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Dealing with no known feasible solution in interior-point

methods

1) Just take a “Newton” step to approximate a point on the central path, even if the current
iterate is not feasible. I.e., the rhs of the first two sets of eqs become nonzero:

C −A∗y − S

b−AX

These extensions work well in practice. One difficulty in the analysis: we don’t have ∆X •
∆S = 0 anymore, but there are polynomial bounds under suitable assumptions.

2) Reduce to the feasible case using an extension of the homogeneous self-dual approach of Ye,
Todd, Mizuno for LP. Consider the (homogeneous, self-dualP problem:

min (n + 1)θ
S = −A∗y +Cτ −C̄θ � 0

AX −bτ +b̄θ = 0
κ = −C •X +bT y +z̄θ ≥ 0

C̄ •X −b̄T y −z̄τ = −(n + 1)
X � 0, τ ≥ 0 ,

(HSDP)

where C̄ = C − I, b̄ = b−AI, z̄ = C • I + 1, so (X = I, y = 0, τ = 1, θ = 1) is strictly feas
with S = I, κ = 1.

Theorem 1 a) (HSDP) is equivalent to its dual, has a strictly feasible solution and has an
optimal solution with optimal value 0.

b) If (HSDP) has an optimal solution (X∗, y∗, S∗, τ ∗, κ∗, 0) with τ ∗ > 0, then κ∗ = 0, and
x∗/τ ∗, (y∗/τ ∗, S∗/τ ∗) are optimal in (P) and (D) respectively.

c) If (HSDP) has an optimal solution (X∗, y∗, S∗, τ ∗, κ∗, 0) with κ∗ > 0, then τ ∗ = 0 and either
(y∗, S∗) shows (P) infeasible or X∗ shows (D) infeasible, or both.

Key fact: Weak path following restrictions imply that, if there is an optimal solution with
τ(κ) positive, then the iterations converge to such a solution.

Since the constraint “matrix” is skew-symmetric,

−X • S − τκ = −(n + 1)θ
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and combining the equations gives

I •X + I • S + τ + κ = (n + 1)θ.

Applying a path-following algorithm to (HSDP) is slightly complicated. We want to keep the
primal and dual iterates the same, and the directions the same, and then we can use a linear
system only a little larger than that used for (P) and (D).

The spectral bundle method (Helmberg&Rendl)

Consider
max C •X

s.t. AX = 0

I •X = 1

X � 0

(P)

and its dual
min λ

s.t. λI � C −A∗y
(D)

or
min

y
λmax(C −A∗y).︸ ︷︷ ︸

:=f(y),convex and nonsmooth

Note that (P) appears a rather special SDP problem; but HW4 shows that it is in fact quite
general, only requiring that the feasible region of the primal problem be bounded. HW4 also
shows that, if q is a unit eigenvector corresponding to the largest eigenvalue of C −A∗y, then
−A(qqT ) is a subgradient of f at y, and if q is a unit vector with qT (C − A∗y)q ≥ f(y) − ε,
then −A(qqT ) is an ε-subgradient of f at y.

(D) ≡ min
y

max
qqT =1

(C −A∗y) • qqT

≡ min
y

max
X,I•X=1,X�0

(C −A∗y) •X.

We proceed as follows:

1) Restrict the set of X’s:
X = λW + PV P T

where P ∈ Rn×r has orthonormal columns, W ∈ Mn
+ has I •W = 1, λ ≥ 0, and V ∈ Mr

+,
where λ + I • V = 1. This gives

min
y

max
λ≥0,V�0,λ+I•V =1

(C −A∗y) • (λW + PV P T ).
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If V is further restricted to be diagonal, this max is

max{(C −A∗y) •W, max
i

(C −A∗y) • pip
T
i },

a piecewise-linear underestimate of f .

2) Add a proximal term:
If our current y is z, then consider

min
y

max
λ,V

(C −A∗y) • (λW + PV P T ) +
σ

2
‖y − z‖2.

Under standard assumptions this is equivalent to

max
λ,V

min
y

(C −A∗y) • (λW + PV P T ) +
σ

2
‖y − z‖2,

giving y = z + 1
σ
A(λW + PV P T ). This gives

max
λ≥0,V�0,λ+I•V =1

(C −A∗y) • (λW + PV P T )− 1

2σ
‖A(λW + PV P T )‖2, (1)

which is a quadratic SDP with “order” r + 1.

Algorithm 1 Spectral Bundle Method
Given C, A1, . . . , Am, z = z0 ∈ Rm

Evaluate f(z) and get a corresponding eigenvector v
Set W = I/n, say, and P = [v].
while termination criteria not satisfied do

Solve (1) with the current z, W, P to get λ, V, y
Evaluate f(y), also getting a corresponding eigenvector v
Update W, P, z:

W := λW + PV P T

P := columns of PQ1, where Q1 has as columns the top few eigenvectors of V , and v

z := y if f(y) < f(z)

end while
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