Semidefinite Programming
 OR 6327 Spring 2012
 Scribe: Ilker Birbil

Lecture 19

We shall devote the next two lectures to proving Proposition 2 and Theorem 2 stated on March 29 (Lecture 18). This effort will require us to show a series of lemmas. We first need to relate different norms because the update of $X S$ is much more straightforward than that of $X^{\frac{1}{2}} S X^{\frac{1}{2}}$. (The hard part of the proof is showing that the iterates remain in the neighborhood of the central path.)
Some notation: For any $R \in \mathbb{R}^{n \times n}$, we will denote its symmetric part $\left(R+R^{T}\right) / 2$ by $J(R)$ and its skew-symmetric part $\left(R-R^{T}\right) / 2$ by $K(R)$. Similarly,

$$
J_{P}(R):=J\left(P R P^{-1}\right) \text { and } K_{P}(R):=K\left(P R P^{-1}\right)
$$

Lemma 1 For every $R \in \mathbb{R}^{n \times n}$, we have the following:
(a) $\operatorname{trace}\left(R^{2}\right)=\|J(R)\|_{F}^{2}-\|K(R)\|_{F}^{2}$ and $\|R\|_{F}^{2}=\|J(R)\|_{F}^{2}+\|K(R)\|_{F}^{2}$.
(b) For every pair P, Q of invertible matrices in $\mathbb{R}^{n \times n}$, we can write

$$
\left\|J_{P}(R)\right\|_{F}^{2}-\left\|K_{P}(R)\right\|_{F}^{2}=\left\|J_{Q}(R)\right\|_{F}^{2}-\left\|K_{Q}(R)\right\|_{F}^{2}
$$

Proof: (a) Let $J=J(R)$ and $K=K(R)$. Then, $R=J+K$ and $R^{2}=J^{2}+J K+K J+K^{2}$. But

$$
J \bullet K=\operatorname{trace}(J K)=\operatorname{trace}(K J)=\operatorname{trace}\left(J K^{T}\right)=-\operatorname{trace}(J K)=0
$$

and so

$$
\operatorname{trace}\left(R^{2}\right)=\operatorname{trace}\left(J^{T} J\right)-\operatorname{trace}\left(K^{T} K\right)=\|J\|_{F}^{2}-\|K\|_{F}^{2} .
$$

Also,

$$
\|R\|_{F}^{2}=\operatorname{trace}\left(R^{T} R\right)=\operatorname{trace}((J-K)(J+K))=\operatorname{trace}\left(J^{2}\right)-\operatorname{trace}\left(K^{2}\right)=\|J\|_{F}^{2}+\|K\|_{F}^{2} .
$$

(b) We have

$$
\left\|J_{P}(R)\right\|_{F}^{2}-\left\|K_{P}(R)\right\|_{F}^{2}=\left\|J\left(P R P^{-1}\right)\right\|_{F}^{2}-\left\|K\left(P R P^{-1}\right)\right\|_{F}^{2} .
$$

Then, by using part a), we obtain

$$
\left\|J_{P}(R)\right\|_{F}^{2}-\left\|K_{P}(R)\right\|_{F}^{2}=\operatorname{trace}\left(\left(P R P^{-1}\right)^{2}\right)=\operatorname{trace}\left(R^{2}\right),
$$

which is independent of P.
Lemma 2 Suppose $R \in \mathbb{R}^{m \times n}$ has $J_{P}(R)=0$ for some invertible P. Then,
(a) $\|J(R)\|_{F} \leq \frac{1}{\sqrt{2}}\|R\|_{F} \leq\|K(R)\|_{F}$.
(b) If $R=S+T, S \in \mathbb{M}^{n}$, then $\|S\|_{F} \leq \sqrt{2}\|T\|_{F}$.

Proof: (a) Take $Q=I$ in Lemma 1(b) to get $\|J(R)\|_{F}^{2}-\|K(R)\|_{F}^{2} \leq 0$. So

$$
2\|J(R)\|_{F}^{2} \leq\|J(R)\|_{F}^{2}+\|K(R)\|_{F}^{2} \leq 2\|K(R)\|_{F}^{2}
$$

(b) Note that $J(R)=J(S)+J(T)=S+J(T)$ and $K(R)=K(S)+K(T)=K(T)$. By using the triangle inequality, we obtain

$$
\begin{aligned}
\|S\|_{F} & \leq\|S+J(T)\|_{F}+\|J(T)\|_{F} \\
& =\|J(R)\|_{F}+\|J(T)\|_{F} \\
& \leq\|K(R)\|_{F}+\|J(T)\|_{F} \\
& =\|K(T)\|_{F}+\|J(T)\|_{F} \\
& \leq \sqrt{2}\left(\|J(T)\|_{F}^{2}+\|K(T)\|_{F}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Lemma 3 Let $\widehat{X} \succ 0$ and $\widehat{S} \succ 0$ with

$$
\left\|\widehat{X}^{\frac{1}{2}} \widehat{S} \widehat{X}^{\frac{1}{2}}-\nu I\right\| \leq \beta \nu, \quad 0 \leq \beta \leq \frac{1}{\sqrt{2}}
$$

for some $\nu>0$. Suppose $L \in \mathbb{R}^{n \times n}$ and $U, V \in \mathbb{M}^{n}$ satisfy

$$
\begin{equation*}
J(U \widehat{S}+\widehat{X} V)=J(L), \quad U \bullet V \geq 0 \tag{1}
\end{equation*}
$$

