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Today’s lecture is on symmetric matrix completions and associated algorithms.
Recall: C and all Ai’s are all zero on entries outside E ⊂ N × N , and we assume that jj ∈ E
for all j’s.

Theorem 1 (Grone, Johnson, Sa and Wolkowicz) If the partial symmetric matrix X̄ has

a positive definite completion, it has a unique one X̂ = X̂(X̄) solving

min − ln det X

xij = x̄ij, ∀ij ∈ E;

characterized by

x̂ij = x̄ij, ∀ij ∈ E, (X̂−1)ij = 0, ∀ij /∈ E.

Example 1

X̄ =







5 ? −4

? 10 6

−4 6 4







If we put ξ in the 12 and 21 positions, the determinant is −140−48ξ−4ξ2, which is maximized

at ξ = −6. So the corresponding solution is

X̂ =







5 −6 −4

−6 10 6

−4 6 4







with

X̂−1 =







1 0 1

0 1 −3
2

1 −3
2

7
2







.

Let E◦ = E\{jj : j ∈ N} and consider the graph G = (N, E◦). We call G chordal if every
circuit of G of length at least 4 has a chord. If G is chordal, there is an ordering of its nodes,
called a perfect elimination (pe) order, such that if we delete the nodes in this order, the nodes
adjacent to a node being deleted form a clique.

– If G is not chordal, we’ll extend E to make it chordal.

– We’ll assume that 1, . . . , n is a pe order.
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A chordal graph The chordal graph corresponding to our example

Figure 1: Chordal graphs

Suppose Y � 0 with sparsity pattern E. Then (N, E◦) is chordal with pe order 1, . . . , n iff

Y has the Cholesky factorization LLT where L has the same sparsity pattern E, i.e., there is
no fill-in. In particular, if X̄ is a partial symmetric matrix corresponding to E, then it has a
completion X̂ with Y = X̂−1 having such a sparse Cholesky factorization

LLT = L1L2 . . . LnLT
n . . . LT

2 LT
1 ,

where Lj is the identity matrix except for its jth column, which is the jth column lj of L and
has (lj)k 6= 0 only for k ≥ j, kj ∈ E. Let Mj := L−1

j , with the same sparsity pattern. So,

X̂ = MT
1 MT

2 . . .MT
n Mn . . .M2M1.

Key fact: we can find all the Mj’s from X̂ and E.

Example 2 (Example 1 revisited)

X̄ =







5 ξ −4

ξ 10 6

−4 6 4







.

Consider the 33 entry:

4 = x̄33 = x̂33 = eT
3 MT

1 MT
2 MT

3 M3M2M1e3 = eT
3 MT

3 M3e3.
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Since M3 has the form of 



1 0 0
0 1 0
0 0 µ



 ,

we have that

M3 =





1 0 0
0 1 0
0 0 2



 , L3 =





1 0 0
0 1 0
0 0 1

2



 .

Next, the 32 entry:

6 = x̄32 = x̂32 = eT
3 MT

1 MT
2 MT

3 M3M2M1e2 = eT
3 MT

3 M3M2e2 = 4eT
3 M2e2.

This gives

M2 =





1 0 0
0 µ 0
0 3

2
1



 ,

where µ is to be determined.

Then, the 22 entry:

10 = x̄22 = x̂22 = eT
2 MT

1 MT
2 MT

3 M3M2M1e2 = eT
2 MT

2 MT
3 M3M2e2

= (0, µ, 3
2
)





1
1

4









0
µ
3
2





= µ2 + 9.

It follows that µ = 1. So,

M2 =





1 0 0
0 1 0
0 3

2
1



 .

Finally, look at the 21, 31 and 11 positions. We don’t know x̂21, but since 21 is not in E and

we have a chordal graph, then l21 = 0. So (L1)21 = 0. So, (M1)21 = 0.
For entry 31,

−4 = x̄31 = x̂31 = eT
3 MT

1 MT
2 MT

3 M3M2M1e1 = 4eT
3 M2M1e1.

Hence, eT
3 M1e1 = −1.

Continuing, we can compute eT
1 M1e1 and hence we have M1, M2 and M3.

An iteration of the matrix completion algorithm starts with the current partial iterate
(X̄, y, S). Use the method above to compute M1, . . . , Mn. If X̄ • S (note that we can compute
this since sij = 0 for ij 6∈ E) is no more than ε(X̄0 • S0), stop: we have an ε-optimal solution

with X = X̂(X̄) = MT
1 MT

2 . . .MT
n Mn . . .M2M1. Otherwise, we need to compute the search

direction. We use HKM. We compute

Bj = (MT
1 MT

2 . . .MT
n Mn . . .M2M1)Aj(L

−T
S L−1

S ),
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where LSLT
S is the (sparse) Cholesky factorization of S and then Ai • Bj for i ≥ j.This gives

us ∆y and then we get ∆S, and finally ∆X̄, the entries in E of

σµL−T
S L−1

S − X̄ − J((MT
1 MT

2 . . .MT
n Mn . . .M2M1)∆S(L−T

S L−1
S )).

Finally, X̄+ = X̄ + α∆X̄, etc.

For long-step or adaptive algorithms, we need to search on α to ensure positive definiteness.
For S, we only need the extreme eigenvalues of L−1

S ∆SL−1
S , which is easy. For X̄, it is not so

easy. We want X̄ + α∆X̄ to have a positive definite completion.

Example 3 (Example 1 for the last time)

X̄ =







5 ? −4

? 10 6

−4 6 4







For X̄ to have a positive definite completion, we clearly need X̄13,13 pd, X̄23,23 pd. It turns out

that these conditions are sufficient.

In general, if G is chordal, it has only O(n) maximal cliques, say C1, . . . , Cl.

Theorem 2 X̄ has a pd completion iff all X̄Ck,Ck
’s are pd.

Note that the matrix completion short-step path-following algorithm might not be polyno-
mial, since X̂ is updated at each iteration in an unconventional way. However, related interior-
point methods are indeed polynomial, using potential reduction techniques. These methods
decrease the potential function below by a constant at each iteration, where ρ = n +

√
n:

φρ(X, y, S) := ρ ln X • S + F (X) + F∗(S) = (ρ − n) ln X • S
︸ ︷︷ ︸

optimality

+ (n ln X • S + F (X) + F∗(S))
︸ ︷︷ ︸

close to central path

.

Moving from “X̄ + α∆X̄” to X̂(X̄ + α∆X̄) only decreases this potential function more.
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