Recall:

$$F(X) = \begin{cases} -\ln \det X & \text{if } X \succ 0, \\ +\infty & \text{otherwise.} \end{cases}$$

Differential properties of $F (X \succ 0, H \in \mathbb{M}^n)$:

$$F(X + H) = -\ln \det(X + \epsilon H)$$

$$= -\ln \left[\det(X) \det(I + \epsilon X^{-1}H)\right]$$

$$= F(X) - \ln \det(I + \epsilon X^{-1}H)$$

$$= F(X) - \ln \left(1 + \epsilon \operatorname{trace} (X^{-1}H) + O(\epsilon^2)\right)$$

$$= F(X) - \epsilon \operatorname{trace} (X^{-1}H) + O(\epsilon^2)$$

$$= F(X) + \epsilon \left(-X^{-1}\right) \bullet H + O(\epsilon^2).$$

So the directional derivative:

$$DF(X)[H] = -X^{-1} \bullet H$$
 and
 $F'(X) = -X^{-1}$

where the latter is defined by $DF(X)[H] =: F'(X) \bullet H$. This corresponds to:

$$f(\xi) = -\ln(\xi), f'(\xi) = -1/\xi, f''(\xi) = 1/\xi^2.$$

Next consider

$$(X + H)^{-1} = (X (I + \epsilon X^{-1}H))^{-1}$$

= $(I + \epsilon X^{-1}H)^{-1}X^{-1}$
= $(I - \epsilon X^{-1}H + O(\epsilon^2)) X^{-1}$
= $X^{-1} - \epsilon X^{-1}HX^{-1} + O(\epsilon^2).$

The second equality is derived as follows: We know that $(1 - \epsilon)^{-1} = 1 + \epsilon + \epsilon^2 + \ldots$ for $|\epsilon| < 1$. Correspondingly, we have Neumann's Lemma: If $||E||_2 < 1$

$$(I-E)^{-1} = I + E + E^2 + \dots$$

Now we can obtain the second derivative of F(X):

$$D^{2}F(X)[H,H] = X^{-1}HX^{-1} \bullet H$$
, and more generally,
 $D^{2}F(X)[H,J] = X^{-1}HX^{-1} \bullet J.$

We can then define F''(X) by

$$D^2F(X)[H,J] =: (F''(X)H) \bullet J$$

and then

$$F''(X)H = X^{-1}HX^{-1}.$$

Finally, we can similarly obtain the third derivative:

$$D^{3}F(X)[H, J, K] = -X^{-1}KX^{-1}HX^{-1} \bullet J - X^{-1}HX^{-1}KX^{-1} \bullet J$$

= $-2X^{-1}HX^{-1}JX^{-1} \bullet K.$

Recall: F is convex iff $\phi : R \to R$ defined by $\phi(\alpha) := F(X + \alpha H)$ is convex for any $X \succ 0$ and $H \in \mathbb{M}^n$, and F is strictly convex if it is twice differentiable and $\phi''(0) > 0$ for all such X and $H \neq 0$.

Definition 1 F is a barrier function for \mathbb{M}^n_+ if $F(X) \to +\infty$ as $X \to \overline{X} \in \partial \mathbb{M}^n_+ = \mathbb{M}^n_+ \setminus \mathbb{M}^n_{++}$.

Definition 2 F is a self-concordant function if it is convex, thrice differentiable, and for any $X \succ 0, H \in \mathbb{M}^n$, and ϕ as above

$$|\phi'''(0)| \le 2(\phi''(0))^{3/2}.$$

[This bound on the third derivative is to assure that Newton's method, which converges in one step for quadratics, converges fast for such problems. (Nesterov & Nemirovski)]

Definition 3 F defined on a cone K is θ -logarithmically homogeneous if for all $X \in K, \tau > 0$

$$F(\tau X) = F(X) - \theta \ln \tau.$$

Theorem 1 The log determinant function F above is a strictly convex, self-concordant, and n-logarithmically homogeneous barrier function.

Proof: Recall that $F(X) = -\sum_{j} \ln \lambda_{j}(X)$. If $X \to \overline{X} \in \partial \mathbb{M}^{n}_{+}$, then $\lambda(X) \to \lambda(\overline{X})$, but one of the components of $\lambda(\overline{X})$ is 0. So, F is a barrier function. Next,

$$F(\tau X) = -\ln \det(\tau X)$$

= $-\ln(\tau^n \det X)$
= $F(X) - n \ln \tau$

for $X \succ 0, \tau > 0$, so F is n-logarithmically homogeneous.

