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We shall devote the next two lectures to proving Proposition 2 and Theorem 2 stated on
March 29 (Lecture 18). This effort will require us to show a series of lemmas. We first need
to relate different norms because the update of XS is much more straightforward than that of

X
1
2SX

1
2 . (The hard part of the proof is showing that the iterates remain in the neighborhood

of the central path.)

Some notation: For any R ∈ Rn×n, we will denote its symmetric part (R + RT )/2 by J(R)
and its skew-symmetric part (R−RT )/2 by K(R). Similarly,

JP (R) := J(PRP−1) and KP (R) := K(PRP−1).

Lemma 1 For every R ∈ Rn×n, we have the following:

(a) trace (R2) = ‖J(R)‖2
F − ‖K(R)‖2

F and ‖R‖2
F = ‖J(R)‖2

F + ‖K(R)‖2
F .

(b) For every pair P , Q of invertible matrices in Rn×n, we can write

‖JP (R)‖2
F − ‖KP (R)‖2

F = ‖JQ(R)‖2
F − ‖KQ(R)‖2

F .

Proof: (a) Let J = J(R) and K = K(R). Then, R = J + K and R2 = J2 + JK + KJ + K2.
But

J •K = trace (JK) = trace (KJ) = trace (JKT ) = −trace (JK) = 0

and so
trace (R2) = trace (JT J)− trace (KT K) = ‖J‖2

F − ‖K‖2
F .

Also,

‖R‖2
F = trace (RT R) = trace ((J −K)(J + K)) = trace (J2)− trace (K2) = ‖J‖2

F + ‖K‖2
F .

(b) We have
‖JP (R)‖2

F − ‖KP (R)‖2
F = ‖J(PRP−1)‖2

F − ‖K(PRP−1)‖2
F .

Then, by using part a), we obtain

‖JP (R)‖2
F − ‖KP (R)‖2

F = trace ((PRP−1)2) = trace (R2),

which is independent of P . ut

Lemma 2 Suppose R ∈ Rm×n has JP (R) = 0 for some invertible P . Then,

(a) ‖J(R)‖F ≤ 1√
2
‖R‖F ≤ ‖K(R)‖F .

(b) If R = S + T , S ∈ Mn, then ‖S‖F ≤
√

2‖T‖F .
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Proof: (a) Take Q = I in Lemma 1(b) to get ‖J(R)‖2
F − ‖K(R)‖2

F ≤ 0. So

2‖J(R)‖2
F ≤ ‖J(R)‖2

F + ‖K(R)‖2
F ≤ 2‖K(R)‖2

F .

(b) Note that J(R) = J(S) + J(T ) = S + J(T ) and K(R) = K(S) + K(T ) = K(T ). By using
the triangle inequality, we obtain

‖S‖F ≤ ‖S + J(T )‖F + ‖J(T )‖F

= ‖J(R)‖F + ‖J(T )‖F

≤ ‖K(R)‖F + ‖J(T )‖F

= ‖K(T )‖F + ‖J(T )‖F

≤
√

2 (‖J(T )‖2
F + ‖K(T )‖2

F )
1
2 . ut

Lemma 3 Let X̂ � 0 and Ŝ � 0 with

‖X̂
1
2 ŜX̂

1
2 − νI‖ ≤ βν, 0 ≤ β ≤ 1√

2

for some ν > 0. Suppose L ∈ Rn×n and U, V ∈ Mn satisfy

J(UŜ + X̂V ) = J(L), U • V ≥ 0. (1)

Then with

δU := ν‖X̂−1
2UX̂−1

2‖F , δV := ‖X̂
1
2V X̂

1
2‖F ,

and

E := X̂−1
2 (UŜ + X̂V − L)X̂

1
2 ,

we have

max{δU , δV } ≤
1

1−
√

2β

(√
2‖K bX−1

2
(L)‖F + ‖J bX−1

2
(L)‖F

)
and

‖J(E)‖F ≤ ‖K(E)‖F ≤ βδU + ‖K bX−1
2
(L)‖F .

Proof: Let E = S + T , where

S = X̂
1
2V X̂

1
2 + νX̂−1

2UX̂−1
2 − J bX−1

2
(L)

and

T =

(
X̂−1

2UX̂−1
2

) (
X̂

1
2 ŜX̂

1
2 − νI

)
−K bX−1

2
(L).

But J bX 1
2
(E) = 0; so by Lemma 2(b) we have ‖S‖F ≤

√
2‖T‖F . Also, using ‖AB‖F ≤

‖A‖F‖B‖,

‖T‖F ≤
(

δU

ν

)
(νβ) + ‖K bX−1

2
(L)‖F . (2)
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Thus,

max{δU , δV } ≤ (δ2
U + δ2

V )
1
2

≤ ‖X̂
1
2V X̂

1
2 + νX̂−1

2UX̂−1
2‖F

= ‖S + J bX−1
2
(L)‖|F

≤
√

2‖T‖F + ‖J bX−1
2
(L)‖F

≤
√

2

(
βδU + ‖K bX−1

2
(L)‖F

)
+ ‖J bX−1

2
(L)‖F

≤
√

2β max{δU , δV }+
√

2‖K bX−1
2
(L)‖F + ‖J bX−1

2
(L)‖F ,

where the second inequality follows from U • V ≥ 0 and the last but one from (2). This gives
the bound on max{δU , δV }. Also, Lemma 2(a) shows that ‖J(E)‖F ≤ ‖K(E)‖F and

‖K(E)‖F = ‖K(T )‖F ≤ ‖T‖F ≤ βδU + ‖K bX−1
2
(L)‖F

following again by relation (2). ut
Proof of Proposition 2 (March 29, Lecture 18): Suppose X and S are as in the

proposition and let X̂ = PXP T and Ŝ = P−T SP−1 for the invertible P used in defining the

directions. If λ is the vector of eigenvalues of X
1
2SX

1
2 , then ‖λ − νe‖∞ ≤ βν. However,

X̂
1
2 ŜX̂

1
2 is similar to X̂Ŝ, which is similar to XS, and which is in turn similar to X

1
2SX

1
2 (i.e.,

they have the same eigenvalues). Thus,

‖X̂
1
2SX̂

1
2 − νI‖ ≤ βν,

which shows that we can use Lemma 3. We want to show that there exists a unique solution to

Â∗∆̂y + ∆̂S = 0,

Â∆̂X = 0,

J(∆̂XŜ + X̂∆̂S) = J(νI − X̂Ŝ).

Suppose U,w, V is solution to the corresponding homogeneous equations. Then, U and V
satisfy relation (1) with L = 0. Lemma 3 then shows that max{δU , δV } ≤ 0, so U = V = 0.
Then, w = 0 since the Ai’s are linearly independent. Therefore, there is a unique solution to
the direction equations. ut
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