjective. Then θt is coercive, in other terms θt(y, Z) → −∞ when
‖(y, Z)‖ → +∞, Z � 0.

Proof. By (14) defining θt, we have for all (X, y, Z) ∈ S+
n × R

m × S+
n

(19) θt(y, Z) ≤ 〈C, X〉+ 1
2t
‖X − Y ‖2 − 〈y,AX − b〉 − 〈Z, X〉.

By surjectivity of A, there exist r > 0 and R > 0 such that for all γ ∈ R
m with

‖γ‖ < 2r, there exists Xγ � 0 with ‖Xγ − X̄‖ ≤ R satisfying AXγ − b = γ. Then set,
for y ∈ R

m,

γ̄ = r
y

‖y‖ ,

and plug the associated Xγ̄ into (19) to get

θt(y, Z) ≤ 〈C, Xγ̄〉+ 1
2t
‖Xγ̄ − Y ‖2 − 〈y, γ̄〉 − 〈Z, Xγ〉

= 〈C, Xγ̄〉+ 1
2t
‖Xγ̄ − Y ‖2 − r‖y‖ − 〈Z, Xγ̄〉.

Observe that the minimum of 〈Z, Xγ〉 is attained over the compact set defined by
‖γ‖ ≤ r, {Z � 0 and ‖Z‖ = 1}. Call the minimum M and the points achieving the
minimum Z̃ � 0 and X̃ � 0, so that M > 0. Then we can derive the bounds, for all
(y, Z),

〈Z, Xγ̄〉 =
〈

Z

‖Z‖ , Xγ̄

〉
‖Z‖ ≥M‖Z‖

and

θt(y, Z) ≤ 〈C, Xγ̄〉+ 1
2t
‖Xγ̄ − Y ‖2 − r‖y‖ −M‖Z‖.

To conclude, note that the quantity 〈C, Xγ̄〉 + 1
2t‖Xγ̄ − Y ‖2 is bounded, since Xγ̄

stays on a ball centered in X̄. So we see that θt(y, Z) → −∞ when ‖y‖ → +∞ or
‖Z‖ → +∞.

Remark 2.5 (a simple example showing that Lemma 2.4 is wrong without a Slater
point). Let J be the matrix of all ones, and consider the problem{

min 〈C, X〉
〈J, X〉 = 0, 〈I, X〉 = 1, X � 0,

and its dual {
max y2

C − y1J − y2I = Z, Z � 0.

We first observe that the primal problem has no Slater point. To see this, take a
feasible X , and write

λmin(X) = min
z �=0

zT Xz

zT z
≤ eT Xe

eT e
=
〈J, X〉

n
= 0.
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Together with X � 0, it follows λmin(X) = 0, hence X is singular, and thus there is
no Slater point.

Now we show that the dual function is not coercive. By (16), there holds

θt(y, Z) = y2 − 〈Y, Z + y1J + y2I − C〉 − t

2
‖Z + y1J + y2I − C‖2.

Choosing Z = −y1J and y2 = 0 with y1 < 0 and y1 → −∞, we have (y, Z) with
‖(y, Z)‖ → +∞. However, substituting in θt, we obtain

θt(y, Z) = 〈Y, C〉 − t

2
‖C‖2,

which is constant.
We end this subsection summarizing the optimality conditions for (11) and (18)

under the primal Slater assumption.
Proposition 2.6 (optimality conditions). If there exists a positive definite ma-

trix X̄ satisfying AX̄ = b, then for any Y ∈ Sn there exist primal and dual optimal
solutions (X, y, Z) for (11), (18), and there is no duality gap. In this case, the fol-
lowing statements are equivalent:

(i) (X, y, Z) is optimal for (11), (18).
(ii) (X, y, Z) satisfies

(20)
{ AX = b, X = t(Z +A∗y − C) + Y,

X � 0, Z � 0, 〈X, Z〉 = 0.

(iii) (X, y, Z) satisfies

(21)

⎧⎨⎩
X = t(Y/t +A∗y − C)+
Z = −(Y/t +A∗y − C)−
AA∗y +A(Z − C) = (b −AY )/t.

Proof. The Slater assumption implies, first, that the intersection of S+
n and

AX = b is non-empty, and therefore that there exists a solution to (11), and second,
that there exist dual solutions (thanks to Lemma 2.4).

Observe now that (ii) are the KKT conditions of (11), which gives the equivalence
between (i) and (ii) since the problems are convex. The equivalence between (ii) and
(iii) comes essentially from (12) (precisely from [HUL93, Theorem III.3.2.5]), which
ensures that

X/t− Z = Y/t +A∗y − C, X � 0, Z � 0, 〈X, Z〉 = 0

is equivalent to

X/t = (Y/t +A∗y − C)+, −Z = (Y/t +A∗y − C)−.