For strict convexity, choose any $X \succ 0$ and nonzero $H \in \mathbb{M}^n$, and define $\phi(\alpha) := F(X + \alpha H)$. Then

$$\phi''(0) = D^2 F(X)[H, H] = X^{-1} H X^{-1} \bullet H.$$

Let $V = X^{-1/2}$, so

$$\phi''(0) = \operatorname{trace} (V^2 H V^2 H)$$

= trace ((VHV) (VHV))
= $\|VHV\|_F^2 > 0$ since $H \neq 0$

Finally, to prove self-concordance, we let X, H, and ϕ be as above. Then,

$$\phi'''(0) = -2 \operatorname{trace} (X^{-1}HX^{-1}HX^{-1}H) \\ = -2 \operatorname{trace} ((VHV) (VHV) (VHV))$$

Let $\lambda = \lambda (VHV)$. Then the eigenvalues of $(VHV)^3$ are $\lambda_j^3, j = 1, n$. So,

$$\begin{aligned} |\phi'''(0)| &= 2 \left| \sum_{j} \lambda_{j}^{3} \right| \\ &< 2 \sum_{j} |\lambda_{j}|^{3} \\ &= 2 ||\lambda||_{3}^{3}. \end{aligned}$$

Similarly,

$$\phi''(0) = \operatorname{trace} \left(X^{-1} H X^{-1} H \right)$$

= trace ((VHV) (VHV))
= $\sum_{j} \lambda_{j}^{2} = \|\lambda\|_{2}^{2}$.

The result follows since $\|\lambda\|_3 \leq \|\lambda\|_2$. \Box

Using F''(X), we can define two norms on \mathbb{M}^n :

$$\|V\|_X := \sqrt{F''(X)V \bullet V} = \|X^{-1/2}VX^{-1/2}\|_F$$

the X-norm of V, and the dual X-norm of U:

$$||U||_X^* := \sqrt{U \bullet F''(X)^{-1}U} = ||X^{1/2}UX^{1/2}||_F.$$

Note:

$$U \bullet V = \operatorname{trace} (UV)$$

= $\operatorname{trace} (X^{1/2}UX^{1/2}X^{-1/2}VX^{-1/2})$
 $\leq \|U\|_X^* \cdot \|V\|_X.$ (Cauchy – Schwarz).

The following derives from the n-logarithmic homogeneity of F:

Proposition 1 The following properties hold:

(a) $F'(\tau X) = \frac{1}{\tau}F'(X), \qquad F''(\tau X) = \frac{1}{\tau^2}F''(X), \dots$ (b) $F'(X) \bullet X = -n, \qquad F''(X)X = -F'(X).$ (c) $\|X\|_X = \sqrt{n}, \qquad \|F'(X)\|_X^* = \sqrt{n}.$

Proof: We have $F(\tau X) \equiv F(X) - n \ln \tau$. Taking the derivative w.r.t. X once and twice gives (a). Taking the derivative w.r.t. τ and then setting $\tau = 1$ gives the first part of (b). Taking the derivative of the first part of (b) with respect to X gives the second part. [Note that this says that the Newton step for minimizing F at X is X itself.] For (c),

$$\begin{split} \|X\|_X &= \sqrt{F''(X)X \bullet X} \\ &= \sqrt{-F'(X) \bullet X} \\ &= \sqrt{n}, \\ \|F'(X)\|_X^* &= \sqrt{F'(X) \bullet F''(X)^{-1}F'(X)} \\ &= \sqrt{F'(X) \bullet (-X)} \\ &= \sqrt{n}. \quad \Box \end{split}$$

Note that (b) and (c) show that the X-norm of the Newton step at X is (bounded by) \sqrt{n} , so F is an *n*-self-concordant barrier.

Given a convex function F, its (modified) convex conjugate F_* is defined by

$$F_*(S) := \sup_X \{-S \bullet X - F(X)\} \\ = \sup_X \{-S \bullet X + \ln \det X : X \succ 0\}.$$

The derivative of the (concave) term to be maximized is:

$$-S + X^{-1}$$
, which is 0 if $X = S^{-1}$.

 So

$$F_*(S) = -S \bullet S^{-1} + \ln \det(S^{-1})$$

= $-n - \ln \det S$, if $S \succ 0$

(and $+\infty$ if $S \not\succeq 0$). So $F_*(S) = -n + F(S)$ differs by a constant from the original function F.