Let's consider the barrier function $F(X):=-\operatorname{lndet}(X)$. Note that the set

$$
\left\{\left(x_{0} ; \bar{x}\right) \in \mathbb{R}^{1+n}: x_{0} \geq\|\bar{x}\|_{2}\right\}
$$

is equal to the set

$$
\left\{\left(x_{0} ; \bar{x}\right) \in \mathbb{R}^{1+n}:\left(\begin{array}{cc}
x_{0} & \bar{x}^{T} \\
\bar{x} & x_{0} I
\end{array}\right) \succeq 0\right\} .
$$

Then, for points in the interior of this cone, we have

$$
\begin{aligned}
-\ln \operatorname{det}\left(\begin{array}{cc}
x_{0} & \bar{x}^{T} \\
\bar{x} & x_{0} I
\end{array}\right) & =-\ln \operatorname{det}\left(x_{0} I\right)-\ln \left(x_{0}-\frac{1}{x_{0}} \bar{x}^{T} \bar{x}\right) \\
& =-n \ln x_{0}-\ln \left(x_{0}-\frac{1}{x_{0}} \bar{x}^{T} \bar{x}\right) \\
& =-(n-1) \ln x_{0}-\ln \left(x_{0}^{2}-\|\bar{x}\|^{2}\right) .
\end{aligned}
$$

But, $-\ln \left(x_{0}^{2}-\|\bar{x}\|^{2}\right)$ is sufficient. It is a 2-logarithmically homogeneous self-concordant barrier.
More generally, if $P \in \mathbb{R}^{m \times n}, m \geq n$, then for $t>\|P\|$,

$$
\begin{aligned}
-\ln \operatorname{det}\left(\begin{array}{cc}
t I_{m} & P \\
P^{T} & t I_{n}
\end{array}\right) & =-\ln \operatorname{det}\left(t I_{m}\right)-\ln \operatorname{det}\left(t I_{n}-P^{T}\left(t I_{m}\right)^{-1} P\right) \\
& =-m \ln t-\ln \operatorname{det}\left(t I_{n}-\frac{1}{t} P^{T} P\right) \\
& =-(m-1) \ln t-\ln \operatorname{det}\left(t I_{n}-\frac{1}{t} P^{T} P\right)-\ln t
\end{aligned}
$$

But the first term $-(m-1) \ln t$ is not necessary; the remaining terms give a $(n+1)$-logarithmically homogeneous self-concordant barrier function. This shows that for certain subsets of the semidefinite cone, there are better barrier functions than F; but in general F above is "optimal."

For the second-order cone, the Carathéodory number (the minimum number of extreme rays to represent any point as a nonnegative linear combination in the cone) is 2 , and the optimal barrier (above) has parameter 2. For SDP the numbers are n and n. This is true for all "symmetric" cones. Notice that the number is much smaller than the dimension of the cone ($1+n$ and $\frac{n(n+1)}{2}$ respectively).

Consider the barrier problems:

$$
\begin{gathered}
\left(B P_{\mu}\right): \min C \bullet X+\mu F(X): \mathcal{A} X=b \\
\left(B D_{\mu}\right): \max b^{T} y-\mu F(S): \mathcal{A}^{*} y+S=C
\end{gathered}
$$

for $\mu>0$. Suppose X is an optimal solution to $\left(B P_{\mu}\right)$, with finite value, so $X \succ 0$. Then by Lagrange's theorem, there is some $y \in \mathbb{R}^{m}$ with $C+\mu F(X)=\mathcal{A}^{*} y$. And setting $S=$ $-\mu F^{\prime}(X)=\mu X^{-1}$, we have a solution to

$$
\begin{array}{rlrl}
\mathcal{A}^{*} y+S & =C, & & S \succ 0 \\
\mathcal{A} X & =b, & X \succ 0 \\
X S & =\mu I, & &
\end{array}
$$

which we denote by (1). Similarly, if (y, S) is an optimal solution to $\left(B D_{\mu}\right)$, then we get $b-\mathcal{A} X=0$ and $\mu F^{\prime}(S)-X=0$ and again we have a solution to (1).

Theorem 1 If $\mathcal{F}^{\circ}(P)$ and $\mathcal{F}^{\circ}(D)$ are nonempty and the A_{i} 's are linearly independent, then for every $\mu>0$, there is a unique solution $(X(\mu), y(\mu), S(\mu))$ to (1). Moreover, $X(\mu)$ solves $\left(B P_{\mu}\right),(y(\mu), S(\mu))$ solves $\left(B D_{\mu}\right)$, and the associated duality gap $X(\mu) \bullet S(\mu)=n \mu$. If one (or both) of $\mathcal{F}^{\circ}(P)$ and $\mathcal{F}^{\circ}(D)$ is empty, then there is no solution to (1) and no solution to $\left(B P_{\mu}\right)$ and $\left(B D_{\mu}\right)$ for any $\mu>0$.

