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So far, we have:

• the primal direction, given by:

E = νX−1 �X−1, F = I, REF = νX−1 − S,

• the dual direction, given by:

E = I, F = νS−1 � S−1, REF = νS−1 −X,

• the HRVW-KSH direction, given by:

E = I, F = X � S−1, REF = νS−1 −X,

• and the AHO direction, given by:

E = S � I, F = X � I, REF = νI − 1
2
(XS + SX).

Note that every direction/method has a dual obtained by re-writing (P) in dual form, rewriting
(D) in primal form, applying the original direction/method to the new problems at the iterate (S, X),
and obtaining (∆S, ∆X).

The dual of the primal (dual) direction is the dual (primal) direction, and the AHO direction is
self-dual. The dual of the HRVW-KSH direction is called the “dual HRVW-KSH direction” and is
defined by:

E = S �X−1, F = I, REF = νX−1 − S.

Before putting these directions (except for the first two) into a common framework, we revisit the
question of whether the directions are well-defined.

Proposition 1 Suppose that G � 0, H � 0. Then, G � H, viewed as an operator on Mn, is self-
adjoint and positive definite. Moreover, (G�G)−1 = G−1 �G−1.

Proof: Choose U, V ∈ Mn. Then,

U • (G�H)(V ) = trace
(

U

(
1
2
GV H +

1
2
HV G

))
=

1
2
trace (UGV H) +

1
2
trace (UHV G)

=
1
2
trace

((
H1/2UG1/2

)(
G1/2V H1/2

))
+

1
2
trace (GV HU)

=
1
2
trace

((
H1/2UG1/2

)(
G1/2V H1/2

))
+

1
2
trace

((
H1/2UG1/2

)(
G1/2V H1/2

))
=

(
G1/2UH1/2

)
•
(
G1/2V H1/2

)
=

(
G1/2V H1/2

)
•
(
G1/2UH1/2

)
= V • (G�H)(U).

1



In particular if V = U , we get

U • (G�H)(U) = ‖G1/2UH1/2‖2
F > 0,

for U 6= 0. ut
Hence, in all the examples above, E is self-adjoint and positive definite, and so E−1F is positive

definite for the primal, dual, HRVW-KSH, and dual HRVW-KSH directions.
This omits the AHO direction, which may not be well-defined, as we will see in the following

example.

Example 1

m = 1, A1 =
(
−1

√
2√

2 0

)
,

X =
(

1
√

2√
2 3

)
, S =

(
1 0
0 11

)
.

Then, AE−1FA∗ is a 1× 1 matrix. We start by computing FA∗ as follows.

FA∗ = FA1 =
1
2
(XA1 + A1X)

=
1
2

((
1

√
2

2
√

2 2

)
+
(

1 2
√

2√
2 2

))
=

(
1 3/

√
2

3/
√

2 2

)
.

Next, we compute E−1FA1. Recall that E = S � I. So,

(S � I)
(

a b
b c

)
=

1
2

(
S

(
a b
b c

)
+
(

a b
b c

)
S

)
=

1
2

((
a b

11b 11c

)
+
(

a 11b
b 11c

))
=

(
a 6b
6b 11c

)
,

which means that

(S � I)−1FA1 =

(
1 1

2
√

2
1

2
√

2
2
11

)
,

obtained by reversing the action of (S � I), by dividing the off-diagonal entries by 6 and the (2, 2)
entry by 11.

Hence,

A1 • E−1FA1 = trace

((
−1

√
2√

2 0

)( 1 1
2
√

2
1

2
√

2
2
11

))
= 0.

Moreover, the corresponding right-hand side is −AE−1REF , which turns out to be nonzero for any
positive ν. Therefore, there is no solution to the system.

[In fact, the AHO direction is well-defined if (X, y, S) ∈ N∞(β) for β < 1√
2
, as we shall see.]
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We now see how all of our directions can be viewed in a unified framework, as follows:

• First, apply a similarity transformation to the last equation, to get:

PX̃S̃P−1 = νI,

where P ∈ Rn×n is invertible.

