1 Least Squares SDP (Malick)

Consider the following modified objective function for an SDP:

$$
(\mathrm{LSSDP}) \quad \min _{X}\left\{\frac{1}{2}\|X+C\|_{F}^{2}: \mathcal{A} X=b, X \succeq 0\right\}
$$

We'll assume throughout this section that there exists some strictly feasible solution to this problem.

Note that this objective function is similar to a regularized version of the usual objective, since

$$
\frac{1}{2}\|X+\lambda C\|_{F}^{2}=\frac{1}{2}\|X\|_{F}^{2}+\lambda C \bullet X+\frac{1}{2} \lambda^{2}\|C\|_{F}^{2}
$$

That is, if λ is large, this is a regularized version of SDP where we want the size of X to be small.

Since this is a least-squares problem, we essentially have to project $-C$ onto the intersection of two sets: the linear constraints $\mathcal{A} X=b$ and the semidefinite cone \mathbb{M}_{+}^{n}.

Since projection onto \mathbb{M}_{+}^{n} is straightforward, we dualize the $\mathcal{A} X=b$ constraints to get

$$
\begin{aligned}
(\mathrm{LSSDP}) & \equiv \min _{X \succeq 0} \max _{y}\left\{\frac{1}{2}\|X+C\|_{F}^{2}-y^{T}(\mathcal{A} X-b)\right\} \\
& =\max _{y} \min _{X \succeq 0}\left\{\frac{1}{2}\left\|X-\left(\mathcal{A}^{*} y-C\right)\right\|_{F}^{2}-\frac{1}{2}\left\|\mathcal{A}^{*} y-C\right\|_{F}^{2}+\frac{1}{2}\|C\|_{F}^{2}+b^{T} y\right\} .
\end{aligned}
$$

The inner minimization is now exactly a projection: we want to find the closest point in the semidefinite cone to $\left(\mathcal{A}^{*} y-C\right)$.

Proposition 1 For any matrix $D \in \mathbb{M}^{n}$, the solution to $\min _{X \succeq 0} \frac{1}{2}\|X-D\|_{F}^{2}$ is $X=D_{+}$where if $D=Q \Lambda Q^{T}$ is the eigenvalue decomposition of D and $\Lambda=\operatorname{Diag}(\lambda)$, then $D_{+}=Q \Lambda_{+} Q^{T}$ where $\Lambda_{+}=\operatorname{Diag}\left(\lambda_{+}\right), \lambda_{+}=\left(\max \left\{0, \lambda_{j}\right\}\right)$.

If we write $\lambda=\lambda_{+}+\lambda_{-}$and set $D_{-}=Q \Lambda_{-} Q^{T}\left(\right.$ with $\left.\Lambda_{-}=\operatorname{Diag}\left(\lambda_{-}\right)\right)$, then $D=D_{+}+D_{-}$ and

$$
\frac{1}{2}\|D\|_{F}^{2}=\frac{1}{2}\left\|D_{+}\right\|_{F}^{2}+\frac{1}{2}\left\|D_{-}\right\|_{F}^{2}
$$

Proof: This follows easily by writing $Y=Q^{T} X Q$ and noting that $\|X-D\|_{F}=\|Y-\Lambda\|_{F}$, so that the minimum is achieved exactly when Y is 0 off the diagonal, equal to Λ on its positive diagonal entries, and equal to 0 for its negative diagonal entries, hence $Y=\Lambda_{+}$.

Hence we solve for the inner minimization:

$$
\begin{aligned}
\theta(y) & :=\min _{X \succeq 0}\left\{\frac{1}{2}\left\|X-\left(\mathcal{A}^{*} y-C\right)\right\|_{F}^{2}-\frac{1}{2}\left\|\mathcal{A}^{*} y-C\right\|_{F}^{2}+\frac{1}{2}\|C\|_{F}^{2}+b^{T} y\right\} \\
& =-\frac{1}{2}\left\|\left(A^{*} y-C\right)_{+}\right\|_{F}^{2}+b^{T} y+\frac{1}{2}\|C\|_{F}^{2}
\end{aligned}
$$

