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1 Least Squares SDP (Malick)

Consider the following modified objective function for an SDP:

(LSSDP) min
X

{
1

2
∣∣X + C∣∣2F : AX = b,X ર 0

}
.

We’ll assume throughout this section that there exists some strictly feasible solution to this
problem.

Note that this objective function is similar to a regularized version of the usual objective,
since

1

2
∣∣X + �C∣∣2F =

1

2
∣∣X∣∣2F + �C ∙X +

1

2
�2∣∣C∣∣2F .

That is, if � is large, this is a regularized version of SDP where we want the size of X to be
small.

Since this is a least-squares problem, we essentially have to project −C onto the intersection
of two sets: the linear constraints AX = b and the semidefinite cone Mn

+.
Since projection onto Mn

+ is straightforward, we dualize the AX = b constraints to get

(LSSDP) ≡ min
Xર0

max
y

{
1

2
∣∣X + C∣∣2F − yT (AX − b)

}
= max

y
min
Xર0

{
1

2
∣∣X − (A∗y − C)∣∣2F −

1

2
∣∣A∗y − C∣∣2F +

1

2
∣∣C∣∣2F + bTy

}
.

The inner minimization is now exactly a projection: we want to find the closest point in
the semidefinite cone to (A∗y − C).

Proposition 1 For any matrix D ∈Mn, the solution to minXર0
1
2
∣∣X−D∣∣2F is X = D+ where

if D = QΛQT is the eigenvalue decomposition of D and Λ = Diag (�), then D+ = QΛ+Q
T

where Λ+ = Diag (�+), �+ = (max{0, �j}).
If we write � = �+ + �− and set D− = QΛ−Q

T (with Λ− = Diag (�−)), then D = D+ +D−
and

1

2
∣∣D∣∣2F =

1

2
∣∣D+∣∣2F +

1

2
∣∣D−∣∣2F .

Proof: This follows easily by writing Y = QTXQ and noting that ∣∣X−D∣∣F = ∣∣Y −Λ∣∣F ,
so that the minimum is achieved exactly when Y is 0 off the diagonal, equal to Λ on its positive
diagonal entries, and equal to 0 for its negative diagonal entries, hence Y = Λ+. ⊓⊔
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Hence we solve for the inner minimization:

�(y) := min
Xર0

{
1

2
∣∣X − (A∗y − C)∣∣2F −

1

2
∣∣A∗y − C∣∣2F +

1

2
∣∣C∣∣2F + bTy

}
= −1

2
∣∣(A∗y − C)+∣∣2F + bTy +

1

2
∣∣C∣∣2F

and the minimum is attained by X = X(y) = (A∗y − C)+.

Proposition 2 � is concave and continuously differentiable with ∇�(y) = −A(A∗y−C)+ + b.

Proof: � is the minimum of a family of affine functions, so it is concave.
The differentiability and form of the derivative follow from general convex analysis results

using the Moreau-Yosida regularization

g(W ) := min
X∈Mn

{
IMn

+
(X) +

1

2
∣∣X −W ∣∣2F

}
of the convex function IMn

+
. ⊓⊔

Using this proposition, we can apply some smooth unconstrained optimization algorithm to
maximize �(y) and note that if the gradient is 0 (small) then X(y) is (nearly) feasible.

2 A Lagrangian method for standard form SDPs

The following is due to Malick, Povh, Rendl, and Wiegele.
Begin with the usual primal and dual problems:

min C ∙X max bTy
(P ) AX = b (D) A∗y + S = C

X ર 0, S ર 0,

and assume that both have strictly feasible solutions.

2.1 Regularizing the primal

Assume we have an iterate W ∈Mn and consider

minX C ∙X + 1
2�
∣∣X −W ∣∣2F

(P�(W )) AX = b
X ર 0.

Note that (P) is equivalent to

min
X

min
W

{
C ∙X +

1

2�
∣∣X −W ∣∣2F : AX = b,X ર 0

}
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since the inner minimization is attained by W = X, and then the outer minimization is just
the original problem (P).