Proof: The conclusion if $\mathcal{F}^{\circ}(P)$ or $\mathcal{F}^{\circ}(D)$ is empty is easy, so assume $\hat{X} \in \mathcal{F}^{\circ}(P)$ and $(\hat{y}, \hat{S}) \in \mathcal{F}^{\circ}(D)$. Then $\left(B P_{\mu}\right)$ can be written as

$$
\begin{array}{cc}
\min & C \bullet X+\mu F(X) \\
& \mathcal{A} X=b \\
& C \bullet X+\mu F(X) \leq C \bullet \hat{X}+\mu F(\hat{X})
\end{array}
$$

Since $C \bullet X-C \bullet \hat{X}=\left(C \bullet X-b^{T} \hat{y}\right)-\left(C \bullet \hat{X}-b^{T} \bullet \hat{y}\right)=\hat{S} \bullet X-\hat{S} \bullet \hat{X}$, then the above system can be written as

$$
\begin{gathered}
C \bullet X+\mu F(X) \\
\min X=b \\
\hat{S} \bullet X+\mu F(X) \leq \hat{S} \bullet \hat{X}+\mu F(\hat{X}):=\alpha
\end{gathered}
$$

Choose σ with $\hat{S} \succeq \sigma I$, so any
feasible X satisfies

$$
\Longrightarrow \quad \begin{aligned}
& \sigma I \bullet X+\mu F(X) \leq \hat{S} \bullet X+\mu F(X) \leq \alpha \\
& \\
& \sum_{j}\left(\sigma \lambda_{j}(X)-\mu \ln \lambda_{j}(X)\right) \leq \alpha
\end{aligned}
$$

It is easy to see each term is minimized by $\lambda_{j}=\lambda=\frac{\mu}{\sigma}$. Let β be the minimum of $\lambda_{j}-\mu \ln \lambda_{j}$. Then for each j,

$$
\sigma \lambda_{j}-\mu \ln \lambda_{j} \leq \alpha-(n-1) \beta .
$$

This shows the existence of $\underline{\lambda}$ and $\bar{\lambda}$ such that $0<\underline{\lambda} \leq \lambda_{j} \leq \bar{\lambda} \leq$ ∞ for all j. Then our problem is
 to minimize a continuous function $(\underline{\lambda}>0)$ on a compact set $(\bar{\lambda}<\infty)$. So there exists an optimal X, say $X(\mu)$. Then by the optimality conditions, we have a solution to (1).
Conversely, any solution to (1) gives an optimal solution to $\left(B P_{\mu}\right)$ because it is convex. Since $\left(B P_{\mu}\right)$ has a strictly convex objective function, $X(\mu)$ is unique. So $S(\mu)$ is unique $\left(=\mu X^{-1}\right)$. Then, since the A_{i} 's are linearly independent, $y(\mu)$ is unique. Finally, $(y(\mu), S(\mu))$ solves $\left(B D_{\mu}\right)$ because this has a concave objective to be maximized with linear constraints, and it satisfies optimality conditions with $X=X(\mu)$ as multipliers. And moreover, $X(\mu) S(\mu)=\mu I$, so $X(\mu) \bullet S(\mu)=n \mu$.

It can be shown (with more work) that all $X(\mu)$ and all $(y(\mu), S(\mu))$ lie in fixed compact sets, say for all $\mu \leq 1$, so there are limit points as $\mu \downarrow 0$. By taking limits, this shows strong duality again.

We would like to think of $\{X(\mu)\}$ and $\{(y(\mu), S(\mu))\}$ as paths. A path $\{X(\mu)\}$ in $\mathcal{F}(P)$ corresponds to a path $\{(y(\mu), S(\mu))\}$ in $\mathcal{F}(D)$.

To do this, we will use the implicit function theorem. $(X(\mu), y(\mu), S(\mu))$ solves

$$
G(X, y, S ; \mu)=\left(\begin{array}{c}
\mathcal{A}^{*} y+S-C \\
\mathcal{A} X-b \\
X S-\mu I
\end{array}\right)=0
$$

Since the dimensions don't match, we need to symmetrize somehow the last equation. We will see lots of ways to do it, but for now, write it as

$$
S+\mu F^{\prime}(X)=S-\mu X^{-1}=0
$$

Then we get

$$
D_{X, y, S} G(X, y, S ; \mu)=\left(\begin{array}{ccc}
0 & \mathcal{A}^{*} & \mathcal{I} \\
\mathcal{A} & 0 & 0 \\
\mathcal{E} & 0 & \mathcal{F}
\end{array}\right)
$$

where $\mathcal{E}: \mathbb{M}^{n} \rightarrow \mathbb{M}^{n}$ is defined by $\mathcal{E}(H)=\mu X^{-1} H X^{-1}$ and $\mathcal{F}: \mathbb{M}^{n} \rightarrow \mathbb{M}^{n}$ is the identity. To apply the implicit function theorem, we will need $D G$ invertible. We will show next time: if the A_{i} 's are linearly independent, \mathcal{E} is invertible and $\mathcal{E}^{-1} \mathcal{F}$ is positive definite (not necessarily self-adjoint), then $D G$ is invertible.

