Notation

- The current iterate is $(X, y, S) \in \mathcal{N}_{F}(\beta), 0<\beta<1 / \sqrt{2}$.
- The direction corresponding to $\nu=\sigma \mu($ and $P)$ is $(\Delta X, \Delta y, \Delta S)$.
- For P invertible, $(\hat{X}, \hat{y}, \hat{S}) \in \hat{\mathcal{N}}_{F}(\beta)$, with $\hat{\mu}:=\hat{X} \bullet \hat{S} / n$, where

$$
\begin{aligned}
& -\hat{X}:=P X P^{\mathrm{T}}, \quad \widehat{\Delta X}:=P \Delta X P^{\mathrm{T}} \\
& -\hat{S}:=P^{-\mathrm{T}} S P^{-1}, \quad \widehat{\Delta S}:=P^{-\mathrm{T}} \Delta S P^{-1}
\end{aligned}
$$

- $(X(\alpha), y(\alpha), S(\alpha))=(X, y, S)+\alpha(\Delta X, \Delta y, \Delta S)$, with $(\hat{X}(\alpha), \hat{y}(\alpha), \hat{S}(\alpha))$ defined analogously.

Lemma (4). With the notation above, for all $\alpha \in[0,1]$,
(a) $\hat{X}(\alpha) \bullet \hat{S}(\alpha)=(1-\alpha+\alpha \sigma) \hat{X} \bullet \hat{S} ;$
(b) $J_{\hat{X}^{-1 / 2}}(\hat{X}(\alpha) \hat{S}(\alpha)-\hat{\mu}(\alpha) I)=(1-\alpha)\left(\hat{X}^{1 / 2} \hat{S} \hat{X}^{1 / 2}-\hat{\mu} I\right)+\alpha J_{\hat{X}^{-1 / 2}}(R)+\alpha^{2} J_{\hat{X}^{-1 / 2}}(\widehat{\Delta X} \widehat{\Delta S})$
where

$$
\hat{\mu}(\alpha):=\frac{\hat{X}(\alpha) \bullet \hat{S}(\alpha)}{n}=(1-\alpha+\alpha \sigma) \hat{\mu}
$$

and

$$
R:=\hat{X}^{-1 / 2}(\hat{X} \widehat{\Delta S}+\widehat{\Delta X} \hat{S}+\hat{X} \hat{S}-\sigma \mu I) \hat{X}^{1 / 2}
$$

Proof. From the definitions,

$$
\hat{X}(\alpha) \hat{S}(\alpha)=\hat{X} \hat{S}+\alpha(\hat{X} \widehat{\Delta S}+\widehat{\Delta X} \hat{S})+\alpha^{2} \widehat{\Delta X} \widehat{\Delta S}
$$

For (a), note that $\widehat{\Delta X} \bullet \widehat{\Delta S}=0$. Also, $\operatorname{tr}(\hat{X} \widehat{\Delta S}+\widehat{\Delta X} \hat{S})=\operatorname{tr}(J(\hat{X} \widehat{\Delta S}+\widehat{\Delta X} \hat{S}))=\operatorname{tr}(J(\sigma \hat{\mu} I-$ $\hat{X} \hat{S}))=\operatorname{tr}(\sigma \hat{\mu} I-\hat{X} \hat{S})=\sigma \hat{\mu} n-\hat{\mu} n$. So

$$
\operatorname{tr}(\hat{X}(\alpha) \hat{S}(\alpha))=n \hat{\mu}+\alpha(\sigma \hat{\mu} n-\hat{\mu} n)=(1-\alpha+\alpha \sigma) n \hat{\mu}
$$

as required.
For (b),

$$
\begin{aligned}
J_{\hat{X}^{-1 / 2}}(\hat{X}(\alpha) \hat{S}(\alpha)-\hat{\mu}(\alpha) I)= & \hat{X}^{1 / 2} \hat{S} \hat{X}^{1 / 2}-\hat{\mu}(\alpha) I+J_{\hat{X}^{-1 / 2}}(\alpha(\hat{X} \widehat{\Delta S}+\widehat{\Delta X} \hat{S}))+\alpha^{2} J_{\hat{X}}-1 / 2 \\
= & \left.(1-\alpha)\left(\hat{X}^{1 / 2} \widehat{\Delta X} \hat{X}^{1 / 2}-\hat{\mu S}\right)\right)+\alpha J_{\hat{X}^{-1 / 2}}(\hat{X} \widehat{\Delta S}+\widehat{\Delta X} \hat{S}+\hat{X} \hat{S}-\sigma \hat{\mu} I) \\
& +\alpha^{2} J_{\hat{X}^{-1 / 2}}(\widehat{\Delta X} \widehat{\Delta S}) .
\end{aligned}
$$