Using the equality X/t = Y/t +A∗y + Z − C, we can also replace the variable X in
AX = b to obtain exactly (21).

3. Inner problem: Algorithms. We have just seen that the optimality con-
ditions for the inner problem have a rich structure. We are going to exploit it and
consider several approaches to get approximate solutions of the inner problem.
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3.1. Using the optimality conditions. A simple method to solve the inner
problem (18) exploits the fact (look at the optimality conditions of (21)) that for
fixed Z, the vector y can be determined from a linear system of equations, and for
fixed y, the matrix Z is obtained by projection. This is the idea used in the boundary
point method [Ren05], [PRW06] whose corresponding inner problem is solved by the
following two-step process.

Algorithm 3.1 (two-step iterative method for inner problem).

Given t > 0 and Y ∈ Sn.
Choose y ∈ R

m and set Z = −(Y/t +A∗y − C)−.
Repeat until ‖AX − b‖ is small:

Step 1: Compute the solution y of AA∗y = A(C − Z) + (b−AY )/t.
Step 2: Update Z = −(Y/t +A∗y − C)− and X = t(Y/t +A∗y − C)+.

By construction, each iteration of this two-step process guarantees that

X � 0, Z � 0, 〈X, Z〉 = 0.

This explains the name “boundary point method”. Observe also that Step 1 of Al-
gorithm 3.1 amounts to solving an m × m linear system of the form AA∗y = rhs,
which can be expensive if m is large. However, in contrast to interior point methods,
the matrix AA∗ is constant throughout the algorithm. So it can be decomposed at
the beginning of the process once and for all. Moreover, the matrix structure can be
exploited to speed up calculation.

To see that the stopping condition makes sense, we observe that after Step 2 of the
algorithm is executed, the only possibly violated optimality condition is AA∗y+A(Z−
C) = (b−AY )/t, using (21). After Step 2, X and Z satisfy X = t(Z +A∗y−C)+Y .
This condition holding, it is clear that AX = b if and only if AA∗y + A(Z − C) =
(b−AY )/t. We will come back to convergence issues in more detail in section 4.2.

3.2. Using the dual function. We consider again the dual inner problem (18).
We observe that the minimization with respect to Z, with y held constant, leads to a
projection onto S+

n and results in the dual function

θ̃t(y) = max
Z�0

θt(y, Z),

depending on y only. The differentiability properties of this function are now sum-
marized.

Proposition 3.2 (dual function). The function θ̃t is a differentiable function
that can be expressed (up to a constant) as

(22) θ̃t(y) = b�y − t

2
‖(A∗y − C + Y/t)+‖2

and whose gradient is ∇θ̃t(y) = b− tA(A∗y − C + Y/t)+ .

Proof. With the help of (16), express θ̃t(y) as the minimum

θ̃t(y) = −min
Z�0
−θt(y, Z) = b�y −min

Z�0
〈Y, Z +A∗y − C〉+ t

2
‖Z +A∗y − C‖2.

Rewrite this objective function as

〈Y, Z +A∗y − C〉+ t

2
‖Z +A∗y − C‖2 =

t

2
‖Z − (C − Y/t−A∗y)‖2 − 1

2t
‖Y ‖2 .
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Observe that the minimum is attained by the projection of C − Y/t −A∗y onto S+
n

that is by the matrix

(23) Z(y) = (C − Y/t−A∗y)+ = −(A∗y − C + Y/t)−.

Observe also that the function Z : y �→ (C − Y/t − A∗y)+ is continuous (since the
projection X �→ X+ is Lipschitz continuous). Equation (12) enables us to write

(24) θ̃t(y) = b�y − t

2
‖(Y/t− C +A∗y)+‖2 +

1
2t
‖Y ‖2 .

We now want to use a theorem of differentiability of a min function (as [HUL93,
VI.4.4.5], for example) to compute the derivative of θ̃t. So we need to ensure the
compactness of the index on which the maximum is taken. Let ȳ ∈ R

m and V a
compact neighborhood of ȳ in R

m. By continuity of Z(·) defined by (23), the set
U = Z(V ) is compact and we can write

θ̃t(y) = max
Z∈U∩S+

n

θt(y, Z)

for all y ∈ V . Since the maximum is taken on a compact set, [HUL93, VI.4.4.5] gives
that θ̃t is differentiable at ȳ with

