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Recall that

G(X, y, S; µ) :=

 A∗y + S − C
AX − b

−µX−1 + S

 = 0

defines a path (the central path) as long as its derivative (with respect to X, y, and S) is
invertible. The derivative has the form 0 A∗ I

A 0 0
E 0 F

 .

Theorem The linear system 0 A∗ I
A 0 0
E 0 F

  U
v
W

 =

 P
q
R


has the unique solution

v =
(
AE−1FA∗)−1 (

q −AE−1 (R−FP )
)
,

W = P −A∗v,

U = E−1 (R−FW )

as long as E : Mn 7→ Mn is invertible, E−1F : Mn 7→ Mn is positive definite (but not necessarily
self-adjoint), and the Ais are linearly independent.

This result gives conditions under which the derivative is invertible.

Proof If the linear system has a solution (U, v,W ) then

W = P −A∗v.

Since we’re assuming E is non-singular.

U = E−1 (R−FW )

= E−1(R−FP ) + E−1FA∗v.

Then we must have AU = q, or(
AE−1FA∗) v = q −AE−1 (R−FP ) .
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So we have to show that AE−1FA∗ ∈ Rm×m is non-singular. Suppose a vector y lies in its
nullspace:

AE−1FA∗y = 0, so

yTAE−1FA∗y = 0, so

(A∗y) • E−1F (A∗y) = 0

Since we are assuming that E−1F is positive definite, the last line gives A∗y = 0, and under
the assumption that the Ais are independent, this implies y = 0. So v is unique, implying W
is unique, which implies in turn that U is unique.

Hence the solution, if it exists, is unique, and reversing the argument shows that this
proposed solution indeed solves the system. ut

Corollary The set {X(µ), y(µ), S(µ) : µ > 0} is a differentiable path.

Proof In our case, we have E(·) = µX−1(·)X−1 and F = I, so E−1(·) = µ−1X(·)X = E−1F .
Also

U • E−1F (U)

= U • (µ−1XUX)

= µ−1tr(UXUX)

= µ−1tr(X1/2UX1/2X1/2UX1/2)

= µ−1‖X1/2UX1/2‖2
F ,

which is positive if U 6= 0.
Thus we have demonstrated the assumptions that E is invertible and E−1F is positive

definite, and the implicit function theorem completes the proof. ut

Neighborhoods of the Central Path

Figure 1: F◦(P )×F◦(D)

The central path equations have two linear parts and one
“mildly” nonlinear part. As we approximately follow the path,
we maintain equality in the linear part and somehow measure
the proximity to the central path by a measure of the residual
in the last equation. We define three such measures, and their
corresponding neighborhoods about the central path.

Let µ = µ(X, S) = 1
n
S •X.

‖X1/2SX1/2 − µI‖2
F = tr(X1/2SXSX1/2 − 2µX1/2SX1/2 + µ2I)

= tr((S − µX−1)X(S − µX−1)X)

= ‖S − µX−1‖∗X2

= ‖S + µF ′(X)‖∗X2.
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The right-hand side of the first line is equal to tr(S1/2XSXS1/2 − 2µS1/2XS1/2 + µ2I) =
‖S1/2XS1/2 − µI‖2

F . So by a similar argument ‖S1/2XS1/2 − µI‖F = ‖X1/2SX1/2 − µI‖F =
‖X + µF ′(S)‖∗S = ‖S + µF ′(X)‖∗X .

If we let λ denote the eigenvalues of X1/2SX1/2 then the norm can also be expressed as
‖λ− µe‖2. Note that λ(X1/2SX1/2) = λ(S1/2XS1/2) = λ(XS) = λ(SX) (since these matrices
are all similar).

Similarly, if the operator norm is used instead of the Frobenius norm one can show that
‖X1/2SX1/2 − µI‖ = ‖λ− µe‖∞ .

Finally, we will use the semi-norm maxj(µ−λj), which is a one-sided version of the infinity
norm.

We define, for 0 ≤ β < 1, the neighborhoods

NF (β) :=
{
(X, y, S) ∈ F◦(P )×F◦(D) : ‖X1/2SX1/2 − µI‖F ≤ βµ, µ = µ(X, S)

}
,

N∞(β) :=
{
(X, y, S) ∈ F◦(P )×F◦(D) : ‖X1/2SX1/2 − µI‖ ≤ βµ, µ = µ(X, S)

}
,

N−∞(β) :=
{
(X, y, S) ∈ F◦(P )×F◦(D) : λ(X1/2SX1/2) ≥ (1− β)µe, µ = µ(X,S)

}
.

