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Notation

• The current iterate is (X, y, S) ∈ NF (β), 0 < β < 1/
√

2.

• The direction corresponding to ν = σµ (and P ) is (∆X, ∆y, ∆S).

• For P invertible, (X̂, ŷ, Ŝ) ∈ N̂F (β), with µ̂ := X̂ • Ŝ/n, where

– X̂ := PXPT, ∆̂X := P∆XPT,

– Ŝ := P−TSP−1, ∆̂S := P−T∆SP−1.

• (X(α), y(α), S(α)) = (X, y, S)+α(∆X, ∆y, ∆S), with (X̂(α), ŷ(α), Ŝ(α)) defined analogously.

Lemma (4). With the notation above, for all α ∈ [0, 1],

(a) X̂(α) • Ŝ(α) = (1− α + ασ)X̂ • Ŝ;

(b) JX̂−1/2(X̂(α)Ŝ(α)− µ̂(α)I) = (1− α)(X̂1/2ŜX̂1/2 − µ̂I) + αJX̂−1/2(R) + α2JX̂−1/2(∆̂X∆̂S)

where

µ̂(α) :=
X̂(α) • Ŝ(α)

n
= (1− α + ασ)µ̂

and
R := X̂−1/2(X̂∆̂S + ∆̂XŜ + X̂Ŝ − σµI)X̂1/2.

Proof. From the definitions,

X̂(α)Ŝ(α) = X̂Ŝ + α(X̂∆̂S + ∆̂XŜ) + α2∆̂X∆̂S.

For (a), note that ∆̂X • ∆̂S = 0. Also, tr(X̂∆̂S + ∆̂XŜ) = tr(J(X̂∆̂S + ∆̂XŜ)) = tr(J(σµ̂I −
X̂Ŝ)) = tr(σµ̂I − X̂Ŝ) = σµ̂n− µ̂n. So

tr(X̂(α)Ŝ(α)) = nµ̂ + α(σµ̂n− µ̂n) = (1− α + ασ)nµ̂,

as required.
For (b),

JX̂−1/2(X̂(α)Ŝ(α)− µ̂(α)I) = X̂1/2ŜX̂1/2 − µ̂(α)I + JX̂−1/2(α(X̂∆̂S + ∆̂XŜ)) + α2JX̂−1/2(∆̂X∆̂S)

= (1− α)(X̂1/2ŜX̂1/2 − µ̂I) + αJX̂−1/2(X̂∆̂S + ∆̂XŜ + X̂Ŝ − σµ̂I)

+ α2JX̂−1/2(∆̂X∆̂S).

Lemma (5). If (X̂, ŷ, Ŝ) ∈ N̂F (β), then ‖X̂1/2ŜX̂1/2 − σµ̂I‖F ≤ (β2 + (1− σ)2n)1/2µ̂.
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Proof. Observe that X̂1/2ŜX̂1/2 − σµ̂I = (X̂1/2ŜX̂1/2 − µ̂I) + (1 − σ)µ̂I. Since the two matrices
on the right-hand side are orthogonal symmetric matrices, we get the desired bounds.

Lemma (6). Assume (X̂, ŷ, Ŝ) ∈ N̂F (β), 0 < β < 1/
√

2. Then for 0 ≤ α ≤ 1,

‖JX̂−1/2(X̂(α)Ŝ(α)− µ̂(α)I)‖F ≤ (1− α)β + αβθ + α2θ2µ̂,

where θ := (β2 + (1− σ)2n)1/2/(1−
√

2β).

Proof. Let δX = µ̂‖X̂−1/2∆̂XX̂−1/2‖F , δS = ‖X̂1/2∆̂SX̂1/2‖F . From Lemma 3 with L := σµ̂I −
X̂Ŝ and ν = µ̂, we see that KX̂−1/2(L) = 0, and get

max {δX , δS} ≤
1

1−
√

2β
‖X̂1/2ŜX̂1/2 − σµ̂I‖F ≤ θµ̂,

using Lemma 5, and
‖J(R)‖F ≤ βδX ≤ βθµ̂,

with R as in Lemma 4. We also have

α2‖JX̂−1/2(∆̂X∆̂S)‖F ≤ α2‖X̂−1/2∆̂XX̂−1/2‖F ‖X̂1/2∆̂SX̂1/2‖F ≤ α2 θµ̂

µ̂
• θµ̂,

and then combining these bounds with Lemma 4 gives the desired result.

Lemma (7). Suppose X̂ � 0, Ŝ � 0, and Q is invertible. Then for any ν > 0,

‖X̂1/2ŜX̂1/2 − νI‖F ≤ ‖JQ(X̂Ŝ − νI)‖F .

Proof. Using Lemma 1(b) with P = X̂−1/2 and R = X̂Ŝ − νI and the fact that JP (X̂Ŝ − νI) =
X̂1/2ŜX̂1/2 − νI and KP (X̂Ŝ − νI) = 0 yields the desired result.

Lemma (8). Let V ∈ Rn×n, Q ∈ Rn×n invertible be given. If ‖JQ(V )−I‖ < 1, then V is invertible.

Proof. Let W = QV Q−1, so JQ(V ) = (W + WT)/2. So all the eigenvalues of (W + WT)/2) are
positive, and so (W + WT)/2 is positive definite. If Wu = 0, then uT(W + WT)u = 0, and so
u = 0; thus, W is invertible, and hence so is V .

Theorem. Suppose (X, y, S) ∈ NF (β), 0 < β < 1/
√

2, and 0 ≤ δ <
√

n are such that

2(β2 + δ2)
(1−

√
2β)2

1
1− δ/

√
n

= γ < 1.

If (∆X, ∆y, ∆S) is defined at (X, y, S) using any invertible P and σ = 1− δ/
√

n, then

(a) (X(1), y(1), S(1)) ∈ NF (γ), and

(b) X(1) • S(1) = (1− δ√
n
)X • S.
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Proof. Define the scaled iterate (X̂, ŷ, Ŝ) as usual. Part (b) is immediate from Lemma 4. We now
show part (a). From Lemma 6, using β ≤ θ and α ≤ 1,

‖JX̂−1/2(X̂(α)Ŝ(α)− µ̂(α)I)‖F ≤ ((1− α)β + 2αθ2)µ̂

=
(

(1− α)β + 2α
β2 + δ2

(1−
√

2β)2

)
µ̂

= ((1− α)β + ασγ) µ̂

≤ (max {β, γ})µ̂(α),

for every 0 ≤ α ≤ 1. So, dividing by µ̂(α), we have

‖JX̂−1/2

(
X̂(α)Ŝ(α)

µ̂(α)
− I

)
‖F < 1.

So by Lemma 8, X̂(α)Ŝ(α) is invertible. Then both X̂(α) and Ŝ(α) must be positive definite for
0 ≤ α ≤ 1. We also get

‖JX̂−1/2(X̂(1)Ŝ(1)− µ̂(1)I)‖F ≤ γµ̂(1).

Then Lemma 7 gives
‖X̂1/2(1)Ŝ(1)X̂1/2 − µ̂(1)I‖F ≤ γµ̂(1),

so (X̂(1), ŷ(1), Ŝ(1)) is in the required neighborhood. (Showing that the linear constraints are
satisfied is easy using the equations defining the directions.) Scaling back yields (a).

If β = 1/10 and δ = 1/7, then γ < 1/10. Hence the theorem above implies Theorem 2 in
Lecture 18 by an easy induction.
N.B. The preceding results are due to Renato Monteiro.
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