Scale-invariance

We'll say a direction is scale-invariant, if whenever it gives $(\Delta X, \Delta y, \Delta S)$ at (X, y, S) for a given pair of problems, it gives $\left(U \Delta X U^{T}, \Delta y, U^{-T} \Delta S U^{-1}\right)$ at $\left(U X U^{T}, y, U^{-T} S U^{-1}\right)$ for the corresponding scaled problems.

Proposition 1 The primal, dual, HKM and dual HKM directions are all scale-invariant, while the AHO direction is not.

Proof: We'll just consider the HKM direction. Suppose

$$
\begin{aligned}
& \Delta X+\left(X \odot S^{-1}\right) \Delta S=\nu S^{-1}-X ; \text { or } \\
& \Delta X+\frac{1}{2} X \Delta S S^{-1}+\frac{1}{2} S^{-1} \Delta S X=\nu S^{-1}-X
\end{aligned}
$$

Pre- and post multiply by U and U^{T} to get

$$
\begin{aligned}
& \left(U \Delta X U^{T}\right)+\frac{1}{2}\left(U X U^{T}\right)\left(U^{-T} \Delta S U^{-1}\right)\left(U S^{-1} U^{T}\right)+\frac{1}{2}\left(U S^{-1} U^{T}\right)\left(U^{-T} \Delta S U^{-1}\right)\left(U X U^{T}\right) \\
= & \nu U S^{-1} U^{T}-U X U^{T}
\end{aligned}
$$

and so $\left(U \Delta X U^{T}\right)+\left(\left(U X U^{T}\right) \odot\left(U^{-T} S U^{-1}\right)\right) U^{-T} \Delta S U^{-1}=\nu\left(U^{-T} S U^{-1}\right)^{-1}-\left(U X U^{T}\right)$,
which defines the HKM direction for the scaled problems.

Nesterov-Todd direction

In some sense, the Nesterov-Todd direction is 'halfway between" primal and dual directions, and the HKM and dual HKM directions.

$$
\begin{array}{cc}
\left(\nu^{-\frac{1}{2}} X\right)^{-1} \Delta X\left(\nu^{-\frac{1}{2}} X\right)^{-1}+\Delta S=\nu X^{-1}-S \quad \leftarrow \text { primal } \\
\left(\Delta X+\left(\nu^{-\frac{1}{2}} S\right)^{-1} \Delta S\left(\nu^{-\frac{1}{2}} S\right)^{-1}=\nu S^{-1}-X \quad \leftarrow\right. \text { dual }
\end{array}
$$

Suppose we replace $\nu^{-\frac{1}{2}} X$ in the first equation by $W \succ 0$ and $\nu^{-\frac{1}{2}} S$ in the second equation by W^{-1}. We get

$$
\begin{gathered}
W^{-1} \Delta X W^{-1}+\Delta S=\nu X^{-1}-S \\
\Delta X+W \Delta S W=\nu S^{-1}-X
\end{gathered}
$$

These give the same direction as long as $W X^{-1} W=S^{-1}$ and $W S W=X$.
Note that

$$
W S W=X \Longleftrightarrow S^{\frac{1}{2}} W S W S^{\frac{1}{2}}=S^{\frac{1}{2}} X S^{\frac{1}{2}} \text { since } S \succ 0, \text { or }
$$

$$
\left(S^{\frac{1}{2}} W S^{\frac{1}{2}}\right)^{2}=S^{\frac{1}{2}} X S^{\frac{1}{2}}
$$

So $W:=W(X, S):=S^{-\frac{1}{2}}\left(S^{\frac{1}{2}} X S^{\frac{1}{2}}\right)^{\frac{1}{2}} S^{-\frac{1}{2}}$ satisfies $W S W=X$, which implies $W^{-1} X=S W$ (and so $W^{-1} S^{-1} W^{-1}=X^{-1}$, and $W X^{-1} W=S^{-1}$).

This gives the Nesterov-Todd (NT) direction, corresponding to

$$
\begin{gathered}
\mathcal{E}=\mathcal{I}, \\
\mathcal{F}=W \odot W \\
R_{E F}=\nu S^{-1}-X .
\end{gathered}
$$

(Alternatively, $\mathcal{E}=W^{-1} \odot W^{-1}, \mathcal{F}=\mathcal{I}, R_{E F}=\nu X^{-1}-S$, so the direction can be seen as in between the HKM and dual HKM directions.) Since \mathcal{E} is invertible and $\mathcal{E}^{-1} \mathcal{F}=W \odot W$ is positive definite, the NT direction is well-defined for all $X \succ 0, S \succ 0$.

Exercise: Show that the NT direction is self-dual and scale-invariant.
Summary Table:

	Directions depends on primal and dual	Well-defined	Self-dual	Scaling-invariant
Primal	X	$\sqrt{ }$	X	$\sqrt{ }$
Dual	X	$\sqrt{ }$	X	$\sqrt{ }$
AHO	$\sqrt{ }$	X	$\sqrt{ }$	X
HKM	$\sqrt{ }$	$\sqrt{ }$	X	$\sqrt{ }$
Dual HKM	$\sqrt{ }$	$\sqrt{ }$	X	$\sqrt{ }$
NT	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Remarks:

W is called the metric geometric mean of X and S^{-1}. Also, $W^{\frac{1}{2}} S W^{\frac{1}{2}}=W^{-\frac{1}{2}} X W^{-\frac{1}{2}}$, so $P=U=W^{-\frac{1}{2}}$ scales X and S to the same matrix, which obviously commutes with itself. The matrix $W^{\frac{1}{2}} S W^{\frac{1}{2}}=W^{-\frac{1}{2}} X W^{-\frac{1}{2}}$ is called the spectral geometric mean of X and S.

