Semidefinite Programming
 OR 6327 Spring 2012
 Scribe: Marcus Lim

Lecture 14

Recall:

$$
F(X)=\left\{\begin{array}{cl}
-\ln \operatorname{det} X & \text { if } X \succ 0 \\
+\infty & \text { otherwise }
\end{array}\right.
$$

Differential properties of $F\left(X \succ 0, H \in \mathbb{M}^{n}\right)$:

$$
\begin{aligned}
F(X+H) & =-\ln \operatorname{det}(X+\epsilon H) \\
& =-\ln \left[\operatorname{det}(X) \operatorname{det}\left(I+\epsilon X^{-1} H\right)\right] \\
& =F(X)-\ln \operatorname{det}\left(I+\epsilon X^{-1} H\right) \\
& =F(X)-\ln \left(1+\epsilon \operatorname{trace}\left(X^{-1} H\right)+O\left(\epsilon^{2}\right)\right) \\
& =F(X)-\epsilon \operatorname{trace}\left(X^{-1} H\right)+O\left(\epsilon^{2}\right) \\
& =F(X)+\epsilon\left(-X^{-1}\right) \bullet H+O\left(\epsilon^{2}\right) .
\end{aligned}
$$

So the directional derivative:

$$
\begin{aligned}
D F(X)[H] & =-X^{-1} \bullet H \text { and } \\
F^{\prime}(X) & =-X^{-1}
\end{aligned}
$$

where the latter is defined by $D F(X)[H]=: F^{\prime}(X) \bullet H$. This corresponds to:

$$
\begin{aligned}
f(\xi) & =-\ln (\xi) \\
f^{\prime}(\xi) & =-1 / \xi \\
f^{\prime \prime}(\xi) & =1 / \xi^{2}
\end{aligned}
$$

Next consider

$$
\begin{aligned}
(X+H)^{-1} & =\left(X\left(I+\epsilon X^{-1} H\right)\right)^{-1} \\
& =\left(I+\epsilon X^{-1} H\right)^{-1} X^{-1} \\
& =\left(I-\epsilon X^{-1} H+O\left(\epsilon^{2}\right)\right) X^{-1} \\
& =X^{-1}-\epsilon X^{-1} H X^{-1}+O\left(\epsilon^{2}\right) .
\end{aligned}
$$

The second equality is derived as follows: We know that $(1-\epsilon)^{-1}=1+\epsilon+\epsilon^{2}+\ldots$ for $|\epsilon|<1$. Correspondingly, we have Neumann's Lemma: If $\|E\|_{2}<1$

$$
(I-E)^{-1}=I+E+E^{2}+\ldots
$$

Now we can obtain the second derivative of $F(X)$:

$$
\begin{aligned}
D^{2} F(X)[H, H] & =X^{-1} H X^{-1} \bullet H, \text { and more generally, } \\
D^{2} F(X)[H, J] & =X^{-1} H X^{-1} \bullet J
\end{aligned}
$$

We can then define $F^{\prime \prime}(X)$ by

$$
D^{2} F(X)[H, J]=:\left(F^{\prime \prime}(X) H\right) \bullet J
$$

and then

$$
F^{\prime \prime}(X) H=X^{-1} H X^{-1}
$$

Finally, we can similarly obtain the third derivative:

$$
\begin{aligned}
D^{3} F(X)[H, J, K] & =-X^{-1} K X^{-1} H X^{-1} \bullet J-X^{-1} H X^{-1} K X^{-1} \bullet J \\
& =-2 X^{-1} H X^{-1} J X^{-1} \bullet K .
\end{aligned}
$$

Recall: F is convex iff $\phi: R \rightarrow R$ defined by $\phi(\alpha):=F(X+\alpha H)$ is convex for any $X \succ 0$ and $H \in \mathbb{M}^{n}$, and F is strictly convex if it is twice differentiable and $\phi^{\prime \prime}(0)>0$ for all such X and $H \neq 0$.

Definition $1 F$ is a barrier function for \mathbb{M}_{+}^{n} if $F(X) \rightarrow+\infty$ as $X \rightarrow \bar{X} \in \partial \mathbb{M}_{+}^{n}=\mathbb{M}_{+}^{n} \backslash \mathbb{M}_{++}^{n}$.
Definition $2 F$ is a self-concordant function if it is convex, thrice differentiable, and for any $X \succ 0, H \in \mathbb{M}^{n}$, and ϕ as above

$$
\left|\phi^{\prime \prime \prime}(0)\right| \leq 2\left(\phi^{\prime \prime}(0)\right)^{3 / 2}
$$

[This bound on the third derivative is to assure that Newton's method, which converges in one step for quadratics, converges fast for such problems. (Nesterov \& Nemirovski)]

Definition $3 F$ defined on a cone K is θ-logarithmically homogeneous if for all $X \in K, \tau>0$

$$
F(\tau X)=F(X)-\theta \ln \tau
$$

Theorem 1 The log determinant function F above is a strictly convex, self-concordant, and n-logarithmically homogeneous barrier function.

