Matrix Completion Problem (aka the Netflix Problem)

Given some entries of an $m \times n$ matrix \mathbf{M}, say those for $i j \in \Omega$, we wnat to recover \mathbf{M}. If $|\Omega|<m n$, the problem is obviously underdetermined. However, if we know that \mathbf{M} has low rank, maybe we can recover it. This can be formulated as the problem:

$$
\min _{\mathbf{X} \in \mathbb{R}^{m \times n}} \quad \begin{aligned}
& \operatorname{rank}(\mathbf{X}) \\
& x_{i j}=m_{i j}, \quad i j \in \Omega .
\end{aligned}
$$

Consider the convex relaxation of this problem:

$$
\begin{aligned}
& \min _{\mathbf{X} \in \mathbb{R}^{m \times n}}\|\mathbf{X}\|_{*} \\
& x_{i j}=m_{i j}, \quad i j \in \Omega .
\end{aligned}
$$

Recall that $\|\mathbf{X}\|_{*}=\|\sigma(\mathbf{X})\|_{1}$. This problem can be modelled as an SDP but it is hard to solve using interior-point methods so we look to solve this directly.
Cai, Candes \& Shen proposed a first-order method to solve the related problem:

$$
\begin{aligned}
\min _{\mathbf{X} \in \mathbb{R}^{m \times n}} \tau\|\mathbf{X}\|_{*}+\frac{1}{2}\|\mathbf{X}\|_{F}^{2} & \\
x_{i j} & =m_{i j}, \quad i j \in \Omega .
\end{aligned}
$$

With the intention of using a Lagrangian method we introduce the function

$$
L(\mathbf{X}, \mathbf{Y}):=\tau\|\mathbf{X}\|_{*}+\frac{1}{2}\|\mathbf{X}\|_{F}^{2}-\sum_{i j \in \Omega} y_{i j}\left(x_{i j}-m_{i j}\right)
$$

Here $\mathbf{Y} \in \mathbb{R}^{m \times n}$, but only its $i j$ entries for $i j \in \Omega$ are relevant.
For any $\mathbf{Z} \in \mathbb{R}^{m \times n}$, let \mathbf{Z}_{Ω} denote the matrix with entries $z_{i j}$, if $i j \in \Omega$ and 0 , if $i j \notin \Omega$. Then

$$
\begin{aligned}
L(\mathbf{X}, \mathbf{Y}) & =\tau\|\mathbf{X}\|_{*}+\frac{1}{2}\|\mathbf{X}\|_{F}^{2}-\mathbf{Y}_{\Omega} \bullet(\mathbf{X}-\mathbf{M}) \\
& =\tau\|\mathbf{X}\|_{*}+\frac{1}{2}\left\|\mathbf{X}-\mathbf{Y}_{\Omega}\right\|_{F}^{2}+\mathbf{Y}_{\Omega} \bullet \mathbf{M}-\frac{1}{2}\left\|\mathbf{Y}_{\Omega}\right\|_{F}^{2} \\
& =\tau\|\mathbf{X}\|_{*}+\frac{1}{2}\|\mathbf{X}\|_{F}^{2}-\mathbf{Y} \bullet(\mathbf{X}-\mathbf{M})_{\Omega}
\end{aligned}
$$

This leads to the following algorithm:

$$
\begin{array}{ll}
\text { Algorithm } & \text { Choose } \mathbf{X}_{0}, \mathbf{Y}_{0} \text { and }\left\{\delta_{k}\right\}_{k=0}^{\infty} \\
\text { Iteration } k & \mathbf{X}_{k+1}:=\arg \min _{\mathbf{X} \in \mathbb{R}^{m \times n}} L\left(\mathbf{X}, \mathbf{Y}_{k}\right), \\
& \mathbf{Y}_{k+1}:=\mathbf{Y}_{k}-\delta_{k}\left(\mathbf{X}_{k+1}-\mathbf{M}\right)_{\Omega}
\end{array}
$$

This is in fact Uzawa's method going back to the 1950's. Convergence of the algorithm can be proved if $0<\delta_{k}<2$, all k.
We now look at the question of solving the subproblems efficiently.

Lemma 1 If $\mathbf{Z} \in \mathbb{R}^{m \times n}$, then $\|\mathbf{Z}\|_{*} \geq\|\operatorname{diag}(\mathbf{Z})\|_{1}$ with equality if \mathbf{Z} is diagonal.
Proof: If \mathbf{Z} is diagonal, then $\sigma(\mathbf{Z})=|\operatorname{diag}(\mathbf{Z})|$. So equality holds trivially. In general, suppose $\|\mathbf{Z}\|_{*}=1$.
So,

$$
\mathbf{Z}=\mathbf{P} \mathbf{\Sigma} \mathbf{Q}^{T}=\sum_{i=1}^{r} \sigma_{i} \mathbf{p}_{i} \mathbf{q}_{i}^{T}
$$

where $\mathbf{P} \in \mathbb{R}^{m \times m}$ and $\mathbf{Q} \in \mathbb{R}^{n \times n}$ are orthogonal, with columns $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}$ and $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$ respectively, $\Sigma=" \operatorname{Diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right) " \in \mathbb{R}^{m \times n}$ and $r:=\min \{m, n\}$.
So \mathbf{Z} is a convex combination of rank 1 matrices of the form $\mathbf{p q}^{T}$. Observe that

$$
\begin{aligned}
\left\|\operatorname{diag}\left(\mathbf{p q}^{T}\right)\right\|_{1} & =\left|\mathbf{p}_{1}\right|\left|\mathbf{q}_{1}\right|+\left|\mathbf{p}_{2}\right|\left|\mathbf{q}_{2}\right|+\ldots+\left|\mathbf{p}_{r} \| \mathbf{q}_{r}\right| . \\
& =\text { the inner product of truncations to length } r \text { of vectors of absolute values of entries of }
\end{aligned}
$$