Theorem 1 The NT direction lies in the MZ family, corresponding to $P=W^{-\frac{1}{2}}, M=W^{-1}$.

Proof: Let $(\Delta X, \Delta y, \Delta S)$ be the NT direction, and consider (using $W^{-1} X=S W$)

$$
\begin{aligned}
\left(W^{-1} \odot S\right) \Delta X+\left(W^{-1} X \odot I\right) \Delta S & =\frac{1}{2}\left(W^{-1} \Delta X S+S \Delta X W^{-1}+S W \Delta S+\Delta S W S\right) \\
& =\frac{1}{2}\left(W^{-1} \Delta X S+\Delta S W S+S \Delta X W^{-1}+S W \Delta S\right) \\
& =\frac{1}{2}\left(W^{-1}(\Delta X+W \Delta S W) S+S(\Delta X+W \Delta S W) W^{-1}\right) \\
& =\frac{1}{2}\left(W^{-1}\left(\nu S^{-1}-X\right) S+S\left(\nu S^{-1}-X\right) W^{-1}\right) \\
& =\frac{1}{2}\left(\nu W^{-1}-W^{-1} X S+\nu W^{-1}-S X W^{-1}\right) \\
& =\nu W^{-1}-\frac{1}{2} W^{-1} X S-\frac{1}{2} S X W^{-1}
\end{aligned}
$$

so we satisfy the last equation corresponding to

$$
P=W^{-\frac{1}{2}}, M=W^{-1}
$$

To complete the proof, we show that this choice of P and M gives a unique direction. It suffices that \mathcal{E}^{-1} exists and $\mathcal{E}^{-1} \mathcal{F}$ is positive definite, with

$$
\mathcal{E}=W^{-1} \odot S, \quad \mathcal{F}=\left(W^{-1} X \odot I\right)
$$

so \mathcal{E} is self-adjoint and positive definite, so invertible.

Let $0 \neq V \in \mathbb{M}^{n}$. Let $U=\left(W^{-1} \odot S\right)^{-1} V \neq 0$. Then

$$
\begin{aligned}
V \bullet \mathcal{E}^{-1} \mathcal{F} V & =\left(\mathcal{E}^{-1} V\right) \bullet \mathcal{F} V \\
& =U \bullet \mathcal{F E} U \\
& =\frac{1}{2} U \bullet\left(\mathcal{F}\left(W^{-1} U S+S U W^{-1}\right)\right) \\
& =\frac{1}{4} U \bullet\left(W^{-1} X W^{-1} U S+W^{-1} X S U W^{-1}+W^{-1} U S X W^{-1}+S U W^{-1} X W^{-1}\right) \\
& =\frac{1}{4}\left(\operatorname{tr}(U S U S)+\operatorname{tr}(U S U S)+\operatorname{tr}\left(U S W S U W^{-1}\right)+\operatorname{tr}\left(U W^{-1} U S W S\right)\right) \\
& =\frac{1}{2}\left\|S^{\frac{1}{2}} U S^{\frac{1}{2}}\right\|_{F}^{2}+\frac{1}{2}\left\|W^{-\frac{1}{2}} U(S W S)^{\frac{1}{2}}\right\|_{F}^{2}>0 .
\end{aligned}
$$

Short-Step Algorithm

- Choose $0<\beta<\frac{1}{\sqrt{2}}, 0<\delta<1$, and $\epsilon>0$. Suppose we have $\left(X_{0}, y_{0}, S_{0}\right) \in \mathcal{N}_{F}(\beta)$.
- Iteration $k(k=0,1, \ldots)$
- Let $(X, y, S)=\left(X_{k}, y_{k}, S_{k}\right) \in \mathcal{N}_{F}(\beta)$ and stop if $X_{k} \bullet S_{k} \leq \epsilon\left(X_{0} \bullet S_{0}\right)$. Otherwise, $\mu:=\mu_{k}:=\frac{X_{k} \bullet S_{k}}{n}, \nu:=\sigma \mu:=\left(1-\frac{\delta}{\sqrt{n}}\right) \mu$.
- Then compute the direction $(\Delta X, \Delta y, \Delta S)$ from the MZ family equations using some invertible $P:=P_{k}$. Set $\left(X_{k+1}, y_{k+1}, S_{k+1}\right)=(X, y, S)+(\Delta X, \Delta y, \Delta S)$.

We first state the main results and then prove a set of lemmas to establish them:
Proposition 2 : Let $(X, y, S) \in \mathcal{N}_{\infty}(\beta)$ for $0<\beta<\frac{1}{\sqrt{2}}$. Let $0 \leq \sigma \leq 1$ and $\nu=\sigma \mu=\sigma \bullet \frac{X \bullet S}{n}$. Then, for any invertible P, the corresponding direction $(\Delta X, \Delta y, \Delta S)$ is well-defined.

Theorem 2 : Suppose $\beta=\frac{1}{10}, \delta=\frac{1}{7}$; then for the Short-Step Algorithm:
(i). $\left(X_{k}, y_{k}, S_{k}\right)$ is well-defined for all k;
(ii). $\left(X_{k}, y_{k}, S_{k}\right) \in \mathcal{N}_{F}(\beta)$ for all k;
(iii). $X_{k+1} \bullet S_{k+1}=\left(1-\frac{\delta}{\sqrt{n}}\right)\left(X_{k} \bullet S_{k}\right)$ for all k; and
(iv). the algorithm terminates within $O\left(\sqrt{n} \ln \frac{1}{\mathcal{E}}\right)$ iterations.