∇θ̃t(ȳ) = ∇yθt(ȳ, Z(ȳ))

for which we have an expression (recall (17)). Since this can be done around any
ȳ ∈ R

m, we conclude that θ̃ is differentiable on R
m. Using (23), we compute, for

y ∈ R
m

∇θ̃t(y) = b− tA(Z(y) +A∗y − C + Y/t)
= b− tA(

(A∗y − C + Y/t)+
)

and the proof is complete.
The dual problem (18) can thus be cast as the following concave differentiable

problem

(25) max
y∈Rm

b�y − t

2
‖(A∗y − C + Y/t)+‖2 ,

up to a constant, which is explicitly ‖Y ‖2/2t (see (24)). So we can use this formulation
to solve the inner problem (11) through its dual (25) (when there is no duality gap, see
Proposition 2.6). The key is that the objective function θ̃t is concave, differentiable
with an explicit expression of its gradient (Proposition 3.2). Thus we can use any
classical algorithm of unconstrained convex programming to solve (25). In particular
we can use

• gradient-like strategies (e.g., gradient, conjugate gradient, or Nesterov method)
• Newton-like strategies (e.g., quasi-Newton or inexact generalized Newton).

For generality and simplicity, we consider the following variable metric method to
solve (25), which generalizes many of the above classical strategies.

Algorithm 3.3 (dual variable metric method for the inner problem).

Given t > 0 and Y ∈ Sn. Choose y ∈ R
m.

Repeat until ‖b−AX‖ is small:
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Compute X = t(A∗y − C + Y/t)+.
Set g = b−AX.
Update y ← y + τWg with appropriate W and τ .

The stopping condition is as before, but now it is motivated by the fact that
∇θ̃t(y) = b − tA(A∗y − C + Y/t)+ = b − AX . In fact, the connections between
Algorithm 3.3 and the previous inner method (Algorithm 3.1) are strong; they are
precisely stated by the following proposition.

Proposition 3.4 (inner connection). If A is surjective, Algorithm 3.1 generates
the same sequence as Algorithm 3.3 when both algorithms start from the same dual
iterate y, and when W and τ are kept constant for all iterations, equal to

W = [AA∗]−1 and τ = 1/t.

Proof. The surjectivity of A implies that AA∗ is invertible and then that the
sequence (Xk, yk, Zk)k generated by Algorithm 3.1 is well defined as well as the se-
quence (X̃k, ỹk)k generated by Algorithm 3.3 when W = [AA∗]−1 and τ = 1/t. Let
us prove by induction that yk = ỹk and Xk = X̃k for all k ≥ 0.

We assume that the two algorithms start by the same dual iterate y0 = ỹ0. It
holds that X0 = X̃0 = t(Y/t + A∗y0 − C)+ by construction. Assume now that we
have yk = ỹk and Xk = X̃k. To prove that ỹk+1 = yk+1, we check if ỹk+1 defined by

ỹk+1 = ỹk +
1
t
[AA∗]−1(b−AX̃k)

satisfies the equation defining yk+1, that is, if

Δk = AA∗ỹk+1 −A(C − Zk)− (b−AY )/t

is null. By construction of ỹk+1, we have

Δk = AA∗
(
ỹk + [AA∗]−1(b−AX̃k)/t

)
−A(C − Zk)− (b−AY )/t

= AA∗ỹk + (b−AX̃k)/t− (b−AY )/t−A(C − Zk)

= −A(
X̃k/t− Zk − (Y/t +A∗ỹk − C)

)
.

Since X̃k = Xk and ỹk = yk, we get Δk = 0 (by construction of Xk and Zk in Step 2
of Algorithm 3.1). Hence, yk+1 = ỹk+1, and it yields

X̃k+1 = t(A∗yk+1 − C + Y/t)+ = Xk+1,

and the proof is completed by induction. Note also that the two algorithms have the
same stopping rule.

A direct calculation shows that the primal inner problem (11) can be cast as

(26)

⎧⎪⎪⎨⎪⎪⎩
min

1
2t
‖X − (Y − tC)‖2

AX = b,
X � 0.

This problem is a so-called semidefinite least-squares problem: We want to compute
the nearest matrix to (Y − tC) belonging to C, the intersection of S+

n with the affine
subspace AX = b. In other words, we want to project the matrix Y − tC onto the
intersection. The problem received recently a great interest (see [Mal04] for the general
case, and [Hig02], [QS06] for the important special case of correlation matrices).
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4. Outer algorithm. In the previous section we have investigated how the inner
problem, that is evaluating Ft(Y ) or Θσ(Y ) for some given Y , can be done approxi-
mately. These methods are the backbone of the overall algorithm, which we are going
to describe in this section.

4.1. Conceptual outer algorithm. We start with the primal point of view.
The Moreau–Yosida quadratic regularization of (1) leads us to a conceptual proximal
algorithm, which can be written as follows.

Algorithm 4.1 (conceptual proximal algorithm).

