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Let’s consider the barrier function F'(X) := —Indet(X). Note that the set
{(w0;7) € R 1 ag > ||7]]2}
is equal to the set

{(x0;7) € RM™ (20 fT) = 0}
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Then, for points in the interior of this cone, we have
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= —(n—1)Inzy — ln(x% — Hsz)

But, — In(22 —||Z||?) is sufficient. It is a 2-logarithmically homogeneous self-concordant barrier.
More generally, if P € R™*" m > n, then for ¢t > || P||,

—Indet (’;f; t]; ) — —Indet(tl,,) — Indet(tl, — PT(t1,)"'P)
1
= —mlnt —Indet(tI, — ;PTP)
1
= —(m—1)Int — Indet(¢], — ngp) —Int.

But the first term —(m—1) In ¢ is not necessary; the remaining terms give a (n+1)-logarithmically
homogeneous self-concordant barrier function. This shows that for certain subsets of the
semidefinite cone, there are better barrier functions than F'; but in general F' above is “optimal.”

For the second-order cone, the Carathéodory number (the minimum number of extreme
rays to represent any point as a nonnegative linear combination in the cone) is 2, and the
optimal barrier (above) has parameter 2. For SDP the numbers are n and n. This is true for
all “symmetric” cones. Notice that the number is much smaller than the dimension of the cone
(14+n and w respectively).

Consider the barrier problems:
(BP,) :minC e X + puF(X): AX =,

(BD,) : maxb'y — uF(S): Ay + S = C,



for 4 > 0. Suppose X is an optimal solution to (BP,), with finite value, so X > 0. Then
by Lagrange’s theorem, there is some y € R™ with C' + pF(X) = A*y. And setting S =
—uF'(X) = pX ™!, we have a solution to

Ay+S = C, S>>0
AX = b, X >0
XS = ul,

which we denote by (1). Similarly, if (y,S) is an optimal solution to (BD,), then we get
b—AX =0 and pF’(S) — X =0 and again we have a solution to (1).

Theorem 1 If F°(P) and F°(D) are nonempty and the A;’s are linearly independent, then
for every p > 0, there is a unique solution (X (u),y(u), S(w)) to (1). Moreover, X (u) solves
(BP,), (y(p), S(n)) solves (BD,,), and the associated duality gap X (j) @ S(p) = npu. If one (or
both) of F°(P) and F°(D) is empty, then there is no solution to (1) and no solution to (BP,)
and (BD,,) for any p > 0.

Proof: The conclusion if F°(P) or F°(D) is empty is easy, so assume X € F°(P) and

~

(g,S8) € F°(D). Then (BP,) can be written as

min CeX +puF(X)
AX =b
CoX +puF(X)<CoX+uF(X)

Since Ce X —CoeX = (CoeX—07j))—(CeX —b"ej)) =S eX —SeX, then the above

system can be written as

min CeX+ puF(X)
AX =0
SeX +uF(X)<SeX+ uF(X):=a.



Choose o with S = oI, so any
feasible X satisfies

U[.X+NF(X)§S‘X+MF(X)§Q Ag-ping
= D _(oX(X) —pln (X)) <a
J

It is easy to see each term is min-
imized by A\; = A = £. Let 3 be the
minimum of A\; — uIn ;. Then for
each 7,

oAj—pln\; <a—(n—1)p.

This shows the existence of A
andXsuChthatO<A§)\j§5\§
oo for all j. Then our problem is
to minimize a continuous function
(A > 0) on a compact set (A < o0).
So there exists an optimal X, say
X (p). Then by the optimality con-
ditions, we have a solution to (1).
Conversely, any solution to (1) gives an optimal solution to (BP,) because it is convex. Since
(BP,) has a strictly convex objective function, X (p) is unique. So S(p) is unique (= pX™1).
Then, since the A;’s are linearly independent, y(u) is unique. Finally, (y(u), S(i)) solves (BD,),)
because this has a concave objective to be maximized with linear constraints, and it satisfies
optimality conditions with X = X(u) as multipliers. And moreover, X (u)S(n) = pl, so

X(p) o S(p) =np. O

It can be shown (with more work) that all X (u) and all (y(u), S(u)) lie in fixed compact
sets, say for all ;1 < 1, so there are limit points as p | 0. By taking limits, this shows strong
duality again.

We would like to think of {X(x)} and {(y(u),S(u))} as paths. A path {X(u)} in F(P)
corresponds to a path {(y(u), S(p))} in F(D).
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To do this, we will use the implicit function theorem. (X (u),y(u), S(p)) solves

Ay+S5-C
G(X,y,S;p) = AX —b = 0.
XS —ul

Since the dimensions don’t match, we need to symmetrize somehow the last equation. We will
see lots of ways to do it, but for now, write it as

S+uF'(X)=8—-uX"'=0,

Then we get
0 A T
DxysG(X,y, Sip)= A 0 0],
E 0 F

where £ : M" — M" is defined by £(H) = uX 'HX ! and F : M" — M" is the identity. To
apply the implicit function theorem, we will need DG invertible. We will show next time: if
the A;’s are linearly independent, £ is invertible and £~'F is positive definite (not necessarily
self-adjoint), then DG is invertible.