Then with

$$
\delta_{U}:=\nu\left\|\widehat{X}^{-\frac{1}{2}} U \widehat{X}^{-\frac{1}{2}}\right\|_{F}, \quad \delta_{V}:=\left\|\widehat{X}^{\frac{1}{2}} V \widehat{X}^{\frac{1}{2}}\right\|_{F},
$$

and

$$
E:=\widehat{X}^{-\frac{1}{2}}(U \widehat{S}+\widehat{X} V-L) \widehat{X}^{\frac{1}{2}}
$$

we have

$$
\max \left\{\delta_{U}, \delta_{V}\right\} \leq \frac{1}{1-\sqrt{2} \beta}\left(\sqrt{2}\left\|K_{\hat{X}^{-\frac{1}{2}}}(L)\right\|_{F}+\left\|J_{\widehat{X}^{-\frac{1}{2}}}(L)\right\|_{F}\right)
$$

and

$$
\|J(E)\|_{F} \leq\|K(E)\|_{F} \leq \beta \delta_{U}+\left\|K_{\hat{X}^{-\frac{1}{2}}}(L)\right\|_{F}
$$

Proof: Let $E=S+T$, where

$$
S=\widehat{X}^{\frac{1}{2}} V \widehat{X}^{\frac{1}{2}}+\nu \widehat{X}^{-\frac{1}{2}} U \widehat{X}^{-\frac{1}{2}}-J_{\widehat{X}^{-\frac{1}{2}}}(L)
$$

and

$$
T=\left(\widehat{X}^{-\frac{1}{2}} U \widehat{X}^{-\frac{1}{2}}\right)\left(\widehat{X}^{\frac{1}{2}} \widehat{S} \widehat{X}^{\frac{1}{2}}-\nu I\right)-K_{\widehat{X}^{-\frac{1}{2}}}(L)
$$

But $J_{\widehat{X}^{\frac{1}{2}}}(E)=0$; so by Lemma $2(\mathrm{~b})$ we have $\|S\|_{F} \leq \sqrt{2}\|T\|_{F}$. Also, using $\|A B\|_{F} \leq$ $\|A\|_{F}\|B\|$,

$$
\begin{equation*}
\|T\|_{F} \leq\left(\frac{\delta_{U}}{\nu}\right)(\nu \beta)+\left\|K_{\widehat{X}^{-\frac{1}{2}}}(L)\right\|_{F} . \tag{2}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\max \left\{\delta_{U}, \delta_{V}\right\} & \leq\left(\delta_{U}^{2}+\delta_{V}^{2}\right)^{\frac{1}{2}} \\
& \leq\left\|\widehat{X}^{\frac{1}{2}} V \widehat{X}^{\frac{1}{2}}+\nu \widehat{X}^{-\frac{1}{2}} U \widehat{X}^{-\frac{1}{2}}\right\|_{F} \\
& =\| S+J \\
& \leq \sqrt{2}\|T\|_{F}+\left.\left\|\widehat{\widehat{X}}^{-\frac{1}{2}}(L)\right\|\right|_{F} \\
& \leq \sqrt{2}\left(\beta \delta_{U}+\left\|K_{\widehat{X}^{-\frac{1}{2}}}(L)\right\|_{F}\right. \\
& \leq \sqrt{2} \beta \max \left\{\delta_{U}, \delta_{V}\right\}+\sqrt{2}\left\|K_{\widehat{X}^{-\frac{1}{2}}}(L)\right\|_{F}+\left\|\widehat{X}_{\widehat{X}^{-\frac{1}{2}}}(L)\right\|_{F} \\
&
\end{aligned}
$$

where the second inequality follows from $U \bullet V \geq 0$ and the last but one from (2). This gives the bound on $\max \left\{\delta_{U}, \delta_{V}\right\}$. Also, Lemma 2(a) shows that $\|J(E)\|_{F} \leq\|K(E)\|_{F}$ and

$$
\|K(E)\|_{F}=\|K(T)\|_{F} \leq\|T\|_{F} \leq \beta \delta_{U}+\left\|K_{\widehat{X}^{-\frac{1}{2}}}(L)\right\|_{F}
$$

following again by relation (2).
Proof of Proposition 2 (March 29, Lecture 18): Suppose X and S are as in the proposition and let $\widehat{X}=P X P^{T}$ and $\widehat{S}=P^{-T} S P^{-1}$ for the invertible P used in defining the directions. If λ is the vector of eigenvalues of $X^{\frac{1}{2}} S X^{\frac{1}{2}}$, then $\|\lambda-\nu e\|_{\infty} \leq \beta \nu$. However, $\widehat{X}^{\frac{1}{2}} \widehat{S} \widehat{X}^{\frac{1}{2}}$ is similar to $\widehat{X} \widehat{S}$, which is similar to $X S$, and which is in turn similar to $X^{\frac{1}{2}} S X^{\frac{1}{2}}$ (i.e., they have the same eigenvalues). Thus,

$$
\left\|\widehat{X}^{\frac{1}{2}} S \widehat{X}^{\frac{1}{2}}-\nu I\right\| \leq \beta \nu
$$

which shows that we can use Lemma 3. We want to show that there exists a unique solution to

$$
\begin{aligned}
\widehat{\mathcal{A}}^{*} \widehat{\Delta y}+\widehat{\Delta S} & =0, \\
\widehat{\mathcal{A}} \widehat{\Delta X} & =0, \\
J(\widehat{\Delta X} \widehat{S}+\widehat{X} \widehat{\Delta S}) & =J(\nu I-\widehat{X} \widehat{S}) .
\end{aligned}
$$

Suppose U, w, V is solution to the corresponding homogeneous equations. Then, U and V satisfy relation (1) with $L=0$. Lemma 3 then shows that $\max \left\{\delta_{U}, \delta_{V}\right\} \leq 0$, so $U=V=0$. Then, $w=0$ since the A_{i} 's are linearly independent. Therefore, there is a unique solution to the direction equations.

