We will finish discussing the Burer, Monteiro and Y. Zhang method.
Burer Monteiro and Y. Zhang's nonlinear transformation method:

$$
\begin{align*}
& \max \quad C \bullet X \\
& \operatorname{diag}(X) \geq d \\
& \mathcal{A} X=b \tag{P}\\
& X \succeq 0, \\
& \max \quad d^{T} z+b^{T} y \\
& \operatorname{Diag}(z)+\mathcal{A}^{*} y-S=C \tag{D}\\
& \begin{array}{ll}
z & \leq 0 \\
S & \succeq 0 .
\end{array}
\end{align*}
$$

Assume that both (P) and (D) have strictly feasible solutions and that the A_{i} 's are linear independent.

For every y, for every z large enough, $\operatorname{Diag}(z)+\mathcal{A}^{*} y-C$ is positive definite. So $S \succ 0$ and it has a Cholesky factorization.

Burer, Monteiro, and Zhang (BMZ) turn this around: for every y and diagonal of the Cholesky factor, they obtain z and the rest of the factor.

Theorem 1 a) For every $y \in \mathbb{R}^{m}$ and $w \in \mathbb{R}_{++}^{n}$, there is a unique $z=z(w, y) \in \mathbb{R}^{n}$ and strictly lower triangular $\hat{L}=\hat{L}(w, y) \in \mathbb{R}^{n \times n}$ such that $\operatorname{Diag}(z)+\mathcal{A}^{*} y-C=(\operatorname{Diag}(w)+$ $\hat{L})(\operatorname{Diag}(w)+\hat{L})^{T}$.
b) The functions $z(w, y)$ and $\hat{L}(w, y)$ are infinite differentiable on $\mathbb{R}_{++}^{n} \times \mathbb{R}^{m}$.
c) There is a bijection between $(w, y) \in \mathbb{R}_{++}^{n} \times \mathbb{R}^{m}$ and $(y, z, S) \in\left\{\mathbb{R}^{m} \times \mathbb{R}^{n} \times M_{++}^{m}: \operatorname{Diag}(z)+\right.$ $\left.\mathcal{A}^{*} y-S=C\right\}$, given by $z=z(w, y), S=L L^{T}$, where $L:=L(w, y):=\operatorname{Diag}(w(z, y))+\hat{L}(w, y)$.
(Note that the sign conditions on z are not present here.)
Sketch of the proof of (a) (Constructive):
Consider $n=3$, and let $T:=\mathcal{A}^{*} y-C$. We want

$$
\operatorname{Diag}(z)+T=(\operatorname{Diag}(w)+\hat{L})(\operatorname{Diag}(w)+\hat{L})^{T}=\left(\begin{array}{ccc}
w_{1} & 0 & 0 \\
l_{21} & w_{2} & 0 \\
l_{31} & l_{32} & w_{3}
\end{array}\right)\left(\begin{array}{ccc}
w_{1} & 0 & 0 \\
l_{21} & w_{2} & 0 \\
l_{31} & l_{32} & w_{3}
\end{array}\right)^{T} .
$$

So,

$$
\begin{gathered}
z_{1}+t_{11}=w_{1}^{2} \rightarrow z_{1} \\
t_{21}=(\operatorname{Diag}(z)+T)_{21}=l_{21} w_{1} \rightarrow l_{21} \\
t_{31}=(\operatorname{Diag}(z)+T)_{31}=l_{31} w_{1} \rightarrow l_{31} \\
z_{2}+t_{22}=l_{21}^{2}+w_{2}^{2} \rightarrow z_{2} \\
t_{32}=l_{31} l_{21}+l_{32} w_{2} \rightarrow l_{32} \ldots
\end{gathered}
$$

This proves part (a) of the theorem.
Problem: $z(w, y)$ and $\hat{L}(w, y)$ do not extend smoothly to the boundary of $\mathbb{R}_{++}^{n} \times \mathbb{R}^{m}$, and the bijection similarly cannot be extended. Nevertheless, by the bijection,

$$
\left.\inf _{y, z, S} \begin{array}{cl}
d^{T} z+b^{T} y & \\
& \operatorname{Diag}(z)+\mathcal{A}^{*} y-S
\end{array}\right)=C
$$

is equivalent to

$$
\begin{array}{cc}
\inf _{w, y} d^{T} z(w, y)+b^{T} y & \\
z(w, y) & <0 \\
w & >0
\end{array}
$$

Note that, by our assumptions, both these problems have feasible solutions, and the first approximates (D).

