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1 The Sparse Covariance Selection Problem

Suppose we have n random variables and we want to detect their dependence on each other as
well as estimating mean and covariance parameters.

Note that we may (wrongly) detect a dependence. Suppose variables X1 and X2 are (con-
ditionally) independent of each other, but X1 and X3 are dependent, X3 and X4 are dependent
and X4 and X2 are dependent. (Henceforth we’ll use lower-case letters for random variables to
avoid confusion with matrices.)

We will assume that the variables are multivariate normal parametrized by mean � and
covariance matrix Σ (Σ is pd). Then the density is f(x) = c1 exp

(
−1

2
(x− �)TΣ−1(x− �)

)
for

some normalizing constant c1.
Let y = (xi;xj) consist of two of the variables and let K = {1, 2, . . . , n} ∖ {i, j}. Then the

density of y given xK = x̄K is:

g(y) = c2 exp

{
−1

2
(y − �)TΣ−1{i,j},{i,j}(y − �)

}
for some � and c2. Hence, xi and xj are independent given xK = x̄K if and only if (Σ−1)ij = 0.

We sample N times to get x1, . . . , xN ∈ ℝn and compute the sample mean x̄ = (x1 + . . .+
xN)/N and the sample variance Σ̄ = ((x1− x̄)(x1− x̄)T + . . .+ (xN − x̄)(xN − x̄)T )/N , and use
maximum likelihood. The likelihood function given the data is:

ℎ(�,Σ) := c3 det(Σ)−N/2
N∏
j=1

exp

{
−1

2
(xj − �)TΣ−1(xj − �)

}
for yet another normalizing constant c3. For any Σ pd this is maximized over � by � = x̄. So
we want to maximize:

ℎ̄(Σ) := ℎ(x̄,Σ) = c3 det(Σ)−N/2 exp

{
−1

2
Σ−1 ∙ Σ̄

}
= exp

{
c4 −

N

2
lndet Σ− N

2
Σ−1 ∙ Σ̄

}
.

Since the exponential function is monotone, we want to maximize its argument. This
is not concave in Σ. So we change variables. Let X = Σ−1. Then we want to minimize
−lndet X + Σ̄ ∙X, which is convex.

Parametrizing our optimization by the inverse covariance has another advantage, since this
is the matrix we expect (or hope) to be sparse. We will penalize the presence of nonzeros in X
by adding an “l1” term: ∣∣∣X∣∣∣1 := ∣∣vec(X)∣∣1. So, at the end, we want to solve:
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min
X≻0

−lndet X + Σ̄ ∙X︸ ︷︷ ︸
smooth

+ �∣∣∣X∣∣∣1.︸ ︷︷ ︸
nice nonsmooth convex

We will use variable splitting and the alternating direction augmented Lagrangian method.

2 The Method

Reformulate as:

min
X≻0

− lndet X + Σ̄ ∙X + �∣∣∣W ∣∣∣1

s.t. : X −W = 0,

and consider the augmented Lagrangian:

L(X,W, Y ) := −lndet X + Σ̄ ∙X + �∣∣∣W ∣∣∣1 − Y ∙ (X −W ) +
�

2
∣∣X −W ∣∣2F

for � > 0 fixed.
The idea is to start with X0 = W0 = I and Y0 = 0 and in each step do (Xk+1,Wk+1) =

arg minX,W L(X,W, Yk), and Yk+1 := Yk − �(Xk+1 −Wk+1).
But it is more efficient to minimize separately over X and W , to get:

∙ Start with X0 = W0 = I and Y0 = 0.

∙ In iteration k do:

– Xk+1 = arg minX L(X,Wk, Yk)

– Wk+1 = arg minW L(Xk+1,W, Yk)

– Yk+1 = Yk − �(Xk+1 −Wk+1).

The two optimization steps are given by the following two propositions. First note that:

L(X,W, Y ) = −lndet X − (Y − Σ̄) ∙X +
�

2
∣∣X −W ∣∣2F + g(W,Y )

= −lndet X +
�

2
∣∣X − (W +

1

�
(Y − Σ̄))∣∣2F + g′(W,Y )

where g(W,Y ) and g′(W,Y ) are functions independent of X.

Proposition 1 Let B := Wk+ 1
�
(Yk−Σ̄) have eigenvalue decomposition QΛQT . Then the mini-

mizer of −lndet X+�
2
∣∣X−B∣∣2F is X = QMQT whereM = Diag(�) and �j = 1

2

(
�j +

√
�2j + 4�−1

)
for all j.
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Proof: The objective function is convex and smooth, with derivative −X−1 + �(X −B), so it
is minimized when �X −X−1 = �B.

Let M = QTXQ; then by premultiplying by QT and postmultiplying by Q we get �M −
M−1 = �Λ. This is solved by a diagonal matrix M = Diag (�) with ��j − �−1j = ��j, for all j,
with roots as given above. ⊓⊔

Now, for the minimization problem over W , note that:

L(X,W, Y ) = −Y ∙ (X −W ) + �∣∣∣W ∣∣∣1 +
�

2
∣∣X −W ∣∣2F + q(X, Y )

= �∣∣∣W ∣∣∣1 +
�

2
∣∣W − (X − 1

�
Y )∣∣2F + q′(X, Y )

for q(X, Y ), q′(X, Y ) independent of W .
So we have:

Proposition 2 Let C = �Xk+1 − Yk. Then the minimizer of �∣∣∣W ∣∣∣1 + �
2
∣∣W − 1

�
C∣∣2F is

W = 1
�
(C−PB�∞(C)), where B�

∞ = {Z ∈Mn : ∣zij∣ ≤ �∀i, j} and PB�∞ is the projection on that
set.

Proof: Note that C − PB�∞(C) = D, where dij is 0 if −� ≤ cij ≤ �, is cij + � if cij < −� and
cij − � if cij > �.

The objective function separates completely over each entry of W and C, so we want:

min
wij

�∣wij∣+
�

2
(wij −

1

�
cij)

2.

This is convex, and its subdifferential is:

∂f(wij) =

⎧⎨⎩
{�+ (�wij − cij)} if wij > 0,
{−�+ (�wij − cij)} if wij < 0,

[−�, �] + {�wij − cij} if wij = 0.

In all cases we see that W as in the statement of the proposition has entry wij with a
subgradient of 0. ⊓⊔
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