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minX C •X
(P ) Ai •X = bi, i = 1, . . . ,m,

X � 0,

maxy,S bT y
(D)

∑
i yiAi + S = C,

S � 0.

Theorem 1 If F(P ),F◦(D) are nonempty, then
(a) The set of optimal solutions to (P) is nonempty and compact.
(b) There is no duality gap.

To reverse this result, we show how to write the primal as the dual and vice-versa. Firstly,
we get rid of some trivial cases:

We can suppose there is some H ∈ Mn with AH = b. Otherwise, (P ) is infeasible. Also,
there is some y with A∗y = 0 but bT y 6= 0, w.l.o.g., bT y > 0. So, if (D) is feasible, it is
unbounded.

Also, if the Ai’s are linearly dependent, then we can remove redundant constraints in (P ).
In addition, with (∃H : AH = b), A∗y = 0 ⇒ bT y = 0. So we can correspondingly eliminate
“redundant” Ai’s and the correspondingly yi’s and bi’s from (D).

Let A = span{A1, . . . , Am} ⊆ Mn. Then Ai •X = bi, all i, if and only if X −H ∈ A⊥. We
let F1, F2, . . . , Fl be a basis for A⊥. (If the Ai’s are linearly independent, l = n(n + 1)/2−m.)

Then we can rewrite (P ) as following

(P ) min{C •X : Ai •X = bi, i = 1, . . . ,m,X � 0}
≡ minz,X{C • (H −

∑l
k=1 zkFk) : X = H −

∑l
k=1 zkFk, X � 0}

≡ C •H −maxz,X{
∑

k gkzk :
∑

zkFk + X = H, X � 0}

with gk = C • Fk, k = 1 . . . , l, so (P ) is equivalent to a problem is standard dual form.
Similarly:

(D) maxy,S{bT y :
∑

yiAi + S = C, S � 0}
≡ maxy,S{(AH)T y : S = C −A∗y, S � 0}
≡ maxy,S{H • A∗y : S = C −A∗y, S � 0}
≡ maxy,S{H • (C − S) : S − C ∈ A, S � 0}
≡ maxy,S{H • (C − S) : Fk • (S − C) = 0, k = 1, . . . , l, S � 0}
≡ H • C −minS{H • S : Fk • S = gk, k = 1, . . . , l, S � 0},

a problem in standard primal form.
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Corollary 1 If F◦(P ), F(D) are nonempty, then
(a) (D) has a nonempty set of optimal solutions and the set of optimal S’s is compact; and
(b) there is no duality gap.

Corollary 2 If both F◦(P ), F◦(D) are nonempty, then both problems have optimal solutions
and there is no duality gap.

If this is the case, X and (y, S) are optimal if and only if

A∗y + S = C, S � 0
A •X = b, X � 0

X • S = 0

or the last equation can be replaced by XS = 0.

Let’s assume we have optimal solutions X∗, (y∗, S∗) and there is no duality gap. (We’ll say
strong duality holds.)

What can we say about the ranks r∗ and s∗ of X∗ and S∗?

Proposition 1 r∗ + s∗ ≤ n.

Proof: : We know X∗S∗ = 0. So X∗ and S∗ commute, and they can be simultaneously diago-
nalized.

X∗ = QΛ∗Q
T , S∗ = QΩ∗Q

T

with Λ∗ =

[
Λ̂ 0
0 0

]
, with Λ̂ = Mr∗

++. Then

X∗S∗ = QΛ∗(Q
T Q)Ω∗Q

T = Q

 λ1ω1

. . .

λnωn

QT .

Since X∗S∗ = 0, ω1 = . . . = ωr∗ = 0, and so s∗ ≤ n− r∗. ut
Note: in LP, we have strict complementarity, i.e., there are an optimal x∗ and an optimal

slack s∗ with either x∗j > 0 or s∗j > 0 for all j.
However there are SDPs with r∗ + s∗ < n for all optimal solutions.

Proposition 2 Suppose X is an extreme point of (P ) with rank(X) = r. Then r(r+1)/2 ≤ m.

Proof: : Suppose S ∈ F(P ) has rank r with r(r + 1)/2 > m.
Write X = QΛQT , where

Λ =

[
Λ̂ 0
0 0

]
,
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Λ̂ ∈ Mr
++.

Recall that (P ) is equivalent to (P̄ ), defined by

Āi = QT AiQ, i = 1, . . . ,m, C̄ = QT CQ.

X̄ is feasible in (P̄ ) if and only if X = QX̄QT is feasible in (P ), and so Λ is feasible in P̄ .
Suppose

Āi =

[
Âi BT

i

Bi Di

]
with Âi ∈ Mr.

Then Âi • Λ̂ = bi, i = 1, . . . ,m.
So by counting dimensions, there is Ĥ ∈ Mr \ {0} with Â • Ĥ = 0, i = 1, . . . ,m.

Then

[
Λ̂± εH 0

0 0

]
is feasible in (P̄ ) for all sufficient small ε.

Hence, Q

[
Λ̂± εH 0

0 0

]
QT is feasible in (P ) for all sufficient small ε.

So X is not an extreme point. ut

Corollary 3 Suppose (P ) has an optimal solution; then it has one with rank at most r, with r
the largest integer s.t. r(r + 1)/2 ≤ m.

Proof: : Let X be an optimal solution of minimum rank, say r̄ with r̄(r̄ +1)/2 > m. Then, as
in the proof above, we find H ∈ Mn, H 6= 0 with X ± εH also feasible, and hence also optimal.

By choosing an appropriate sign and then ε as large as possible, we obtain an optimal so-
lution of smaller rank. ut

For example, in the SDP relaxation for Max Cut, we have n equality constraints so there is
an optimal solution with rank r, r(r + 1)/2 ≤ n, so r ≤

√
2n.

Note that such low-rank solutions may not respect the block-diagonal structure of the
problem. (E.g., if C and all Ai’s are diagonal, the only diagonal solution may have rank n.)

We can sometimes get conditions by applying these results blockwise.

The Log Barrier Function:
Define

F (X) = −lndet(X) :=

{
− ln det X if X � 0,

+∞ o.w.

Note that −lndet(X) = −
∑

j ln λj(X), and that F “respects the structure” of X.

Proposition 3 (a) If X = Diag (X1, . . . , Xp), F (X) =
∑p

i=1 F (Xi).

(b) If X =

[
A BT

B C

]
, then F (X) = F (A) + F (C −BA−1BT ) = F (C) + F (A−BT C−1B).
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