Initialization: Choose t > 0 and Y ∈ Sn.
Repeat until 1

t ‖Y − Pt(Y )‖ is small:
Step 1: Solve the inner problem (11) to get X = Pt(Y ).
Step 2: Set Y = X and update t.

The stopping condition is based on the gradient (8), but obviously this “algo-
rithm” is only conceptual since it requires Pt(Y ). Moving now to the dual point of
view, we propose to apply the augmented Lagrangian method to solve (2) leading to
the following algorithm.

Algorithm 4.2 (conceptual “boundary point”).
Initialization: Choose σ > 0 and Y ∈ Sn.
Repeat until ‖Z +A∗y − C‖ is small:

Step 1: Solve the inner problem (18) to get (y, Z).
Step 2: Compute X = Y + σ(Z +A∗y − C), set Y = X, and update σ.

If the two inner steps (Step 1 just above and Step 1 of Algorithm 4.1) are solved ex-
actly, then the expression of the gradient of the regularization Ft (recall Corollary 2.3)
would show that the previous algorithm produces the same iterates as Algorithm 4.1.
In other words, the conceptual boundary point method is equivalent to the conceptual
proximal algorithm. Proposition 4.4 below shows that this correspondence property
also holds when the inner problems are solved approximately. Note that we implicitly
assume that the two regularization parameters are equal (t = σ); for clarity, we use
only t for the rest of the paper.

Implementable versions of the above algorithms require the computation of Step 1.
In view of the previous sections, we use the general Algorithm 3.3 inside of Algorithms
4.1 and 4.2 to solve Step 1 (inner problem), and we introduce a tolerance εinner for
the inner error and another tolerance εouter for the outer stopping condition. We thus
obtain the following regularization algorithm for SDP.

Algorithm 4.3 (regularization algorithm for SDP).

Initialization: Choose initial iterates Y , y, and εinner, εouter.
Repeat until ‖Z +A∗y − C‖ ≤ εouter:

Repeat until ‖b−AX‖ ≤ εinner:
Compute X = t(A∗y − C + Y/t)+ and Z = −(A∗y − C + Y/t)−.
Update y ← y + τWg with appropriate τ and W .

end (inner repeat)
Y ← X.

end (outer repeat)
We note that Algorithm 4.3 has the following particular feature. It is “orthogo-

nal” to interior point methods in the sense that it works to enforce the primal and
dual feasibilities while the complementarity and semidefiniteness conditions are guar-
anteed throughout. In contrast, interior-point methods maintain primal and dual
feasibility and semidefiniteness and try to reach complementarity. We now establish
the connection to the boundary point method from [PRW06].
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Proposition 4.4 (outer connections). If A is surjective, W and τ are fixed at

W = [AA∗]−1 and τ = 1/t,

then Algorithm 4.3 generates the same sequence as the boundary point method (see
Table 2 of [PRW06]) when starting from the same initial iterates Y0 = 0 and y0 such
that A∗y0 − C � 0 and with the same stopping threshold εinner and εouter.

Proof. The result follows easily from Proposition 3.4 by induction. Note first
that Y0 and y0 give Z0 = 0, and therefore that the initializations coincide. (For
the boundary point method we refer to Table 2 of [PRW06].) Proposition 3.4 then
shows that the two inner algorithms generate the same iterates, and they have the
same stopping condition if εinner and εouter correspond to the thresholds of Table 2
of [PRW06]. Observe finally that the two outer iterations are also identical: The
expressions of X and Z (Step 1 in Algorithm 4.3) give the update of the boundary
point (Step 2 in Algorithm 4.2).

4.2. Elements of convergence. The convergence behavior of Algorithm 4.3
is for the moment much less understood than the convergence properties of interior
point methods, for example. This lack of theory also opens the way for many degrees
of freedom in tuning parameters for the algorithm. Section 5 discusses briefly this
question and presents the practical algorithm, used for experimentation.

For the sake of completeness we include here a first convergence theorem with an
elementary proof. The theorem’s assumptions and proof are inspired from classical
references on the proximal and augmented Lagrangian methods ([PT72], [Roc76a],
[Ber82], you may see also [BV06]).

Theorem 4.5 (convergence). Denote by (Yp, yp, Zp)p the sequence of (outer)
iterates generated by Algorithm 4.3 and by εp = εinner

p the associated inner error.
Make three assumptions in Algorithm 4.3:

• t is constant,
• ∑

p εp <∞,
• (yp)p is bounded.

If primal and dual problems satisfy the Slater assumption, the sequence (Yp, yp, Zp)p

is asymptotically feasible:

Zp +A∗yp − C → 0 and AYp − b→ 0.