Lemma (5). If $(\hat{X}, \hat{y}, \hat{S}) \in \hat{\mathcal{N}}_{F}(\beta)$, then $\left\|\hat{X}^{1 / 2} \hat{S} \hat{X}^{1 / 2}-\sigma \hat{\mu} I\right\|_{F} \leq\left(\beta^{2}+(1-\sigma)^{2} n\right)^{1 / 2} \hat{\mu}$.

Proof. Observe that $\hat{X}^{1 / 2} \hat{S} \hat{X}^{1 / 2}-\sigma \hat{\mu} I=\left(\hat{X}^{1 / 2} \hat{S} \hat{X}^{1 / 2}-\hat{\mu} I\right)+(1-\sigma) \hat{\mu} I$. Since the two matrices on the right-hand side are orthogonal symmetric matrices, we get the desired bounds.

Lemma (6). Assume $(\hat{X}, \hat{y}, \hat{S}) \in \hat{\mathcal{N}}_{F}(\beta), 0<\beta<1 / \sqrt{2}$. Then for $0 \leq \alpha \leq 1$,

$$
\left\|J_{\hat{X}-1 / 2}(\hat{X}(\alpha) \hat{S}(\alpha)-\hat{\mu}(\alpha) I)\right\|_{F} \leq(1-\alpha) \beta+\alpha \beta \theta+\alpha^{2} \theta^{2} \hat{\mu},
$$

where $\theta:=\left(\beta^{2}+(1-\sigma)^{2} n\right)^{1 / 2} /(1-\sqrt{2} \beta)$.
Proof. Let $\delta_{X}=\hat{\mu}\left\|\hat{X}^{-1 / 2} \widehat{\Delta X} \hat{X}^{-1 / 2}\right\|_{F}, \delta_{S}=\left\|\hat{X}^{1 / 2} \widehat{\Delta S} \hat{X}^{1 / 2}\right\|_{F}$. From Lemma 3 with $L:=\sigma \hat{\mu} I-$ $\hat{X} \hat{S}$ and $\nu=\hat{\mu}$, we see that $K_{\hat{X}^{-1 / 2}}(L)=0$, and get

$$
\max \left\{\delta_{X}, \delta_{S}\right\} \leq \frac{1}{1-\sqrt{2} \beta}\left\|\hat{X}^{1 / 2} \hat{S} \hat{X}^{1 / 2}-\sigma \hat{\mu} I\right\|_{F} \leq \theta \hat{\mu}
$$

using Lemma 5, and

$$
\|J(R)\|_{F} \leq \beta \delta_{X} \leq \beta \theta \hat{\mu}
$$

with R as in Lemma 4. We also have

$$
\alpha^{2}\left\|J_{\hat{X}^{-1 / 2}}(\widehat{\Delta X} \widehat{\Delta S})\right\|_{F} \leq \alpha^{2}\left\|\hat{X}^{-1 / 2} \widehat{\Delta X} \hat{X}^{-1 / 2}\right\|_{F}\left\|\hat{X}^{1 / 2} \widehat{\Delta S} \hat{X}^{1 / 2}\right\|_{F} \leq \alpha^{2} \frac{\theta \hat{\mu}}{\hat{\mu}} \bullet \theta \hat{\mu}
$$

and then combining these bounds with Lemma 4 gives the desired result.
Lemma (7). Suppose $\hat{X} \succ 0, \hat{S} \succ 0$, and Q is invertible. Then for any $\nu>0$,

$$
\left\|\hat{X}^{1 / 2} \hat{S} \hat{X}^{1 / 2}-\nu I\right\|_{F} \leq\left\|J_{Q}(\hat{X} \hat{S}-\nu I)\right\|_{F}
$$

Proof. Using Lemma 1(b) with $P=\hat{X}^{-1 / 2}$ and $R=\hat{X} \hat{S}-\nu I$ and the fact that $J_{P}(\hat{X} \hat{S}-\nu I)=$ $\hat{X}^{1 / 2} \hat{S} \hat{X}^{1 / 2}-\nu I$ and $K_{P}(\hat{X} \hat{S}-\nu I)=0$ yields the desired result.

