Lecture 28 May 3, 2012

Matrix Completion Problem (aka the Netflix Problem)

Given **some** entries of an $m \times n$ matrix \mathbf{M} , say those for $ij \in \Omega$, we wnat to recover \mathbf{M} . If $|\Omega| < mn$, the problem is obviously underdetermined. However, if we know that \mathbf{M} has low rank, maybe we can recover it. This can be formulated as the problem:

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \operatorname{rank}(\mathbf{X})
 x_{ij} = m_{ij}, ij \in \Omega.$$

Consider the convex relaxation of this problem:

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{X}\|_*
x_{ij} = m_{ij}, ij \in \Omega.$$

Recall that $\|\mathbf{X}\|_* = \|\sigma(\mathbf{X})\|_1$. This problem can be modelled as an SDP but it is hard to solve using interior-point methods so we look to solve this directly.

Cai, Candes & Shen proposed a first-order method to solve the related problem:

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X}\|_F^2$$

$$x_{ij} = m_{ij}, \quad ij \in \Omega.$$

With the intention of using a Lagrangian method we introduce the function

$$L(\mathbf{X}, \mathbf{Y}) := \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X}\|_F^2 - \sum_{ij \in \Omega} y_{ij} (x_{ij} - m_{ij}).$$

Here $\mathbf{Y} \in \mathbb{R}^{m \times n}$, but only its ij entries for $ij \in \Omega$ are relevant.

For any $\mathbf{Z} \in \mathbb{R}^{m \times n}$, let \mathbf{Z}_{Ω} denote the matrix with entries z_{ij} , if $ij \in \Omega$ and 0, if $ij \notin \Omega$. Then

$$L(\mathbf{X}, \mathbf{Y}) = \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X}\|_F^2 - \mathbf{Y}_{\Omega} \bullet (\mathbf{X} - \mathbf{M})$$

$$= \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}_{\Omega}\|_F^2 + \mathbf{Y}_{\Omega} \bullet \mathbf{M} - \frac{1}{2} \|\mathbf{Y}_{\Omega}\|_F^2$$

$$= \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X}\|_F^2 - \mathbf{Y} \bullet (\mathbf{X} - \mathbf{M})_{\Omega}.$$

This leads to the following algorithm:

Algorithm Choose $\mathbf{X}_0, \mathbf{Y}_0$ and $\{\delta_k\}_{k=0}^{\infty}$. Iteration k $\mathbf{X}_{k+1} := \arg\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} L(\mathbf{X}, \mathbf{Y}_k),$ $\mathbf{Y}_{k+1} := \mathbf{Y}_k - \delta_k(\mathbf{X}_{k+1} - \mathbf{M})_{\Omega}.$

This is in fact Uzawa's method going back to the 1950's. Convergence of the algorithm can be proved if $0 < \delta_k < 2$, all k.

We now look at the question of solving the subproblems efficiently.

Lemma 1 If $\mathbf{Z} \in \mathbb{R}^{m \times n}$, then $\|\mathbf{Z}\|_* \geq \|\operatorname{diag}(\mathbf{Z})\|_1$ with equality if \mathbf{Z} is diagonal.

Proof: If **Z** is diagonal, then $\sigma(\mathbf{Z}) = |\operatorname{diag}(\mathbf{Z})|$. So equality holds trivially. In general, suppose $\|\mathbf{Z}\|_* = 1$. So,

$$\mathbf{Z} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T = \sum_{i=1}^r \sigma_i \mathbf{p}_i \mathbf{q}_i^T,$$

where $\mathbf{P} \in \mathbb{R}^{m \times m}$ and $\mathbf{Q} \in \mathbb{R}^{n \times n}$ are orthogonal, with columns $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_m$ and $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$ respectively, $\Sigma = \text{``Diag}(\sigma_1, \sigma_2, \dots, \sigma_r)\text{''} \in \mathbb{R}^{m \times n}$ and $r := \min\{m, n\}$. So \mathbf{Z} is a convex combination of rank 1 matrices of the form $\mathbf{p}\mathbf{q}^T$. Observe that

 $\|\operatorname{diag}(\mathbf{p}\mathbf{q}^T)\|_1 = |\mathbf{p}_1||\mathbf{q}_1| + |\mathbf{p}_2||\mathbf{q}_2| + \ldots + |\mathbf{p}_r||\mathbf{q}_r|.$

= the inner product of truncations to length r of vectors of absolute values of entries of

By the Cauchy-Schwarz inequality, this is at most the product of their norms, so at most 1. Hence by the convexity of $\|\cdot\|_1$, $\|\operatorname{diag}(\mathbf{Z})\|_1 \leq 1$.