By the Cauchy-Schwarz inequality, this is at most the product of their norms, so at most 1 . Hence by the convexity of $\|\cdot\|_{1},\|\operatorname{diag}(\mathbf{Z})\|_{1} \leq 1$.

Proposition 1 If $\mathbf{Y}_{\Omega}=\mathbf{P} \Sigma \mathbf{Q}^{T}$ is the SVD of \mathbf{Y}_{Ω}, then the unique solution to

$$
\min _{\mathbf{X} \in \mathbb{R}^{m \times n}} \tau\|\mathbf{X}\|_{*}+\frac{1}{2}\left\|\mathbf{X}-\mathbf{Y}_{\Omega}\right\|_{F}^{2}
$$

is given by $\mathbf{X}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{Q}^{T}$, where $\boldsymbol{\Lambda}=\operatorname{Diag}(\lambda), \boldsymbol{\Sigma}=\operatorname{Diag}(\sigma)$, and $\lambda_{j}:=\left(\sigma_{j}-\tau\right)_{+}$, for all j.
Proof: Let $\mathbf{Z}=\mathbf{P}^{T} \mathbf{X Q}$, so that

$$
\begin{aligned}
& \tau\|\mathbf{X}\|_{*}+\frac{1}{2}\left\|\mathbf{X}-\mathbf{Y}_{\Omega}\right\|_{F}^{2} \\
= & \tau\|\mathbf{Z}\|_{*}+\frac{1}{2}\|\mathbf{Z}-\boldsymbol{\Sigma}\|_{F}^{2} \\
\geq & \tau\|\operatorname{diag}(\mathbf{Z})\|_{1}+\frac{1}{2}\|\operatorname{diag}(\mathbf{Z})-\sigma\|_{2}^{2}
\end{aligned}
$$

with equality holding if \mathbf{Z} is diagonal. So the optimal solution is $\mathbf{Z}=\operatorname{Diag}(\lambda)$ where λ minimizes

$$
\sum_{j=1}^{r} \tau\left|\lambda_{j}\right|+\frac{1}{2}\left(\lambda_{j}-\sigma_{j}\right)^{2}
$$

This is minimized by $\lambda_{j}=\left(\sigma_{j}-\tau\right)_{+}$, for all j, as in Proposition 2 of last time.
Remark 1 If we suspect that \mathbf{X} has low rank, we only need the σ_{j} 's , p_{j} 's and q_{j} 's corresponding to the few j 's with $\sigma_{j}>\tau$.

We now detail some experimental results for matrix completion from Cai, Candes \& Shen's paper (Table 5.1). Here the rank r is the rank of the unknown matrix $\mathbf{X}, m / d_{r}$ is the ratio between the number of sampled entries and the number of degrees of freedom in an $n \times n$ matrix of rank r (oversampling ratio), and m / n^{2} is the fraction of observed entries. All the computational results are averaged over five runs.

Unknown X				Computational results		
size $(m \times n)$	$\operatorname{rank}(r)$	m / d_{r}	m / n^{2}	time(s)	\# iters	relative error
1000×1000	10	6	0.12	23	117	1.64×10^{-4}
	50	4	0.39	196	114	1.59×10^{-4}
	1000	3	0.57	501	129	1.68×10^{-4}
5000×5000	10	6	0.024	147	123	1.73×10^{-4}
	50	5	0.10	950	108	1.61×10^{-4}
	100	4	0.158	3339	123	1.72×10^{-4}
10000×10000	10	6	0.012	281	123	1.73×10^{-4}
	50	5	0.050	2096	110	1.65×10^{-4}
20000×20000	100	4	0.080	7059	127	1.79×10^{-4}
	10	6	0.006	588	124	1.73×10^{-4}
	50	5	0.025	4581	111	1.66×10^{-4}

We end with an outline of the course.

- Applications:
- Eigenvalue and SVD problems
- Control Theory
- Structural Optimization
- Relaxations of Max-cut, Lovász theta function
- Global polynomial optimization
- Robust optimization
- High-dimensional statistics and machine learning
- Theory:
- Beautiful duality theory (needs Slater conditions)
- bounds on optimality gaps
- suggests good algorithms

- Algorithms:

- Interior-point methods
- theoretically attractive
- reasonable for reasonably-sized problems ($m \leq 1000, n \leq 1000$)
- inexact versions for larger problems
- First-order methods
- Spectral bundle method
- Low-rank methods
. BMZ linear transform
- Specialized Algorithms
- Sparse covariance selection
- Low-rank matrix completion

This covers the full spectrum of optimization.