Lemma (8). Let $V \in \mathbb{R}^{n \times n}, Q \in \mathbb{R}^{n \times n}$ invertible be given. If $\left\|J_{Q}(V)-I\right\|<1$, then V is invertible.
Proof. Let $W=Q V Q^{-1}$, so $J_{Q}(V)=\left(W+W^{\mathrm{T}}\right) / 2$. So all the eigenvalues of $\left.\left(W+W^{\mathrm{T}}\right) / 2\right)$ are positive, and so $\left(W+W^{\mathrm{T}}\right) / 2$ is positive definite. If $W u=0$, then $u^{\mathrm{T}}\left(W+W^{\mathrm{T}}\right) u=0$, and so $u=0$; thus, W is invertible, and hence so is V.

Theorem. Suppose $(X, y, S) \in \mathcal{N}_{F}(\beta), 0<\beta<1 / \sqrt{2}$, and $0 \leq \delta<\sqrt{n}$ are such that

$$
\frac{2\left(\beta^{2}+\delta^{2}\right)}{(1-\sqrt{2} \beta)^{2}} \frac{1}{1-\delta / \sqrt{n}}=\gamma<1
$$

If $(\Delta X, \Delta y, \Delta S)$ is defined at (X, y, S) using any invertible P and $\sigma=1-\delta / \sqrt{n}$, then
(a) $(X(1), y(1), S(1)) \in \mathcal{N}_{F}(\gamma)$, and
(b) $X(1) \bullet S(1)=\left(1-\frac{\delta}{\sqrt{n}}\right) X \bullet S$.

Proof. Define the scaled iterate $(\hat{X}, \hat{y}, \hat{S})$ as usual. Part (b) is immediate from Lemma 4. We now show part (a). From Lemma 6, using $\beta \leq \theta$ and $\alpha \leq 1$,

$$
\begin{aligned}
\left\|J_{\hat{X}^{-1 / 2}}(\hat{X}(\alpha) \hat{S}(\alpha)-\hat{\mu}(\alpha) I)\right\|_{F} & \leq\left((1-\alpha) \beta+2 \alpha \theta^{2}\right) \hat{\mu} \\
& =\left((1-\alpha) \beta+2 \alpha \frac{\beta^{2}+\delta^{2}}{(1-\sqrt{2} \beta)^{2}}\right) \hat{\mu} \\
& =((1-\alpha) \beta+\alpha \sigma \gamma) \hat{\mu} \\
& \leq(\max \{\beta, \gamma\}) \hat{\mu}(\alpha),
\end{aligned}
$$

for every $0 \leq \alpha \leq 1$. So, dividing by $\hat{\mu}(\alpha)$, we have

$$
\left\|J_{\hat{X}^{-1 / 2}}\left(\frac{\hat{X}(\alpha) \hat{S}(\alpha)}{\hat{\mu}(\alpha)}-I\right)\right\|_{F}<1
$$

So by Lemma $8, \hat{X}(\alpha) \hat{S}(\alpha)$ is invertible. Then both $\hat{X}(\alpha)$ and $\hat{S}(\alpha)$ must be positive definite for $0 \leq \alpha \leq 1$. We also get

$$
\left\|J_{\hat{X}^{-1 / 2}}(\hat{X}(1) \hat{S}(1)-\hat{\mu}(1) I)\right\|_{F} \leq \gamma \hat{\mu}(1) .
$$

Then Lemma 7 gives

$$
\left\|\hat{X}^{1 / 2}(1) \hat{S}(1) \hat{X}^{1 / 2}-\hat{\mu}(1) I\right\|_{F} \leq \gamma \hat{\mu}(1),
$$

so $(\hat{X}(1), \hat{y}(1), \hat{S}(1))$ is in the required neighborhood. (Showing that the linear constraints are satisfied is easy using the equations defining the directions.) Scaling back yields (a).

If $\beta=1 / 10$ and $\delta=1 / 7$, then $\gamma<1 / 10$. Hence the theorem above implies Theorem 2 in Lecture 18 by an easy induction.
N.B. The preceding results are due to Renato Monteiro.