Note that NF (β) ⊆ N∞(β) ⊆ N−∞(β). In fact, any (X, y, S) ∈ F◦(P ) × F◦(D) lies in
N−∞(β) for β sufficiently close to 1.

Framework for a primal-dual interior point algorithm for SDP

Suppose we have (X0, y0, S0) ∈ N?(β) for some 0 ≤ β < 1 and choice of neighborhood N?.

• Given (Xk, yk, Sk) ∈ N?(β), choose a direction (∆X, ∆y, ∆S) and a step size α such that

(Xk+1, yk+1, Sk+1) = (Xk, yk, Sk) + α(∆X, ∆y, ∆S) ∈ N?(β).

• Repeat until Xk • Sk ≤ εX0 • S0.

Usually the directions are chosen as a Newton step for A∗y + S = C, AX = b and some
symmetrization of XS − νI = 0 where ν = σkµk := σkµ(Xk, Sk) with 0 ≤ σk ≤ 1.

So we’ll need the solution of 0 A∗ I
A 0 0
E 0 F

  ∆X
∆y
∆S

 =

 0
0

REF

 .

[The 0’s are because we have a feasible solution; REF is the residual for the last equation.]

Possible choices of direction

From now on we’ll use (X, y, S) for the current iterate (i.e. (Xk, yk, Sk)) and similarly µ for µk.
(X̃, ỹ, S̃) will indicate generic values in problems and systems of equations.
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Primal Direction: Using S̃ − µX̃−1 = 0 as the third equation, we get

E = νX−1 �X−1

F = I
REF = νX−1 − S,

where P �Q is the operator from Rn×n to Mn defined by (P �Q)H := 1
2
(PHQT + QHT P T ) .

(� is meant to resemble the Kronecker product ⊗; cf. (P ⊗Q) (vec (H)) = vec(QHP T ).) This
is the same as using the Newton method on the primal barrier problem, and so is not really a
primal-dual method.

Dual Direction: Similarly the dual direction corresponds to E = I, F = νS−1�S−1, REF =
νS−1 −X.

We want true primal-dual directions depending on both the primal and the dual iterates,
so we will look further.

AHO Direction: Here is the simplest symmetrization: 1
2

(
X̃S̃ + S̃X̃

)
= νI . This defines

the same path as X̃S̃ = νI. Indeed, if X̃S̃ = νI, then clearly the symmetrized equation

above holds. Conversely, if the symmetrized equation holds, then X̃S̃ − νI = 1
2

(
X̃S̃ − S̃X̃

)
.

Therefore its eigenvalues are both real (eigenvalues of X̃1/2S̃X̃1/2 − νI ) and purely imaginary
(eigenvalues of a skew symmetric matrix) and hence all zero, implying that X̃S̃ − νI = 0.
So these equations define the same central path. Then we get E = S � I, F = X � I,
REF = νI − 1

2
(XS + SX). E is invertible (at a cost) but E−1F may be singular even with

X, S � 0. However, it is invertible as long as (X, y, S) ∈ NF ( 1√
2
). This is the Alizadeh-

Haeberly-Overton (AHO) direction.

HRVW-KSH Direction: The next choice comes from another motivation. We can view
the equations as from Rn×n×Rm×Mn to Mn×Rm×Rn×n and leave X̃S̃ = νI alone [ignoring
symmetry for X]. This gives

∆̂XS + X∆S = νI −XS, or

∆̂X + X∆SS−1 = νS−1 −X.

Note that ∆S is automatically symmetric from the first equation. Now symmetrize ∆̂X to get
∆X satisfying

∆X +
1

2
(X∆SS−1 + S−1∆SX) = νS−1 −X,

i.e. we have E = I, F = X � S−1, REF = νS−1 − X. (Note that, since A∆̂X = 0 and
the Ais are symmetric, we also have A∆X = 0.) This derivation is due to Helmberg, Rendl,
Vanderbei, and Wolkowicz, and also, independently, Kojima, Shindoh, and Hara and so is called
the HRVW-KSH direction.
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