Today's lecture is on symmetric matrix completions and associated algorithms.
Recall: C and all A_{i} 's are all zero on entries outside $E \subset N \times N$, and we assume that $j j \in E$ for all j 's.

Theorem 1 (Grone, Johnson, Sa and Wolkowicz) If the partial symmetric matrix \bar{X} has a positive definite completion, it has a unique one $\hat{X}=\hat{X}(\bar{X})$ solving

$$
\begin{array}{ll}
\min & -\ln \operatorname{det} X \\
& x_{i j}=\bar{x}_{i j}, \quad \forall i j \in E ;
\end{array}
$$

characterized by

$$
\hat{x}_{i j}=\bar{x}_{i j}, \quad \forall i j \in E, \quad\left(\hat{X}^{-1}\right)_{i j}=0, \quad \forall i j \notin E .
$$

Example 1

$$
\bar{X}=\left[\begin{array}{ccc}
5 & ? & -4 \\
? & 10 & 6 \\
-4 & 6 & 4
\end{array}\right]
$$

If we put ξ in the 12 and 21 positions, the determinant is $-140-48 \xi-4 \xi^{2}$, which is maximized at $\xi=-6$. So the corresponding solution is

$$
\hat{X}=\left[\begin{array}{ccc}
5 & -6 & -4 \\
-6 & 10 & 6 \\
-4 & 6 & 4
\end{array}\right]
$$

with

$$
\hat{X}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -\frac{3}{2} \\
1 & -\frac{3}{2} & \frac{7}{2}
\end{array}\right] .
$$

Let $E^{\circ}=E \backslash\{j j: j \in N\}$ and consider the graph $G=\left(N, E^{\circ}\right)$. We call G chordal if every circuit of G of length at least 4 has a chord. If G is chordal, there is an ordering of its nodes, called a perfect elimination (pe) order, such that if we delete the nodes in this order, the nodes adjacent to a node being deleted form a clique.

- If G is not chordal, we'll extend E to make it chordal.
- We'll assume that $1, \ldots, n$ is a pe order.

A chordal graph
The chordal graph corresponding to our example

Figure 1: Chordal graphs

Suppose $Y \succ \mathbf{0}$ with sparsity pattern E. Then $\left(N, E^{\circ}\right)$ is chordal with pe order $1, \ldots, n$ iff Y has the Cholesky factorization $L L^{T}$ where L has the same sparsity pattern E, i.e., there is no fill-in. In particular, if \bar{X} is a partial symmetric matrix corresponding to E, then it has a completion \hat{X} with $Y=\hat{X}^{-1}$ having such a sparse Cholesky factorization

$$
L L^{T}=L_{1} L_{2} \ldots L_{n} L_{n}^{T} \ldots L_{2}^{T} L_{1}^{T}
$$

where L_{j} is the identity matrix except for its j th column, which is the j th column l_{j} of L and has $\left(l_{j}\right)_{k} \neq 0$ only for $k \geq j, k j \in E$. Let $M_{j}:=L_{j}^{-1}$, with the same sparsity pattern. So,

$$
\hat{X}=M_{1}^{T} M_{2}^{T} \ldots M_{n}^{T} M_{n} \ldots M_{2} M_{1} .
$$

Key fact: we can find all the M_{j} 's from \hat{X} and E.
Example 2 (Example 1 revisited)

$$
\bar{X}=\left[\begin{array}{ccc}
5 & \xi & -4 \\
\xi & 10 & 6 \\
-4 & 6 & 4
\end{array}\right]
$$

Consider the 33 entry:

$$
4=\bar{x}_{33}=\hat{x}_{33}=e_{3}^{T} M_{1}^{T} M_{2}^{T} M_{3}^{T} M_{3} M_{2} M_{1} e_{3}=e_{3}^{T} M_{3}^{T} M_{3} e_{3}
$$

Since M_{3} has the form of

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mu
\end{array}\right]
$$

we have that

$$
M_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right], \quad L_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]
$$

Next, the 32 entry:

$$
6=\bar{x}_{32}=\hat{x}_{32}=e_{3}^{T} M_{1}^{T} M_{2}^{T} M_{3}^{T} M_{3} M_{2} M_{1} e_{2}=e_{3}^{T} M_{3}^{T} M_{3} M_{2} e_{2}=4 e_{3}^{T} M_{2} e_{2}
$$