Idea: "Solve"

$$
(\bar{D}) \begin{array}{ccc}
\inf _{w, y} d^{T} z+b^{T} y & \\
z(w, y) & \leq 0 \\
w & \geq 0
\end{array}
$$

This is a nonconvex NLP in $n+m$ variables.
Suppose we solve (\bar{D}) by a log barrier method, using subproblems of the form

$$
\left(B \bar{D}_{\mu}\right) \min _{w, y} d^{T} z(w, y)+b^{T} y-\mu \sum \ln \left(-z_{j}(w, y)\right)-2 \mu \sum \ln w_{j}
$$

for $\mu>0$.
Note that, if $S(w, y)=L(w, y) L(w, y)^{T}$ then this is

$$
\min \quad d^{T} z(w, y)+b^{T} y-\mu \sum \ln \left(-z_{j}(w, y)\right)-\mu \ln \operatorname{det} S(w, y)
$$

since

$$
\begin{aligned}
\ln \operatorname{det} S(w, y) & =\ln \operatorname{det}(\operatorname{Diag}(w)+\hat{L})(\operatorname{Diag}(w)+\hat{L})^{T} \\
& =2 \ln \operatorname{det}(\operatorname{Diag}(w)+\hat{L}) \\
& =2 \sum \ln w_{j} .
\end{aligned}
$$

Moreover, by the bijection, this is equivalent to

$$
\left(B D_{\mu}\right) \begin{array}{ccc}
\min _{y, z, S} \quad d^{T} z+b^{T} y-\mu \sum\left(-z_{j}\right)-\mu \ln \operatorname{det} S & \\
& \operatorname{Diag}(z)+\mathcal{A}^{*} y-S & =C \\
z & <0 \\
S & \succ & 0 .
\end{array}
$$

BMZ prove
Theorem 2 For any $\mu>0$, there is a unique minimizer, which is also the unique stationary point, for $\left(B \bar{D}_{\mu}\right)$. Moreover, this corresponds by our bijection to the unique minimizer of $\left(B D_{\mu}\right)$.

Hence, BMZ apply a unconstrained minimization algorithm (they use limited memory BFGS) to $(B \bar{D} \mu)$ to get an approximate stationary point, then update μ to $\sigma \mu, 0<\sigma<1$ fixed, and continue. They prove global convergence.

In computing derivatives of z and the Lagrangian for (\bar{D}), and in the analysis, a key quantity turns out to be a primal estimate X.

Theorem 3 For any $v \in \mathbb{R}^{n}$ and any lower triangular $L \in \mathbb{R}^{n \times n}$ with positive diagonal, there is a unique $X \in \mathbb{M}^{n}$ with $\operatorname{diag}(X)=v$ and $X L$ upper triangular.

Sketch of the proof (for $n=3$). Compute X from bottom to top and right to left.

$$
\begin{gathered}
x_{33}=v_{3} \\
0=(X L)_{32}=x_{33} l_{32}+x_{32} l_{22} \rightarrow x_{32} \\
0=(X L)_{31}=x_{33} l_{31}+x_{32} l_{21}+x_{31} l_{11} \rightarrow x_{31} \\
x_{22}=v_{2} \\
0=(X L)_{21}=x_{21} l_{11}+x_{22} l_{21}+x_{23} l_{31} \rightarrow x_{21} \\
\text { etc. }
\end{gathered}
$$

(Note that, in the last equation, we know x_{23} since X is symmetric.)
Note: $X L$ upper triangular implies $L^{T} X L$ is upper triangular and symmetric so diagonal; say it's equal to Λ.

$$
L^{T} X L=\Lambda \Rightarrow X=L^{-T} \Lambda L^{-1}
$$

If $\Lambda=\mu I$,

$$
X=\mu L^{-T} L^{-1}=\mu S^{-1}
$$

as on the central path.
For further information, see the original paper.
Semidefinite programming solvers can be found at NEOS at
http://www.neos-server.org/neos/solvers/index.html.
Computational results comparing interior-point codes with a code for the spectral bundle method, a code for Burer and Monteiro's low-rank method, and a code for the Burer-MonteiroZhang method can be found at
http://plato.asu.edu/dimacs/paper93.html.