Thus any accumulation point of the sequence gives a primal-dual solution.
Proof. Assume that the primal and dual problems satisfy the Slater assumption,

and consider (Ȳ , ȳ, Z̄) be an optimal solution, that is satisfying (4). The assumption
that the series of εp converges yields that AYp − b → 0 is satisfied. We want to
prove that the dual residue Gp = −(Zp +A∗yp −C) vanishes as well. Recall we have
Yp = Yp−1 − tGp. So we develop

‖Yp − Ȳ ‖2 = ‖Yp−1 − Ȳ ‖2 − ‖Yp−1 − Ȳ ‖2 + ‖Yp − Ȳ ‖2
= ‖Yp−1 − Ȳ ‖2 − ‖Yp + tGp − Ȳ ‖2 + ‖Yp − Ȳ ‖2
= ‖Yp−1 − Ȳ ‖2 − 2〈Yp − Ȳ , tGp〉 − ‖tGp‖2
= ‖Yp−1 − Ȳ ‖2 − t2‖Gp‖2 − 2t〈Yp − Ȳ , Gp〉.

Let us focus on the last term 〈Yp − Ȳ , Gp〉. Using the optimality conditions (4), we
write

Gp = −(Zp +A∗yp − C) = −(Zp − Z̄) +A∗(yp − ȳ).
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and then

〈Yp − Ȳ , Gp〉 = −〈Yp − Ȳ , Zp − Z̄ +A∗(yp − ȳ)〉
= −〈Yp − Ȳ ,A∗(yp − ȳ)〉 − 〈Yp, Zp〉 − 〈Ȳ , Z̄〉+ 〈Yp, Z̄〉+ 〈Ȳ , Zp〉
≥ −〈Yp − Ȳ ,A∗(yp − ȳ)〉
= −〈A(Yp − Ȳ ), yp − ȳ〉
≥ −εp‖yp − ȳ‖,

the first inequality coming from 〈Ȳ , Z̄〉 = 〈Yp, Zp〉 = 0 and Ȳ , Z̄, Yp, Zp � 0, and the
second from the Cauchy–Schwarz inequality. So we get

t2‖Gp‖2 ≤ −‖Yp − Ȳ ‖2 + ‖Yp−1 − Ȳ ‖2 + 2tεp‖yp − ȳ‖.

Summing these inequalities for the first N outer iterations, we finally get

t2
N∑

p=1

‖Gp‖2 ≤ −‖YN − Ȳ ‖2 + ‖Y0 − Ȳ ‖2 + 2t

N∑
p=1

εp‖yp − ȳ‖.

Call M a bound of the sequence ‖yp − ȳ‖ and write

N∑
p=1

‖Gp‖2 ≤ 1
t2
‖Y0 − Ȳ ‖2 +

2M

t

N∑
p=1

εp.

By assumption,
∑

p εp is finite, then so is
∑

p ‖Gp‖2; hence Gp → 0 and the proof is
complete.

4.3. Min-max interpretation and stopping rules. We end the presentation
of the overall algorithm by drawing connections with a method to solve min-max
problems. Since we have an interpretation of the inner algorithm via duality, it makes
sense indeed to cast the primal SDP problem as a min-max problem. With the help
of (7) and (25) we can write (1) as

min
Y ∈Sn

max
y∈Rm

ϕ(Y, y)

with

(27) ϕ(Y, y) = b�y − t

2
‖(A∗y − C + Y/t)+‖2 +

1
2t
‖Y ‖2.

Our approach can thus be interpreted as solving the primal and dual SDP problems
by computing a saddle-point of ϕ.

With this point of view, the choice of stopping conditions appears to be even more
crucial, because the inner and outer loops are antagonistic, as the first minimizes and
the second maximizes. In this context, there are two opposite strategies. First, solving
the inner maximization with respect to y with high accuracy (using a differentiable
optimization algorithm) and then updating Y would amount to follow the conceptual
proximal algorithm as closely as possible. Alternatively, we can do one gradient-like
iteration with respect to each variable successively: This is essentially the idea of the
“Arrow–Hurwicz” approach (see, for instance, [AHU59]), an algorithm that goes back
to the 1950’s, and that has been applied for example to the saddle-point problems
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that appear in finite element discretization of Stokes-type and elasticity equations and
in mixed finite element discretization.

We tried both strategies and have observed that in practice the second option gives
much better numerical results: For the numerical experiments in the next section, we
thus always fix the inner iteration to one. Besides, an adequate stopping rule in such
a situation still has to be studied theoretically; this is a general question, beyond the
scope of this paper. Note also that since there is no distinction between the inner and
the outer iteration in this approach, we use a pragmatic stopping condition on both
the relative primal and dual error; see the next section.

