Dealing with no known feasible solution in interior-point methods

1) Just take a "Newton" step to approximate a point on the central path, even if the current iterate is not feasible. I.e., the rhs of the first two sets of eqs become nonzero:

$$
\begin{gathered}
C-\mathcal{A}^{*} y-S \\
b-\mathcal{A} X
\end{gathered}
$$

These extensions work well in practice. One difficulty in the analysis: we don't have $\Delta X \bullet$ $\Delta S=0$ anymore, but there are polynomial bounds under suitable assumptions.
2) Reduce to the feasible case using an extension of the homogeneous self-dual approach of Ye, Todd, Mizuno for LP. Consider the (homogeneous, self-dualP problem:

\[

\]

where $\bar{C}=C-I, \bar{b}=b-\mathcal{A} I, \bar{z}=C \bullet I+1$, so $(X=I, y=0, \tau=1, \theta=1)$ is strictly feas with $S=I, \kappa=1$.

Theorem 1 a) (HSDP) is equivalent to its dual, has a strictly feasible solution and has an optimal solution with optimal value 0.
b) If (HSDP) has an optimal solution $\left(X^{*}, y^{*}, S^{*}, \tau^{*}, \kappa^{*}, 0\right)$ with $\tau^{*}>0$, then $\kappa^{*}=0$, and $x^{*} / \tau^{*},\left(y^{*} / \tau^{*}, S^{*} / \tau^{*}\right)$ are optimal in (P) and (D) respectively.
c) If (HSDP) has an optimal solution $\left(X^{*}, y^{*}, S^{*}, \tau^{*}, \kappa^{*}, 0\right)$ with $\kappa^{*}>0$, then $\tau^{*}=0$ and either $\left(y^{*}, S^{*}\right)$ shows (P) infeasible or X^{*} shows (D) infeasible, or both.

Key fact: Weak path following restrictions imply that, if there is an optimal solution with $\tau(\kappa)$ positive, then the iterations converge to such a solution.

Since the constraint "matrix" is skew-symmetric,

$$
-X \bullet S-\tau \kappa=-(n+1) \theta
$$

and combining the equations gives

$$
I \bullet X+I \bullet S+\tau+\kappa=(n+1) \theta
$$

Applying a path-following algorithm to (HSDP) is slightly complicated. We want to keep the primal and dual iterates the same, and the directions the same, and then we can use a linear system only a little larger than that used for (P) and (D).

The spectral bundle method (Helmberg\&Rendl)

Consider

$$
\begin{array}{rll}
\max & C \bullet X & \\
\text { s.t. } & \mathcal{A} X & =0 \tag{P}\\
& I \bullet X=1 \\
& X & \succeq 0
\end{array}
$$

and its dual

$$
\begin{align*}
\min & \lambda \\
\text { s.t. } & \lambda I \succeq C-\mathcal{A}^{*} y \tag{D}
\end{align*}
$$

or

$$
\min _{y} \underbrace{\lambda_{\max }\left(C-\mathcal{A}^{*} y\right)}_{:=f(y), \text { convex and nonsmooth }}
$$

Note that (P) appears a rather special SDP problem; but HW4 shows that it is in fact quite general, only requiring that the feasible region of the primal problem be bounded. HW4 also shows that, if q is a unit eigenvector corresponding to the largest eigenvalue of $C-\mathcal{A}^{*} y$, then $-\mathcal{A}\left(q q^{T}\right)$ is a subgradient of f at y, and if q is a unit vector with $q^{T}\left(C-\mathcal{A}^{*} y\right) q \geq f(y)-\epsilon$, then $-\mathcal{A}\left(q q^{T}\right)$ is an ϵ-subgradient of f at y.

$$
\begin{aligned}
(D) & \equiv \min _{y} \max _{q q^{T}=1}\left(C-\mathcal{A}^{*} y\right) \bullet q q^{T} \\
& \equiv \min _{y} \max _{X, I \bullet X=1, X \succeq 0}\left(C-\mathcal{A}^{*} y\right) \bullet X .
\end{aligned}
$$

We proceed as follows:

1) Restrict the set of X 's:

$$
X=\lambda W+P V P^{T}
$$

where $P \in \mathbb{R}^{n \times r}$ has orthonormal columns, $W \in \mathbb{M}_{+}^{n}$ has $I \bullet W=1, \lambda \geq 0$, and $V \in \mathbb{M}_{+}^{r}$, where $\lambda+I \bullet V=1$. This gives

$$
\min _{y} \max _{\lambda \geq 0, V \succeq 0, \lambda+I \bullet V=1}\left(C-\mathcal{A}^{*} y\right) \bullet\left(\lambda W+P V P^{T}\right) .
$$

If V is further restricted to be diagonal, this max is

$$
\max \left\{\left(C-\mathcal{A}^{*} y\right) \bullet W, \max _{i}\left(C-\mathcal{A}^{*} y\right) \bullet p_{i} p_{i}^{T}\right\}
$$

a piecewise-linear underestimate of f.
2) Add a proximal term:

If our current y is z, then consider

$$
\min _{y} \max _{\lambda, V}\left(C-\mathcal{A}^{*} y\right) \bullet\left(\lambda W+P V P^{T}\right)+\frac{\sigma}{2}\|y-z\|^{2}
$$

Under standard assumptions this is equivalent to

$$
\max _{\lambda, V} \min _{y}\left(C-\mathcal{A}^{*} y\right) \bullet\left(\lambda W+P V P^{T}\right)+\frac{\sigma}{2}\|y-z\|^{2},
$$

giving $y=z+\frac{1}{\sigma} \mathcal{A}\left(\lambda W+P V P^{T}\right)$. This gives

$$
\begin{equation*}
\max _{\lambda \geq 0, V \succeq 0, \lambda+I \bullet V=1}\left(C-\mathcal{A}^{*} y\right) \bullet\left(\lambda W+P V P^{T}\right)-\frac{1}{2 \sigma}\left\|\mathcal{A}\left(\lambda W+P V P^{T}\right)\right\|^{2} \tag{1}
\end{equation*}
$$

which is a quadratic SDP with "order" $r+1$.

```
Algorithm 1 Spectral Bundle Method
    Given \(C, A_{1}, \ldots, A_{m}, z=z_{0} \in \mathbb{R}^{m}\)
    Evaluate \(f(z)\) and get a corresponding eigenvector \(v\)
    Set \(W=I / n\), say, and \(P=[v]\).
    while termination criteria not satisfied do
        Solve (1) with the current \(z, W, P\) to get \(\lambda, V, y\)
        Evaluate \(f(y)\), also getting a corresponding eigenvector \(v\)
        Update \(W, P, z\) :
        \(W:=\lambda W+P V P^{T}\)
        \(P:=\) columns of \(P Q_{1}\), where \(Q_{1}\) has as columns the top few eigenvectors of \(V\), and \(v\)
        \(z:=y\) if \(f(y)<f(z)\)
    end while
```