Now, switch the order of the two minimizations, and we get the equivalent problem minW v(P�(W )).
Let the optimal value of P�(W ) be Φ�(W ). Expanding terms inside the norms, we get that

Φ�(W ) = min
AX=b,Xર0

1

2�
∣∣X + (�C −W )∣∣2F −

�

2
∣∣C∣∣2F + C ∙W.

The last two terms don’t depend on X so this is a least squares SDP problem. So, we apply
Malick’s approach to this inner problem, to get the function

��,W (ŷ) := − 1

2�
∣∣(A∗ŷ − (�C −W ))+∣∣2F +

1

�
bT ŷ +

1

2�
∣∣�C −W ∣∣2F −

�

2
∣∣C∣∣2F + C ∙W

and a resulting iteration on ŷ, and as a byproduct X(ŷ), where

X(ŷ) = (A∗ŷ − (�C −W ))+

= �

(
A∗ ŷ

�
− C +

1

�
W

)
+

.

We can also set S(ŷ) := (C −A∗ ŷ
�
− 1

�
W )+.

Observe that for any ŷ, we have X(ŷ) ર 0, S(ŷ) ર 0 and X(ŷ) ∙ S(ŷ) = 0. So, as opposed
to interior-point methods, here we have boundary points (which are also infeasible before ter-
mination).

2.2 Regularizing the dual

Consider the augmented Lagrangian for the dual:

L�(y, S,W ) = bTy −W ∙ (A∗y + S − C)− �

2
∣∣A∗y + S − C∣∣2F

for � > 0.
This is the same as the usual Lagrangian for the equivalent problem

max
{
bTy − �

2
∣∣A∗y + S − C∣∣2F : A∗y + S = C, S ર 0

}
.

Note that if (y, S) is infeasible, then we can send L�(y, S,W ) to −∞ by choosing an appro-
priate W . However, if (y, S) is feasible then L�(y, S,W ) is equal to bTy for all W . Therefore,
we have that the value of (D) is equal to

max
y,Sર0

min
W

L�(y, S,W ).

Reversing the minimization and maximization, the value of (D) is also equal to

min
W

max
y,Sર0

L�(y, S,W ) =: min
W

Ψ�(W ).
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Here, we have

Ψ�(W ) = max
y

max
Sર0

{
bTy −W ∙ (A∗y + S − C)− �

2

∥∥A∗y + S − C
∥∥2
F

}
= max

y

{
max
Sર0

{
−�

2

∥∥S +A∗y − C +
1

�
W
∥∥2
F

}
+

1

2�
∣∣W ∣∣2F + bTy

}
= max

y

{
bTy − �

2

∥∥(A∗y − C +
1

�
W )+

∥∥2
F

+
1

2�
∣∣W ∣∣2F

}
.

However, when we regularized the primal, we had the problem

Φ�(W ) := max
ŷ
− 1

2�

∥∥(A∗ŷ − �C +W )+
∥∥2
F

+
1

2�

∥∥�C −W∥∥2
F

+
1

�
bT ŷ − �

2
∣∣C∣∣2F + C ∙W

= max
ŷ

{
−�

2

∥∥∥∥(A∗ ŷ� − C +
1

�
W

)
+

∥∥∥∥2
F

+
1

2�
∣∣W ∣∣2F + bT

ŷ

�

}
.

Proposition 3 If � = � then Φ�(W ) = Ψ�(W ).

2.3 Algorithm schema

Basic idea of the algorithm:

∙ Outer iteration: update W ∈Mn to minimize Φ�(W ) or Ψ�(W ).

∙ Inner iteration: Given W , find an approximate solution y to evaluate Φ�(W ).

Remarks:

(a) Φ�(W ) is convex and continuously differentiable. Additionally we can find its gradient
by solving the inner problem. Also note that taking a gradient step of size � goes exactly
to X(y) for the optimal y.

(b) In practice, it is much more efficient to take an outer iteration (in W ) after every inner
iteration (in y), as is true for augmented Lagrangian methods in general.
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