Proof: Recall that $F(X)=-\sum_{j} \ln \lambda_{j}(X)$. If $X \rightarrow \bar{X} \in \partial \mathbb{M}_{+}^{n}$, then $\lambda(X) \rightarrow \lambda(\bar{X})$, but one of the components of $\lambda(\bar{X})$ is 0 . So, F is a barrier function. Next,

$$
\begin{aligned}
F(\tau X) & =-\ln \operatorname{det}(\tau X) \\
& =-\ln \left(\tau^{n} \operatorname{det} X\right) \\
& =F(X)-n \ln \tau
\end{aligned}
$$

for $X \succ 0, \tau>0$, so F is n-logarithmically homogeneous.
For strict convexity, choose any $X \succ 0$ and nonzero $H \in \mathbb{M}^{n}$, and define $\phi(\alpha):=F(X+\alpha H)$. Then

$$
\begin{aligned}
\phi^{\prime \prime}(0) & =D^{2} F(X)[H, H] \\
& =X^{-1} H X^{-1} \bullet H .
\end{aligned}
$$

Let $V=X^{-1 / 2}$, so

$$
\begin{aligned}
\phi^{\prime \prime}(0) & =\operatorname{trace}\left(V^{2} H V^{2} H\right) \\
& =\operatorname{trace}((V H V)(V H V)) \\
& =\|V H V\|_{F}^{2}>0 \quad \text { since } H \neq 0 .
\end{aligned}
$$

Finally, to prove self-concordance, we let X, H, and ϕ be as above. Then,

$$
\begin{aligned}
\phi^{\prime \prime \prime}(0) & =-2 \operatorname{trace}\left(X^{-1} H X^{-1} H X^{-1} H\right) \\
& =-2 \operatorname{trace}((V H V)(V H V)(V H V))
\end{aligned}
$$

Let $\lambda=\lambda(V H V)$. Then the eigenvalues of $(V H V)^{3}$ are $\lambda_{j}^{3}, j=1, n$. So,

$$
\begin{aligned}
\left|\phi^{\prime \prime \prime}(0)\right| & =2\left|\sum_{j} \lambda_{j}{ }^{3}\right| \\
& <2 \sum_{j}\left|\lambda_{j}\right|^{3} \\
& =2\|\lambda\|_{3}^{3} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\phi^{\prime \prime}(0) & =\operatorname{trace}\left(X^{-1} H X^{-1} H\right) \\
& =\operatorname{trace}((V H V)(V H V)) \\
& =\sum_{j} \lambda_{j}^{2}=\|\lambda\|_{2}^{2}
\end{aligned}
$$

The result follows since $\|\lambda\|_{3} \leq\|\lambda\|_{2}$.

Using $F^{\prime \prime}(X)$, we can define two norms on \mathbb{M}^{n} :

$$
\|V\|_{X}:=\sqrt{F^{\prime \prime}(X) V \bullet V}=\left\|X^{-1 / 2} V X^{-1 / 2}\right\|_{F}
$$

the X-norm of V, and the dual X-norm of U :

$$
\|U\|_{X}^{*}:=\sqrt{U \bullet F^{\prime \prime}(X)^{-1} U}=\left\|X^{1 / 2} U X^{1 / 2}\right\|_{F}
$$

Note:

$$
\begin{aligned}
U \bullet V & =\operatorname{trace}(U V) \\
& =\operatorname{trace}\left(X^{1 / 2} U X^{1 / 2} X^{-1 / 2} V X^{-1 / 2}\right) \\
& \leq\|U\|_{X}^{*} \cdot\|V\|_{X} \quad \text { (Cauchy }- \text { Schwarz) }
\end{aligned}
$$

The following derives from the n-logarithmic homogeneity of F :

Proposition 1 The following properties hold:
(a) $F^{\prime}(\tau X)=\frac{1}{\tau} F^{\prime}(X), \quad F^{\prime \prime}(\tau X)=\frac{1}{\tau^{2}} F^{\prime \prime}(X), \ldots$
(b) $F^{\prime}(X) \bullet X=-n, \quad F^{\prime \prime}(X) X=-F^{\prime}(X)$.
(c) $\|X\|_{X}=\sqrt{n}, \quad\left\|F^{\prime}(X)\right\|_{X}^{*}=\sqrt{n}$.

Proof: We have $F(\tau X) \equiv F(X)-n \ln \tau$. Taking the derivative w.r.t. X once and twice gives (a). Taking the derivative w.r.t. τ and then setting $\tau=1$ gives the first part of (b). Taking the derivative of the first part of (b) with respect to X gives the second part. [Note that this says that the Newton step for minimizing F at X is X itself.] For (c),

$$
\begin{aligned}
\|X\|_{X} & =\sqrt{F^{\prime \prime}(X) X \bullet X} \\
& =\sqrt{-F^{\prime}(X) \bullet X} \\
& =\sqrt{n}, \\
\left\|F^{\prime}(X)\right\|_{X}^{*} & =\sqrt{F^{\prime}(X) \bullet F^{\prime \prime}(X)^{-1} F^{\prime}(X)} \\
& =\sqrt{F^{\prime}(X) \bullet(-X)} \\
& =\sqrt{n} .
\end{aligned}
$$

Note that (b) and (c) show that the X-norm of the Newton step at X is (bounded by) \sqrt{n}, so F is an n-self-concordant barrier.

Given a convex function F, its (modified) convex conjugate F_{*} is defined by

$$
\begin{aligned}
F_{*}(S) & :=\sup _{X}\{-S \bullet X-F(X)\} \\
& =\sup _{X}\{-S \bullet X+\ln \operatorname{det} X: X \succ 0\} .
\end{aligned}
$$

The derivative of the (concave) term to be maximized is:

$$
-S+X^{-1}, \quad \text { which is } 0 \text { if } X=S^{-1} .
$$

So

$$
\begin{array}{rlrl}
F_{*}(S) & =-S \bullet S^{-1}+\ln \operatorname{det}\left(S^{-1}\right) & & \\
& =-n-\ln \operatorname{det} S, & \text { if } S \succ 0
\end{array}
$$

(and $+\infty$ if $S \nsucc 0$). So $F_{*}(S)=-n+F(S)$ differs by a constant from the original function F.