5. Numerical illustrations.

5.1. Simple regularization algorithm. Up to now we have seen that a prac-
tical implementation of a regularization approach for SDP can be derived from both
the primal and the dual view points, resulting in the same algorithmic framework.
The choice of the regularization parameter t (or σ), the tolerance levels for the inner
problem, and the strategy for W have a strong impact on the actual performance.
We tested various prototype algorithms, and decide to emphasize the following sim-
ple instance of the general algorithm which often yields to the overall best practical
performance on our test problems.

• Errors. We use a relative error measure following [Mit03]. Thus the relative
primal and dual infeasibilities are

δp :=
‖A(X)− b‖

1 + ‖b‖ , δd :=
‖C − Z −A∗y‖

1 + ‖C‖ , δ := max {δp, δd} .

Recall that all other optimality conditions hold by construction of the
algorithm.
• Inner iterations. In our experiments we noticed that the overall perfor-

mance is best if we execute the inner loop only once. As explained in section
4.3, this is a plausible alternative in our context. With one inner iteration,
the choice of W (and τ) is natural: We take W = (AA∗)−1 and τ = 1/t.
• Normalization. In order to simplify the choice for the internal parameters,

we assume without loss of generality that the data are scaled so that both b
and C have norm one.
• Initializing t. We select t large enough, so that the relative dual infeasibility

is smaller than the relative primal infeasibility. If b and C have norm one,
then a value of t in the range 0.1 ≤ t ≤ 10 turned out to be a robust choice.
• Updating t. We use the following simple update strategy for t. As a general

rule we try to change t as little as possible. Therefore we leave t untouched
for a fixed number it of iterations. (Our choice is it = 10.) Every itth it-
eration we check whether δp ≤ δd. If this is not the case, we reduce t by a
constant multiplicative factor, which we have set to 0.9. Otherwise we leave
t unchanged.
• Stopping condition. We stop the algorithm once the overall error δ is below

a desired tolerance ε, which we set to

ε = 10−7.

We also stop after a maximum of 300 iterations in case we do not reach the
required level of accuracy.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REGULARIZATION METHODS FOR SDP 351

These specifications lead to the following algorithm we use for numerical testing.
Its MATLAB source code is available online at [Web].

Algorithm 5.1.

Initialization: Choose t > 0, Y ∈ Sn, and ε. Set Z = 0.
Repeat until δ < ε:

Compute the solution y of AA∗y = A(C − Z) + (b−AY )/t.
Compute Z = −(Y/t +A∗y − C)− and X = t(Y/t +A∗y − C)+.
Update Y ← X.
Compute δ.
Update t.

Note that the computational effort in each iteration is essentially determined by
the eigenvalue decomposition of the matrix Y/t + A∗y − C of order n, needed to
compute the projections X and Z, and by solving the linear system of order m with
matrix AA∗. However, computing AA∗ and its Cholesky factorization is done only
once at the beginning of the algorithm. Hence when n is not too big, the cost of each
iteration is moderate, so we can target problems with m very large.

The following section provides some computational results with this algorithm.
All computations are done under Linux on a Pentium 4 running with 3.2 GHz and
2.5 GB of RAM.

5.2. Pseudo-random SDP. Our algorithm should be considered as an alterna-
tive to interior-point methods in situations where the number m of equations prohibits
direct methods to solve the Schur complement equations. In order to test our method
systematically, we first consider ‘unstructured’ SDPs. The currently available libraries
of SDP instances do not contain enough instances of this type with sizes suitable for
our purposes. Therefore we consider randomly generated problems. Given the pa-
rameters n, m, p, and seed, we generate pseudo-random instances as follows.

First generator. The main focus lies on A which should be such that the Cholesky
factor of AA∗ can be computed with reasonable effort; this means we must control the
sparsity of the matrix. The linear operatorA is defined through m symmetric matrices
Ai with (AX)i = 〈Ai, X〉. The matrix AA∗ therefore has entries (AA∗)ij = 〈Ai, Aj〉.
This means that the m matrices Ai forming A should be sparse, and the rows of A
should be reordered to reduce the fill-in in the Cholesky factor. In order to control
the sparsity of A, we generate the matrices Ai defining A to be nonzero only on a
submatrix of order p, whose support is selected randomly. Then we reorder the rows
of A using the MATLAB command symamd to reduce the fill-in. So when n and p are
fixed, it increases with m, and when m and p are fixed, it decreases with n.

Having A, we generate a positive definite X and set b = AX . Similarly, we select
a positive definite Z and a vector y and set C = Z +A∗y, so we have strong duality.
The generator is also available in [Web]. To make the data reproducible, we initialize
the random number generator with the parameter seed.

In Table 1, we provide a collection of instances. Aside from the parameters
n, m, p, seed used to generate the instances, we include:

• the time (in seconds) to compute the Cholesky factor of AA∗,
• the time (in seconds) to reach the required relative accuracy ε = 10−7,
• the optimal value of the SDP problems.