and the minimum is attained by $X=X(y)=\left(\mathcal{A}^{*} y-C\right)_{+}$.
Proposition 2θ is concave and continuously differentiable with $\nabla \theta(y)=-\mathcal{A}\left(\mathcal{A}^{*} y-C\right)_{+}+b$.
Proof: θ is the minimum of a family of affine functions, so it is concave.
The differentiability and form of the derivative follow from general convex analysis results using the Moreau-Yosida regularization

$$
g(W):=\min _{X \in \mathbb{M}^{n}}\left\{I_{\mathbb{M}_{+}^{n}}(X)+\frac{1}{2}\|X-W\|_{F}^{2}\right\}
$$

of the convex function $I_{\mathbb{M}_{+}^{n}}$.
Using this proposition, we can apply some smooth unconstrained optimization algorithm to maximize $\theta(y)$ and note that if the gradient is 0 (small) then $X(y)$ is (nearly) feasible.

2 A Lagrangian method for standard form SDPs

The following is due to Malick, Povh, Rendl, and Wiegele.
Begin with the usual primal and dual problems:
$(P) \begin{aligned} \quad \min \quad & \bullet X \\ \mathcal{A} X & =b \\ X & \succeq 0,\end{aligned}$
(D) $\begin{aligned} & \text { max } \begin{aligned} b^{T} y & \\ & \mathcal{A}^{*} y+S\end{aligned}=C \\ & \\ & \\ & \end{aligned}$
and assume that both have strictly feasible solutions.

2.1 Regularizing the primal

Assume we have an iterate $W \in \mathbb{M}^{n}$ and consider

$$
\begin{array}{cc}
\min _{X} & C \bullet X+\frac{1}{2 \rho}\|X-W\|_{F}^{2} \\
\left(P_{\rho}(W)\right) & \mathcal{A} X=b \\
& X \succeq 0 .
\end{array}
$$

Note that (P) is equivalent to

$$
\min _{X} \min _{W}\left\{C \bullet X+\frac{1}{2 \rho}\|X-W\|_{F}^{2}: \mathcal{A} X=b, X \succeq 0\right\}
$$

since the inner minimization is attained by $W=X$, and then the outer minimization is just the original problem (P).

Now, switch the order of the two minimizations, and we get the equivalent problem $\min _{W} v\left(P_{\rho}(W)\right)$. Let the optimal value of $P \rho(W)$ be $\Phi_{\rho}(W)$. Expanding terms inside the norms, we get that

$$
\Phi_{\rho}(W)=\min _{\mathcal{A} X=b, X \succeq 0} \frac{1}{2 \rho}\|X+(\rho C-W)\|_{F}^{2}-\frac{\rho}{2}\|C\|_{F}^{2}+C \bullet W .
$$

The last two terms don't depend on X so this is a least squares SDP problem. So, we apply Malick's approach to this inner problem, to get the function

$$
\theta_{\rho, W}(\hat{y}):=-\frac{1}{2 \rho}\left\|\left(A^{*} \hat{y}-(\rho C-W)\right)_{+}\right\|_{F}^{2}+\frac{1}{\rho} b^{T} \hat{y}+\frac{1}{2 \rho}\|\rho C-W\|_{F}^{2}-\frac{\rho}{2}\|C\|_{F}^{2}+C \bullet W
$$

and a resulting iteration on \hat{y}, and as a byproduct $X(\hat{y})$, where

$$
\begin{aligned}
X(\hat{y}) & =\left(\mathcal{A}^{*} \hat{y}-(\rho C-W)\right)_{+} \\
& =\rho\left(\mathcal{A}^{*} \frac{\hat{y}}{\rho}-C+\frac{1}{\rho} W\right)_{+} .
\end{aligned}
$$

We can also set $S(\hat{y}):=\left(C-\mathcal{A}^{*} \frac{\hat{\hat{y}}}{\rho}-\frac{1}{\rho} W\right)_{+}$.
Observe that for any \hat{y}, we have $X(\hat{y}) \succeq 0, S(\hat{y}) \succeq 0$ and $X(\hat{y}) \bullet S(\hat{y})=0$. So, as opposed to interior-point methods, here we have boundary points (which are also infeasible before termination).

