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Let’s consider the barrier function F (X) := −lndet(X). Note that the set

{(x0; x̄) ∈ R1+n : x0 ≥ ||x̄||2}

is equal to the set

{(x0; x̄) ∈ R1+n :

(
x0 x̄T

x̄ x0I

)
� 0}.

Then, for points in the interior of this cone, we have

− ln det

(
x0 x̄T

x̄ x0I

)
= − ln det(x0I)− ln(x0 −

1

x0
x̄T x̄)

= −n lnx0 − ln(x0 −
1

x0
x̄T x̄)

= −(n− 1) lnx0 − ln(x20 − ||x̄||2).

But, − ln(x20−||x̄||2) is sufficient. It is a 2-logarithmically homogeneous self-concordant barrier.
More generally, if P ∈ Rm×n, m ≥ n, then for t > ‖P‖,

− ln det

(
tIm P
P T tIn

)
= − ln det(tIm)− ln det(tIn − P T (tIm)−1P )

= −m ln t− ln det(tIn −
1

t
P TP )

= −(m− 1) ln t− ln det(tIn −
1

t
P TP )− ln t.

But the first term−(m−1) ln t is not necessary; the remaining terms give a (n+1)-logarithmically
homogeneous self-concordant barrier function. This shows that for certain subsets of the
semidefinite cone, there are better barrier functions than F ; but in general F above is “optimal.”

For the second-order cone, the Carathéodory number (the minimum number of extreme
rays to represent any point as a nonnegative linear combination in the cone) is 2, and the
optimal barrier (above) has parameter 2. For SDP the numbers are n and n. This is true for
all “symmetric” cones. Notice that the number is much smaller than the dimension of the cone
(1 + n and n(n+1)

2
respectively).

Consider the barrier problems:

(BPµ) : minC •X + µF (X) : AX = b,

(BDµ) : max bTy − µF (S) : A∗y + S = C,
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for µ > 0. Suppose X is an optimal solution to (BPµ), with finite value, so X � 0. Then
by Lagrange’s theorem, there is some y ∈ Rm with C + µF (X) = A∗y. And setting S =
−µF ′(X) = µX−1, we have a solution to

A∗y + S = C, S � 0

AX = b, X � 0

XS = µI,

which we denote by (1). Similarly, if (y, S) is an optimal solution to (BDµ), then we get
b−AX = 0 and µF ′(S)−X = 0 and again we have a solution to (1).

Theorem 1 If F◦(P ) and F◦(D) are nonempty and the Ai’s are linearly independent, then
for every µ > 0, there is a unique solution (X(µ), y(µ), S(µ)) to (1). Moreover, X(µ) solves
(BPµ), (y(µ), S(µ)) solves (BDµ), and the associated duality gap X(µ) •S(µ) = nµ. If one (or
both) of F◦(P ) and F◦(D) is empty, then there is no solution to (1) and no solution to (BPµ)
and (BDµ) for any µ > 0.

Proof: The conclusion if F◦(P ) or F◦(D) is empty is easy, so assume X̂ ∈ F◦(P ) and
(ŷ, Ŝ) ∈ F◦(D). Then (BPµ) can be written as

min C •X + µF (X)

AX = b

C •X + µF (X) ≤ C • X̂ + µF (X̂)

Since C • X − C • X̂ = (C • X − bT ŷ) − (C • X̂ − bT • ŷ) = Ŝ • X − Ŝ • X̂, then the above
system can be written as

min C •X + µF (X)

AX = b

Ŝ •X + µF (X) ≤ Ŝ • X̂ + µF (X̂) := α.
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Choose σ with Ŝ � σI, so any
feasible X satisfies

σI •X + µF (X) ≤ Ŝ •X + µF (X) ≤ α

=⇒
∑
j

(σλj(X)− µ lnλj(X)) ≤ α

It is easy to see each term is min-
imized by λj = λ = µ

σ
. Let β be the

minimum of λj − µ lnλj. Then for
each j,

σλj − µ lnλj ≤ α− (n− 1)β.

This shows the existence of λ
and λ̄ such that 0 < λ ≤ λj ≤ λ̄ ≤
∞ for all j. Then our problem is
to minimize a continuous function
(λ > 0) on a compact set (λ̄ < ∞).
So there exists an optimal X, say
X(µ). Then by the optimality con-
ditions, we have a solution to (1).
Conversely, any solution to (1) gives an optimal solution to (BPµ) because it is convex. Since
(BPµ) has a strictly convex objective function, X(µ) is unique. So S(µ) is unique (= µX−1).
Then, since the Ai’s are linearly independent, y(µ) is unique. Finally, (y(µ), S(µ)) solves (BDµ)
because this has a concave objective to be maximized with linear constraints, and it satisfies
optimality conditions with X = X(µ) as multipliers. And moreover, X(µ)S(µ) = µI, so
X(µ) • S(µ) = nµ. ut

It can be shown (with more work) that all X(µ) and all (y(µ), S(µ)) lie in fixed compact
sets, say for all µ ≤ 1, so there are limit points as µ ↓ 0. By taking limits, this shows strong
duality again.

We would like to think of {X(µ)} and {(y(µ), S(µ))} as paths. A path {X(µ)} in F(P )
corresponds to a path {(y(µ), S(µ))} in F(D).
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To do this, we will use the implicit function theorem. (X(µ), y(µ), S(µ)) solves

G(X, y, S;µ) =

A∗y + S − C
AX − b
XS − µI

 = 0.

Since the dimensions don’t match, we need to symmetrize somehow the last equation. We will
see lots of ways to do it, but for now, write it as

S + µF ′(X) = S − µX−1 = 0,

Then we get

DX,y,SG(X, y, S;µ) =

 0 A∗ I
A 0 0
E 0 F

 ,

where E : Mn → Mn is defined by E(H) = µX−1HX−1 and F : Mn → Mn is the identity. To
apply the implicit function theorem, we will need DG invertible. We will show next time: if
the Ai’s are linearly independent, E is invertible and E−1F is positive definite (not necessarily
self-adjoint), then DG is invertible.
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