Observe that the computing time for the Cholesky factorization cannot be neglected
in general, and that it varies a lot according to the construction and sparsity of the
matrix A (see comments above). The typical number of (outer) iterations was around
200 or less.
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Table 1

Randomly generated SDPs. Columns 1 to 4 provide the parameters to generate the data. The
columns “time” give the time (in seconds) to compute the Cholesky factor, and the time of Algo-
rithm 5.1. In the last column we add the optimal value computed. The stopping criteria is error δ
being below 10−7.

Cholesky Algorithm
n m p seed time time obj-value
300 20000 3 3002030 37 63 761.352
300 25000 3 3002530 217 127 73.838
300 10000 4 3001040 83 97 165.974
400 30000 3 4003030 35 118 1072.139
400 40000 3 4004030 672 202 805.768
400 15000 4 4001540 222 195 -655.000
500 30000 3 5003030 1 201 1107.626
500 40000 3 5004030 19 198 816.610
500 50000 3 5005030 277 254 364.945
500 20000 4 5002040 276 323 328.004
600 40000 3 6004030 1 395 306.617
600 50000 3 6005030 7 372 -386.413
600 60000 3 6006030 93 345 641.736
600 20000 4 6002040 60 485 1045.269
700 50000 3 7005030 1 591 313.202
700 70000 3 7007030 27 507 -369.559
700 90000 3 7009030 749 601 -26.755
800 70000 3 8007030 1 793 2331.395
800 100000 3 80010030 219 805 2259.288
800 110000 3 80011030 739 836 1857.920
900 100000 3 90010030 7 1047 954.222
900 140000 3 90014030 1672 1340 2319.830

1000 100000 3 100010030 1 1600 3096.361
1000 150000 3 100015030 420 1851 1052.887

Second generator. When both n and m get larger, the bottleneck of our approach
is the computation of the Cholesky factor of AA∗. In order to experiment also with
larger instances, we have set up another generator for random instances which gen-
erates A through the QR decomposition of A∗ = QR. Here we select orthogonal
columns in Q and select an upper triangular matrix R at random, with a prespecified
density (= proportion of nonzero entries in the upper triangle). Again this generator
is available online at [Web].

In Table 2 we collect some representative results. We ran the algorithm for 300
iterations and report the accuracy level reached. It was always below 10−6. We
manage to solve these instances with reasonable computational effort. We emphasize,
however, that these results are achievable only because the Cholesky factorization
AA∗ = RT R is given as part of the input. Computing the Cholesky factor of the
smallest instance (seed = 4004010) failed on our machine due to lack of memory.

5.3. Comparison with other methods. There are only a few methods avail-
able which are capable of dealing with large-scale SDP. The website http://plato.asu.
edu/bench.html maintained by Hans Mittelmann gives an overview of the current
state of the art in software to solve large SDP problems.

In Table 3, we compare our method with the low-rank approach SDPLR of
[BM03]. Since this is essentially a first-order nonlinear optimization approach, it
does not easily reach the same level of accuracy as our method. We have set a time
limit of 3600 seconds and report the final relative accuracy. We also compare with
the code of Toh, described in [Toh04]. The results were provided to us by Toh; the
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Table 2

Randomly generated SDPs with known Cholesky factor of AA∗. We stop the algorithm after
300 iterations. We provide in columns 1 to 4 the parameters to generate the data, and in the last
three columns the time (in seconds) to solve the problem, the error, and the optimal value.

n m dens seed time error obj-value
400 40000 10/m 4004010 200 1e-6 8018.86
500 60000 10/m 5006010 382 1e-6 10201.85
600 80000 10/m 8008010 714 1e-6 12465.07
700 100000 10/m 70010010 1176 .5e-6 13063.73
800 130000 10/m 80013010 1550 1e-6 13707.81
900 150000 10/m 90015010 2800 .5e-6 15964.01

Table 3

Comparison on randomly generated SDPs. We compare SDPLR [BM03] and the code of Toh
[Toh04] against our code on data sets from Table 1.

SDPLR Toh our
seed time error time error time

3002030 686 1.1e-5 204 1.5e-4 63
3002530 1079 1.1e-5 958 2.5e-7 127
3001040 123 1.2e-5 159 3.7e-8 97
4003030 1880 7.3e-6 1000 0.6e-7 118
4004030 3055 5.0e-6 425 0.2e-5 202
4001540 299 1.0e-5 372 0.4e-7 195
5003030 2165 7.8e-6 1309 0.5e-7 201
5004030 3600 8.8e-6 1668 0.4e-7 198
5005030 3600 1.6e-5 1207 0.1e-5 254
5002040 347 1.1e-5 644 0.9e-7 323
6004030 3499 5.8e-6 1658 0.7e-7 395
6005030 3600 3.8e-5 2009 0.5e-5 372
6006030 3600 4.1e-5 1630 0.5e-6 345
6002040 600 4.3e-5 838 0.9e-7 485
7005030 3600 3.4e-5 2696 0.8e-7 591
7007030 3600 6.3e-5 4065 0.3e-7 507
8007030 3600 4.0e-5 2951 1.0e-7 793

timings for this experiment were obtained on a Pentium 4 with 3.0 GHz, a machine
that is slightly slower than ours. We first note that SDPLR is clearly outperformed
by both other methods. We also see that as m gets larger, our method is substantially
faster than the code of Toh.