2.2 Regularizing the dual

Consider the augmented Lagrangian for the dual:

$$
L_{\sigma}(y, S, W)=b^{T} y-W \bullet\left(\mathcal{A}^{*} y+S-C\right)-\frac{\sigma}{2}\left\|\mathcal{A}^{*} y+S-C\right\|_{F}^{2}
$$

for $\sigma>0$.
This is the same as the usual Lagrangian for the equivalent problem

$$
\max \left\{b^{T} y-\frac{\sigma}{2}\left\|\mathcal{A}^{*} y+S-C\right\|_{F}^{2}: \mathcal{A}^{*} y+S=C, S \succeq 0\right\}
$$

Note that if (y, S) is infeasible, then we can send $L_{\sigma}(y, S, W)$ to $-\infty$ by choosing an appropriate W. However, if (y, S) is feasible then $L_{\sigma}(y, S, W)$ is equal to $b^{T} y$ for all W. Therefore, we have that the value of (D) is equal to

$$
\max _{y, S \succeq 0} \min _{W} L_{\sigma}(y, S, W)
$$

Reversing the minimization and maximization, the value of (D) is also equal to

$$
\min _{W} \max _{y, S \succeq 0} L_{\sigma}(y, S, W)=: \min _{W} \Psi_{\sigma}(W) .
$$

Here, we have

$$
\begin{aligned}
\Psi_{\sigma}(W) & =\max _{y} \max _{S \succeq 0}\left\{b^{T} y-W \bullet\left(\mathcal{A}^{*} y+S-C\right)-\frac{\sigma}{2}\left\|\mathcal{A}^{*} y+S-C\right\|_{F}^{2}\right\} \\
& =\max _{y}\left\{\max _{S \succeq 0}\left\{-\frac{\sigma}{2}\left\|S+\mathcal{A}^{*} y-C+\frac{1}{\sigma} W\right\|_{F}^{2}\right\}+\frac{1}{2 \sigma}\|W\|_{F}^{2}+b^{T} y\right\} \\
& =\max _{y}\left\{b^{T} y-\frac{\sigma}{2}\left\|\left(\mathcal{A}^{*} y-C+\frac{1}{\sigma} W\right)_{+}\right\|_{F}^{2}+\frac{1}{2 \sigma}\|W\|_{F}^{2}\right\} .
\end{aligned}
$$

However, when we regularized the primal, we had the problem

$$
\begin{aligned}
\Phi_{\rho}(W) & :=\max _{\hat{y}}-\frac{1}{2 \rho}\left\|\left(\mathcal{A}^{*} \hat{y}-\rho C+W\right)_{+}\right\|_{F}^{2}+\frac{1}{2 \rho}\|\rho C-W\|_{F}^{2}+\frac{1}{\rho} b^{T} \hat{y}-\frac{\rho}{2}\|C\|_{F}^{2}+C \bullet W \\
& =\max _{\hat{y}}\left\{-\frac{\rho}{2}\left\|\left(\mathcal{A}^{*} \frac{\hat{y}}{\rho}-C+\frac{1}{\rho} W\right)_{+}\right\|_{F}^{2}+\frac{1}{2 \rho}\|W\|_{F}^{2}+b^{T} \frac{\hat{y}}{\rho}\right\} .
\end{aligned}
$$

Proposition 3 If $\rho=\sigma$ then $\Phi_{\rho}(W)=\Psi_{\sigma}(W)$.

2.3 Algorithm schema

Basic idea of the algorithm:

- Outer iteration: update $W \in \mathbb{M}^{n}$ to minimize $\Phi_{\rho}(W)$ or $\Psi_{\rho}(W)$.
- Inner iteration: Given W, find an approximate solution y to evaluate $\Phi_{\rho}(W)$.

Remarks:
(a) $\Phi_{\rho}(W)$ is convex and continuously differentiable. Additionally we can find its gradient by solving the inner problem. Also note that taking a gradient step of size ρ goes exactly to $X(y)$ for the optimal y.
(b) In practice, it is much more efficient to take an outer iteration (in W) after every inner iteration (in y), as is true for augmented Lagrangian methods in general.