• Then, symmetrize the left-hand side, to get

1
2
PX̃S̃P−1 +

1
2
P−T S̃X̃P T = νI.

Note that this also defines the central path, since PX̃S̃P−1 is similar to X̃1/2S̃X̃1/2, which is
symmetric. So, it has all real eigenvalues, and we can use the same argument we used for the
AHO direciton.

• Now, linearize at the current iterates to get

1
2
P∆XSP−1 +

1
2
P−T S∆XP T +

1
2
PX∆SP−1 +

1
2
P−T ∆SXP T

= νI − 1
2
PXSP−1 − 1

2
P−T SXP T ,

or,

(P � P−T S)(∆X) + (PX � P−T )(∆S) = νI − 1
2
PXSP−1 − 1

2
P−T SXP T .

Or, pre-multiplying by P T and post-multiplying by P :

(M � S)(∆X) + (MX � I)(∆S) = νM − 1
2
MXS − 1

2
SXM,

where M := P T P � 0.

We observe that ∆X and ∆S depend on P only through M := P T P . So, we can assume that
P = M1/2 � 0.

Note that

– If M = I, P = I, then we get the AHO direction.

– If M = X−1, P = X−1/2, then we get the dual HRVW-KSH direction.

– If M = S, P = S1/2, then we get (after pre and post-multiplying by S−1) the HRVW-KSH
direction.

This way of deriving the HRVW-KSH directions is due to Monteiro. So, we’ll use “HKM” and
“dual HKM” to refer to these directions from now on.

Zhang developed the approach for general P , so any such direction is in the MZ (Monteiro-Zhang)
family.

Note: If we scale the problems as follows:

X̃ → X̂ = PX̃P T ,

S̃ → Ŝ = P−T S̃P−1,
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then X̃S̃ is transformed to X̂Ŝ = PX̃S̃P−1. Hence, the MZ approach can be viewed as scaling X̃
to X̂ = PX̃P T and S̃ to Ŝ = P−T S̃P−1, applying the AHO formula in the scaled space, and then
scaling the directions back to get

∆X = P−1∆̂XP−T ,

∆S = P−1∆̂SP.

Remark 1 The AHO scaling leaves X and S unchanged. The HKM scaling sends X to S1/2XS1/2

and S to I. The dual HKM scaling sends X to I and S to X1/2SX1/2. Also note that the last two
directions make the scaled iterates commute.

Another viewpoint on scaling

Think of X as the matrix representation of a self-adjoint, positive definite linear operator χ : V → V ∗

from an n-dimensional real vector space V into its dual, V ∗. Then, let 〈·, ·〉 → R be the pairing of V ∗

and V , so
〈χv, v̄〉 = 〈χv̄, v〉

and
〈χv, v〉 > 0, ∀v 6= 0,

since χ is self-adjoint and positive definite.
Choose a basis (b1, . . . , bn) in V and let X be the matrix with entries:

xij := 〈χbj , bi〉

for all i, j.
If instead we use the basis (c1, . . . , cn) with

ci =
n∑

k=1

pikbk,

where P = (pik) is an invertible matrix, then the new representation turns out to be PXP T .
Similarly, view S as the matrix representation of σ : V ∗ → V , also self-adjoint and positive definite,

with
sij = 〈b∗i , σb∗j 〉,

where (b∗1, . . . , b
∗
n) is a basis for V ∗. In particular, we choose b∗1, . . . , b

∗
n as the dual basis, with:

〈b∗i , bj〉 = δij =
{

0, i 6= j
1, i = j

.

Then, under the corresponding change of dual bases, S transforms to P−T SP−1.
Also, XS is a matrix representation of χσ, where

χσ : V ∗ → V ∗, σχ : V → V.

So, trace (χσ) = trace (σχ) makes sense, but χσ + σχ does not!
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