At the time of final revisions of this paper, the preprint [ZST08] became publicly
available, showing that a refined instantiation of our regularization algorithm leads
to more powerful computational results.

5.4. The Lovász theta number. In [PRW06], the boundary point method was
applied to the SDP problem underlying the Lovász theta number of a graph. We come
back now on this type of SDP with the present approach and we compute challenging
instances.

Given a graph G (and its complementary G) with the set of vertices V (G) and
the set of edges E(G), n = |V (G)|, the Lovász theta number ϑ(G) of G is defined as
the optimal value of the following SDP problem:

ϑ(G) :=

⎧⎨⎩
max 〈J, X〉

Xij = 0, ∀ij ∈ E(G),
traceX = 1, X � 0,

where J is again the matrix of all ones. Lovász [Lov79] showed that the polynomi-
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Table 4

DIMACS graphs and theta numbers.

graph name n |E(G)| ϑ(G) ω(G) |E(G)| ϑ(G)
keller5 776 74710 31.000 27 225990 31.000
keller6 3361 1026582 63.000 ≥ 59 4619898 63.000
san1000 1000 249000 15.000 15 250500 67.000
san400-07.3 400 23940 22.000 22 55860 19.000
brock400-1 400 20077 39.702 27 59723 10.388
brock800-1 800 112095 42.222 23 207505 19.233
p-hat500-1 500 93181 13.074 9 31569 58.036
p-hat1000-3 1000 127754 84.80 ≥ 68 371746 18.23
p-hat1500-3 1500 277006 115.44 ≥ 94 847244 21.52

ally computable number ϑ(G) separates the clique number ω(G) from the chromatic
number χ(G), i.e., it holds

ω(G) ≤ ϑ(G) ≤ χ(G).

Both numbers ω(G) and χ(G) are NP-complete to compute and in fact even hard to
approximate.

Let us take some graphs from the DIMACS collection [JT96] (available at ftp://
dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique). The clique number for
most of these instances is known, we compute their theta number. We do not consider
instances having special structure, like Hamming or Johnson graphs, because these
allow computational simplifications leading to purely linear programs, see [Sch79]. In
[DR07] it is observed that ϑ(G) can be computed efficiently by interior point methods
in case that either |E(G)| or |E(G)| is not too large. Hence we consider only instances
where |V (G)| > 300 and both |E(G)| and |E(G)| > 10000.

For the collection of instances of Table 4, ϑ has not yet been able to be computed
before. We provide for them approximations of values of both ϑ(G) and ϑ(G). The
number of outer iterations ranges from 200 to 2000. The computation times are for
the smallest graphs (n = 400) some minutes, for the graphs with sizes from n = 500
to n = 1500 several hours, and for the graph keller6 (n = 3361) one has to allow days
in order to reach the desired tolerance.

It turned out that our method worked fine in most of the cases. We noticed nev-
ertheless an extremely slow convergence in case of the Sanchis graphs (e.g., san1000,
san400-07.3). One reason for this may lie in the fact that the resulting SDPs have
optimal solutions with rank-one.

5.5. Conclusions and perspectives on experiments. We propose a class of
regularization methods for solving linear SDP problems, having in mind SDP problems
with a large number of constraints. In the previous sections, we have presented and
studied in theory these methods, and in this last section, we presented numerical
experiments which show that in practice our approach compares favorably on several
classes of SDPs with the most efficient currently available SDP solvers. Our approach
has nevertheless not yet reached the level of refinement necessary to be competitive
on a very large range of problems. The main issues are the choice of the classical
optimization algorithm for the inner problem (in other words, with our notation, the
choice of W and τ), and moreover the stopping rule for this inner algorithm. As usual
with regularization methods, an important issue (still rather mysterious) is the proper
choice of the regularization parameter, and the way to update it. So the clarification
and generalization of this paper open the way for improvements: There is large room
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for further research in this area, in both theory and practice. Moreover, in order to
be widely applicable, it is necessary to set up the method so that it can handle several
blocks of semidefinite matrices, as well as inequality constraints. All this is also the
topic of further research and development.
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