Proposition 1 If $\mathbf{Y}_{\Omega} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$ is the SVD of \mathbf{Y}_{Ω} , then the unique solution to

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}_{\Omega}\|_F^2$$

is given by $\mathbf{X} = \mathbf{P} \mathbf{\Lambda} \mathbf{Q}^T$, where $\mathbf{\Lambda} = \mathrm{Diag}(\lambda)$, $\mathbf{\Sigma} = \mathrm{Diag}(\sigma)$, and $\lambda_j := (\sigma_j - \tau)_+$, for all j.

Proof: Let $\mathbf{Z} = \mathbf{P}^T \mathbf{X} \mathbf{Q}$, so that

$$\tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}_{\Omega}\|_F^2$$

$$= \tau \|\mathbf{Z}\|_* + \frac{1}{2} \|\mathbf{Z} - \mathbf{\Sigma}\|_F^2$$

$$\geq \tau \|\operatorname{diag}(\mathbf{Z})\|_1 + \frac{1}{2} \|\operatorname{diag}(\mathbf{Z}) - \sigma\|_2^2,$$

with equality holding if **Z** is diagonal. So the optimal solution is $\mathbf{Z} = \text{Diag}(\lambda)$ where λ minimizes

$$\sum_{j=1}^{r} \tau |\lambda_j| + \frac{1}{2} (\lambda_j - \sigma_j)^2.$$

This is minimized by $\lambda_j = (\sigma_j - \tau)_+$, for all j, as in Proposition 2 of last time.

Remark 1 If we suspect that **X** has low rank, we only need the σ_j 's, p_j 's and q_j 's corresponding to the few j's with $\sigma_j > \tau$.

We now detail some experimental results for matrix completion from Cai, Candes & Shen's paper (Table 5.1). Here the rank r is the rank of the unknown matrix \mathbf{X} , m/d_r is the ratio between the number of sampled entries and the number of degrees of freedom in an $n \times n$ matrix of rank r (oversampling ratio), and m/n^2 is the fraction of observed entries. All the computational results are averaged over five runs.

Unknown X				Computational results		
$size(m \times n)$	rank(r)	m/d_r	m/n^2	time(s)	# iters	relative error
1000 × 1000	10	6	0.12	23	117	1.64×10^{-4}
	50	4	0.39	196	114	1.59×10^{-4}
	1000	3	0.57	501	129	1.68×10^{-4}
5000 × 5000	10	6	0.024	147	123	1.73×10^{-4}
	50	5	0.10	950	108	1.61×10^{-4}
	100	4	0.158	3339	123	1.72×10^{-4}
10000 × 10000	10	6	0.012	281	123	1.73×10^{-4}
	50	5	0.050	2096	110	1.65×10^{-4}
	100	4	0.080	7059	127	1.79×10^{-4}
20000 × 20000	10	6	0.006	588	124	1.73×10^{-4}
	50	5	0.025	4581	111	1.66×10^{-4}
30000×30000	10	6	0.004	1030	125	1.73×10^{-4}

We end with an outline of the course.

• Applications:

- Eigenvalue and SVD problems
- Control Theory
- Structural Optimization
- Relaxations of Max-cut, Lovász theta function
- Global polynomial optimization
- Robust optimization
- High-dimensional statistics and machine learning

• Theory:

- Beautiful duality theory (needs Slater conditions)
 - · bounds on optimality gaps
 - · suggests good algorithms

• Algorithms:

- Interior-point methods
 - \cdot theoretically attractive
 - · reasonable for reasonably-sized problems ($m \le 1000, n \le 1000$)
 - \cdot in exact versions for larger problems
- First-order methods
 - \cdot Spectral bundle method
 - \cdot Low-rank methods
 - \cdot BMZ linear transform
- Specialized Algorithms
 - \cdot Sparse covariance selection
 - \cdot Low-rank matrix completion

This covers the full spectrum of optimization.