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1 Least Squares SDP (Malick)

Consider the following modified objective function for an SDP:
1
(LSSDP) m)}n{éHX—l—C'H%:AX:b,XEO}.

We’ll assume throughout this section that there exists some strictly feasible solution to this
problem.

Note that this objective function is similar to a regularized version of the usual objective,
since

1 1 1
SIX +ACIE = SIXIE+AC 0 X + 0CI .

That is, if X is large, this is a regularized version of SDP where we want the size of X to be
small.

Since this is a least-squares problem, we essentially have to project —C' onto the intersection
of two sets: the linear constraints AX = b and the semidefinite cone M} .

Since projection onto M} is straightforward, we dualize the AX = b constraints to get

1
(LSSDP) = r)?i%myax {§]|X +C||F -y (AX — b)}
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_ i d 2IX — (A — 2 Liigx o2t 2 T,
maciy { SI1X = (A% = OV = 514% = I+ SIICE + 07y

The inner minimization is now exactly a projection: we want to find the closest point in
the semidefinite cone to (A*y — C).

Proposition 1 For any matriz D € M", the solution to minyso 3||X — D||% is X = D where
if D = QAQT is the eigenvalue decomposition of D and A = Diag()\), then Dy = QAL QT
where Ay = Diag (Ay), Ay = (max{0, \;}).
If we write \ = Ay +A_ and set D_ = QA_QT (with A_ = Diag (\_)), then D = D, + D_
and . ) )
SIDIR = 51D I3+ 5]ID- 3.

Proof: This follows easily by writing Y = QT X Q and noting that || X — D||r = ||Y — Al|F,
so that the minimum is achieved exactly when Y is 0 off the diagonal, equal to A on its positive
diagonal entries, and equal to 0 for its negative diagonal entries, hence Y = A,. O



Hence we solve for the inner minimization:

(1 . 1 1
000) = in { 51X = (A5 = NIt = 1A = C + SICIE + 17}

X=0
1 * 2 T 1 2
= Iy — Ol + ¥y + SO
and the minimum is attained by X = X(y) = (A*y — C),..
Proposition 2 0 is concave and continuously differentiable with VO(y) = —A(A*y — C), +b.

Proof: 6 is the minimum of a family of affine functions, so it is concave.
The differentiability and form of the derivative follow from general convex analysis results
using the Moreau-Yosida regularization

o) i= g { s () + 51 - W12}

XeMn

of the convex function Iy O
Using this proposition, we can apply some smooth unconstrained optimization algorithm to
maximize 6(y) and note that if the gradient is 0 (small) then X (y) is (nearly) feasible.

2 A Lagrangian method for standard form SDPs

The following is due to Malick, Povh, Rendl, and Wiegele.
Begin with the usual primal and dual problems:

min CeX max bly
(P) AX = b (D) Ay+S = C
X = 0, S = 0,

and assume that both have strictly feasible solutions.

2.1 Regularizing the primal

Assume we have an iterate W € M" and consider

miny C’oX—l—QipHX—WH%
(B,()) AX = b
X 0.

Y |l

Note that (P) is equivalent to

1
minmin{CoX—l——HX—WH% CAX =0, X - 0}
X W 2p



since the inner minimization is attained by W = X, and then the outer minimization is just

the original problem (P).
Now, switch the order of the two minimizations, and we get the equivalent problem miny v(P,(W)).
Let the optimal value of Pp(W) be ®,(W). Expanding terms inside the norms, we get that

o, (W) = —[|X + (pC - W)|!F——|!C||F+C o V.

min
AX=bX>=02p

The last two terms don’t depend on X so this is a least squares SDP problem. So, we apply
Malick’s approach to this inner problem, to get the function

. 1 . 1. 1 p
Opw (9) = —%H(A — (pC = W)l + ;bTZ/Jr 2—pH/)C — W —3lIClE+CeW

and a resulting iteration on ¢, and as a byproduct X (y), where
X(@) = (Ag = (pC = W))4

] 1
:p(A*g—CJr—W) :
p P ),

We can also set S(7) := (C — A*% - %W)Jr.

Observe that for any 3, we have X (g) = 0,5(g) = 0 and X (7) e S(g) = 0. So, as opposed
to interior-point methods, here we have boundary points (which are also infeasible before ter-
mination).

2.2 Regularizing the dual

Consider the augmented Lagrangian for the dual:
Lo(y, S.W) = by =W o (A'y +5 = C) = Z|| A"y + S = CI[}

for o > 0.
This is the same as the usual Lagrangian for the equivalent problem

max{bTy—%HA*yw—cH%:A*y+5:c,szo}.

Note that if (y, S) is infeasible, then we can send L, (y, S, W) to —oco by choosing an appro-
priate W. However, if (y, S) is feasible then L, (y, S, W) is equal to b'y for all W. Therefore,
we have that the value of (D) is equal to

max mml/n L,(y,S,W).

Reversing the minimization and maximization, the value of (D) is also equal to

min max L, (y, S, W) :mmi/n\If,,(W).
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Here, we have

U, (W) = maxmax{bTy - We(Ay+5—-0C)— %HA*y+ S — CH?}

y S0

= max { max —gHS—i-.A*y—C'-i—EVVH2 +LHW||2 +0'

y S=0 2 o F 20 F Y
T g * 1 2 1 2

= e {07y = ZAy = €+ T o v}

However, when we regularized the primal, we had the problem

1 . 1 L. p
(W) i= max = ||(A%G = pC + W[+ oo = W[+ 2675 = SICI +C oW

= max L H(A*g - C+ lVV)
9 2 p P/

Proposition 3 If p = o then ®,(W) = U, (W).
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2p

' )
+—||W||%+5T€}.
r 1Y

2.3 Algorithm schema

Basic idea of the algorithm:
e Outer iteration: update W € M" to minimize ®,(W) or ¥, ().
e Inner iteration: Given W, find an approximate solution y to evaluate ®,(W).
Remarks:

(a) @,(WV) is convex and continuously differentiable. Additionally we can find its gradient
by solving the inner problem. Also note that taking a gradient step of size p goes exactly
to X (y) for the optimal y.

(b) In practice, it is much more efficient to take an outer iteration (in W) after every inner
iteration (in y), as is true for augmented Lagrangian methods in general.



