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Matrix Completion Problem (aka the Netflix Problem)

Given some entries of an m × n matrix M, say those for ij ∈ Ω, we wnat to recover M.
If ∣Ω∣ < mn, the problem is obviously underdetermined. However, if we know that M has low
rank, maybe we can recover it. This can be formulated as the problem:

min
X∈ℝm×n

rank(X)

xij = mij, ij ∈ Ω.

Consider the convex relaxation of this problem:

min
X∈ℝm×n

∥X∥∗
xij = mij, ij ∈ Ω.

Recall that ∥X∥∗ = ∥�(X)∥1. This problem can be modelled as an SDP but it is hard to solve
using interior-point methods so we look to solve this directly.
Cai, Candes & Shen proposed a first-order method to solve the related problem:

min
X∈ℝm×n

�∥X∥∗ + 1
2
∥X∥2

F

xij = mij, ij ∈ Ω.

With the intention of using a Lagrangian method we introduce the function

L(X,Y) := �∥X∥∗ +
1

2
∥X∥2

F −
∑
ij∈Ω

yij(xij −mij).

Here Y ∈ ℝm×n, but only its ij entries for ij ∈ Ω are relevant.
For any Z ∈ ℝm×n, let ZΩ denote the matrix with entries zij, if ij ∈ Ω and 0, if ij /∈ Ω. Then

L(X,Y) = �∥X∥∗ +
1

2
∥X∥2

F −YΩ ∙ (X−M)

= �∥X∥∗ +
1

2
∥X−YΩ∥2

F + YΩ ∙M− 1

2
∥YΩ∥2

F

= �∥X∥∗ +
1

2
∥X∥2

F −Y ∙ (X−M)Ω.

This leads to the following algorithm:

Algorithm Choose X0,Y0 and {�k}∞k=0 .
Iteration k Xk+1 := arg min

X∈ℝm×n
L(X,Yk),

Yk+1 := Yk − �k(Xk+1 −M)Ω.

This is in fact Uzawa’s method going back to the 1950’s. Convergence of the algorithm can be
proved if 0 < �k < 2, all k.
We now look at the question of solving the subproblems efficiently.
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Lemma 1 If Z ∈ ℝm×n, then ∥Z∥∗ ≥ ∥diag (Z)∥1 with equality if Z is diagonal.

Proof: If Z is diagonal, then �(Z) = ∣diag (Z)∣. So equality holds trivially.
In general, suppose ∥Z∥∗ = 1.
So,

Z = PΣQT =
r∑

i=1

�ipiq
T
i ,

where P ∈ ℝm×m and Q ∈ ℝn×n are orthogonal, with columns p1,p2, . . . ,pm and q1,q2, . . . ,qn

respectively, Σ = “Diag (�1, �2, . . . , �r)” ∈ ℝm×n and r := min{m,n}.
So Z is a convex combination of rank 1 matrices of the form pqT . Observe that

∥diag (pqT )∥1 = ∣p1∣∣q1∣+ ∣p2∣∣q2∣+ . . .+ ∣pr∣∣qr∣.
= the inner product of truncations to length r of vectors of absolute values of entries of p,q.

By the Cauchy-Schwarz inequality, this is at most the product of their norms, so at most 1.
Hence by the convexity of ∥ ⋅ ∥1, ∥diag (Z)∥1 ≤ 1.

Proposition 1 If YΩ = PΣQT is the SVD of YΩ, then the unique solution to

min
X∈ℝm×n

�∥X∥∗ +
1

2
∥X−YΩ∥2

F

is given by X = PΛQT , where Λ = Diag (�), Σ = Diag (�), and �j := (�j − �)+, for all j.

Proof: Let Z = PTXQ, so that

�∥X∥∗ +
1

2
∥X−YΩ∥2

F

= �∥Z∥∗ +
1

2
∥Z−Σ∥2

F

≥ �∥diag (Z)∥1 +
1

2
∥diag (Z)− �∥2

2,

with equality holding if Z is diagonal. So the optimal solution is Z = Diag (�) where �minimizes

r∑
j=1

� ∣�j∣+
1

2
(�j − �j)2.

This is minimized by �j = (�j − �)+, for all j, as in Proposition 2 of last time.

Remark 1 If we suspect that X has low rank, we only need the �j’s , pj’s and qj’s corresponding
to the few j’s with �j > � .
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We now detail some experimental results for matrix completion from Cai, Candes & Shen’s
paper (Table 5.1). Here the rank r is the rank of the unknown matrix X, m/dr is the ratio
between the number of sampled entries and the number of degrees of freedom in an n × n
matrix of rank r (oversampling ratio), and m/n2 is the fraction of observed entries. All the
computational results are averaged over five runs.

Unknown X Computational results
size(m× n) rank(r) m/dr m/n2 time(s) # iters relative error

1000 × 1000
10 6 0.12 23 117 1.64 ×10−4

50 4 0.39 196 114 1.59 ×10−4

1000 3 0.57 501 129 1.68×10−4

5000 × 5000
10 6 0.024 147 123 1.73×10−4

50 5 0.10 950 108 1.61×10−4

100 4 0.158 3339 123 1.72×10−4

10000 × 10000
10 6 0.012 281 123 1.73×10−4

50 5 0.050 2096 110 1.65×10−4

100 4 0.080 7059 127 1.79×10−4

20000 × 20000
10 6 0.006 588 124 1.73×10−4

50 5 0.025 4581 111 1.66×10−4

30000 × 30000 10 6 0.004 1030 125 1.73 ×10−4

We end with an outline of the course.

∙ Applications:

– Eigenvalue and SVD problems

– Control Theory

– Structural Optimization

– Relaxations of Max-cut, Lovász theta function

– Global polynomial optimization

– Robust optimization

– High-dimensional statistics and machine learning

∙ Theory:

– Beautiful duality theory (needs Slater conditions)

⋅ bounds on optimality gaps

⋅ suggests good algorithms

∙ Algorithms:
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– Interior-point methods

⋅ theoretically attractive

⋅ reasonable for reasonably-sized problems (m ≤ 1000, n ≤ 1000)

⋅ inexact versions for larger problems

– First-order methods

⋅ Spectral bundle method

⋅ Low-rank methods

⋅ BMZ linear transform

– Specialized Algorithms

⋅ Sparse covariance selection

⋅ Low-rank matrix completion

This covers the full spectrum of optimization.
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