This gives

$$
M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mu & 0 \\
0 & \frac{3}{2} & 1
\end{array}\right]
$$

where μ is to be determined.
Then, the 22 entry:

$$
\begin{aligned}
10 & =\bar{x}_{22}=\hat{x}_{22}=e_{2}^{T} M_{1}^{T} M_{2}^{T} M_{3}^{T} M_{3} M_{2} M_{1} e_{2}=e_{2}^{T} M_{2}^{T} M_{3}^{T} M_{3} M_{2} e_{2} \\
& =\left(0, \mu, \frac{3}{2}\right)\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 4
\end{array}\right]\left(\begin{array}{c}
0 \\
\mu \\
\frac{3}{2}
\end{array}\right) \\
& =\mu^{2}+9 .
\end{aligned}
$$

It follows that $\mu=1$. So,

$$
M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{3}{2} & 1
\end{array}\right]
$$

Finally, look at the 21, 31 and 11 positions. We don't know \hat{x}_{21}, but since 21 is not in E and we have a chordal graph, then $l_{21}=0$. So $\left(L_{1}\right)_{21}=0$. So, $\left(M_{1}\right)_{21}=0$.
For entry 31,

$$
-4=\bar{x}_{31}=\hat{x}_{31}=e_{3}^{T} M_{1}^{T} M_{2}^{T} M_{3}^{T} M_{3} M_{2} M_{1} e_{1}=4 e_{3}^{T} M_{2} M_{1} e_{1}
$$

Hence, $e_{3}^{T} M_{1} e_{1}=-1$.
Continuing, we can compute $e_{1}^{T} M_{1} e_{1}$ and hence we have M_{1}, M_{2} and M_{3}.
An iteration of the matrix completion algorithm starts with the current partial iterate (\bar{X}, y, S). Use the method above to compute M_{1}, \ldots, M_{n}. If $\bar{X} \bullet S$ (note that we can compute this since $s_{i j}=0$ for $\left.i j \notin E\right)$ is no more than $\epsilon\left(\bar{X}_{0} \bullet S_{0}\right)$, stop: we have an ϵ-optimal solution with $X=\hat{X}(\bar{X})=M_{1}^{T} M_{2}^{T} \ldots M_{n}^{T} M_{n} \ldots M_{2} M_{1}$. Otherwise, we need to compute the search direction. We use HKM. We compute

$$
B_{j}=\left(M_{1}^{T} M_{2}^{T} \ldots M_{n}^{T} M_{n} \ldots M_{2} M_{1}\right) A_{j}\left(L_{S}^{-T} L_{S}^{-1}\right)
$$

where $L_{S} L_{S}^{T}$ is the (sparse) Cholesky factorization of S and then $A_{i} \bullet B_{j}$ for $i \geq j$.This gives us Δy and then we get ΔS, and finally $\Delta \bar{X}$, the entries in E of

$$
\sigma \mu L_{S}^{-T} L_{S}^{-1}-\bar{X}-J\left(\left(M_{1}^{T} M_{2}^{T} \ldots M_{n}^{T} M_{n} \ldots M_{2} M_{1}\right) \Delta S\left(L_{S}^{-T} L_{S}^{-1}\right)\right)
$$

Finally, $\bar{X}_{+}=\bar{X}+\alpha \Delta \bar{X}$, etc.
For long-step or adaptive algorithms, we need to search on α to ensure positive definiteness. For S, we only need the extreme eigenvalues of $L_{S}^{-1} \Delta S L_{S}^{-1}$, which is easy. For \bar{X}, it is not so easy. We want $\bar{X}+\alpha \Delta \bar{X}$ to have a positive definite completion.

Example 3 (Example 1 for the last time)

$$
\bar{X}=\left[\begin{array}{ccc}
5 & ? & -4 \\
? & 10 & 6 \\
-4 & 6 & 4
\end{array}\right]
$$

For \bar{X} to have a positive definite completion, we clearly need $\bar{X}_{13,13} p d, \bar{X}_{23,23} p d$. It turns out that these conditions are sufficient.

In general, if G is chordal, it has only $O(n)$ maximal cliques, say C_{1}, \ldots, C_{l}.
Theorem $2 \bar{X}$ has a pd completion iff all $\bar{X}_{C_{k}, C_{k}}$'s are pd.
Note that the matrix completion short-step path-following algorithm might not be polynomial, since \hat{X} is updated at each iteration in an unconventional way. However, related interiorpoint methods are indeed polynomial, using potential reduction techniques. These methods decrease the potential function below by a constant at each iteration, where $\rho=n+\sqrt{n}$:

$$
\phi_{\rho}(X, y, S):=\rho \ln X \bullet S+F(X)+F_{*}(S)=\underbrace{(\rho-n) \ln X \bullet S}_{\text {optimality }}+\underbrace{\left(n \ln X \bullet S+F(X)+F_{*}(S)\right)}_{\text {close to central path }} .
$$

Moving from " $\bar{X}+\alpha \Delta \bar{X}$ " to $\hat{X}(\bar{X}+\alpha \Delta \bar{X})$ only decreases this potential function more.

