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Consider the primal-dual pair of semidefinite programs,

minX C •X maxy,S bT y
(P ) AX = b, (D) A∗y + S = C,

X � 0, S � 0.

We have seen that weak duality holds, meaning

C •X ≥ bT y for all X feasible for (P ) and all (y, S) feasible for (D).

Recall that the Lagrangian dual of

min{f(x) : g(x) = 0, x ∈ D},

is the problem
max
y∈Rm

(min
x∈D

{f(x) + yT g(x)}).

Furthermore the objective value of the dual problem is always no greater than the objective value of
the original problem.

Evidently (D) is the Lagrangian dual of (P ) obtained by dualizing the linear constraints AX = b.
Indeed the Lagrangian dual of (P ) is

max
y∈Rm

(min
X�0

{C •X + yT (b−AX)}) = max
y∈Rm

{bT y + min
X�0

(C −A∗y) •X}

= max
y∈Rm

{bT y : C −A∗y � 0},

where the last equality follows from the fact that the cone of positive semidefinite matrices is self-dual.

Exercise 1 Check that (P ) is the Lagrangian dual of (D) if we dualize A∗y + S = C.

The main question we consider now is: when does strong duality hold? We first investigate a
few examples showing some complications that may arise in the semidefinite duality theory. (Note
that there is a more complicated duality theory avoiding these exceptions. See the paper by Ramana,
Tuncel, and Wolkowicz in the references part of the home page.)

Example 1 Consider the problem

max− y1,

(D)
[
−1 0
0 0

]
y1 +

[
0 0
0 −1

]
y2 �

[
0 1
1 0

]
.

Hence we would like to minimize y1 subject to the constraint
[

y1 1
1 y2

]
� 0. This constraint in

turn amounts to the requirements y1 ≥ 0, y2 ≥ 0, y1y2 ≥ 1. Here the optimal value is 0, but it is not
attained.
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Now consider the dual problem

min x21 + x12,

(P ) x11 = 1,

x22 = 0,[
x11 x12

x21 x22

]
� 0.

The only feasible (and hence optimal) solution of this problem is
[

1 0
0 0

]
. Consequently the optimal

value is 0. Summarizing, we see that there is no duality gap for the pair (P ) and (D), but the optimal
value for (D) is not attained.

Example 2 Consider the problem

min

 0 0 0
0 0 0
0 0 1

X,

(P )

 0 1 0
1 0 0
0 0 1

X = 1,

 0 0 0
0 1 0
0 0 0

X = 0,

X � 0.

The constraint x22 = 0 forces x12 = x21 = 0. Consequently x33 = 1 and the matrix X =

 0 0 0
0 0 0
0 0 1


is optimal with value 1.

Consider now the dual problem

max y1,

(D)

 0 1 0
1 0 0
0 0 1

 y1 +

 0 0 0
0 1 0
0 0 0

 y2 �

 0 0 0
0 0 0
0 0 1

 .

Rewriting the constraint in (D), we have 0 −y1 0
−y1 −y2 0
0 0 1− y1

 � 0.

The top left entry being zero forces y1 to be zero, and consequently y = (0; 0) is optimal with value 0.
In summary, the optimal values of (P ) and (D) are attained but there is a positive duality gap.

Note that this property is fragile. If we change b2 = 0 to any ε > 0, the optimal value of (P ) jumps
to 0. If we change c11 = 0 to any ε > 0, the optimal value of (D) jumps to 1.
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Exercise 2 What happens if we make both of these changes simultaneously?

To avoid the problems illustrated by the two examples above, we add regularity conditions to the
primal-dual pairs.

Definition 1 Given the primal problem (P ), we define the sets of feasible and strictly feasible solu-
tions as

F(P ) := {X ∈ Mn : AX = b, X � 0}, and

Fo(P ) := {X ∈ Mn : AX = b, X � 0},

respectively. Employing analogous notation for the dual problem (D), we have

F(D) := {(y, S) ∈ Rn ×Mn : A∗y + S = C,S � 0}, and

Fo(D) := {(y, S) ∈ Rn ×Mn : A∗y + S = C,S � 0}.

Theorem 1 If F(P ) and Fo(D) are nonempty, then

1. (P ) has a nonempty compact set of optimal solutions; and

2. there is no duality gap.

Proof: We first prove 1. Let X̂ ∈ F(P ) and (ŷ, Ŝ) ∈ Fo(D). Our goal is to apply the Weierstrass
theorem, which states that a continuous function on a compact set attains its minimum. Here F(P )
is nonempty and closed, but not necessarily bounded. Observe that (P ) has exactly the same set of
optimal solutions as

min
{

C •X : AX = b, C •X ≤ C • X̂,X � 0
}

.

Notice
C •X − C • X̂ = (C •X − bT ŷ)− (C • X̂ − bT ŷ) = Ŝ •X − Ŝ •X.

So the set of optimal solutions of (P ) is contained in{
X ∈ Mn : AX = b, Ŝ •X ≤ Ŝ • X̂,X � 0

}
.

Since we have Ŝ � 0, the set above is bounded. We conclude that the set of optimal solutions to (P )
is nonempty by the Weierstrass theorem, and is compact since it is a closed subset of the compact set
above.

Before proving 2, we need to recall the separating hyperplane theorem, which we do now.

Theorem 2 If C ⊂ Rn is a closed, convex set and x̄ /∈ C, then there exist a nonzero vector s ∈ Rn

and a real η ∈ R with
sT x̄ < η < inf{sT x : x ∈ C}.

Definition 2 A nonzero vector z ∈ Rn is a direction of recession for a closed, convex set C ⊂ Rn if
for all x ∈ C the inclusion {x + λz : λ ≥ 0} ⊂ C holds.

Theorem 3 If C,D ⊂ Rn are closed, convex sets with no common direction of recession and C∩D =
∅, then there exist a nonzero vector s ∈ Rn and a real η ∈ R with

sup{sT x : x ∈ D} < η < inf{sT x : x ∈ C}.
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Proof: Consider the set C −D. Clearly this set is convex. Since C and D have no common direction
of recession, one can show that C−D is also closed. Finally, 0 /∈ C−D. An application of Theorem 2
yields the result. ut

Proof of part 2 of Theorem 1:

Let ζ be the optimal value of (P ) and let ε > 0. We want to prove that there exists a feasible dual
solution with objective value no smaller than ζ − ε. To this end define the two sets

C = Mn
+,

D = {X ∈ Mn : AX = b, C •X ≤ ζ − ε}.

Clearly C and D are disjoint, closed, convex sets in Mn. We claim that C and D have no common
direction of recession. Indeed, suppose Z were a common direction of recession. Then we have a
nonzero Z with Z � 0, AZ = 0, and C • Z ≤ 0, thus contradicting 1. So applying Theorem 3, we
deduce that there exists a nonzero matrix S ∈ Mn and a real η ∈ R with

sup{S •X : AX = b, C •X ≤ ζ − ε} < η < inf{S •X : X � 0}.

From the right-hand side of the inequality, we deduce S � 0 and η < 0. Hence the implication

−AX = −b, C •X ≤ ζ − ε ⇒ S •X < η < 0,

holds.
We deduce that the implied inequality is an appropriate linear combination of the left-hand con-

straints. So there exists a vector y ∈ Rm and a real λ ≥ 0 with

−A∗y + λC = S, −bT y + λ(ζ − ε) ≤ η.

Suppose for the sake of contradiction λ = 0. Then we have

A∗y + S = 0, bT y ≥ −η > 0.

So 0 = X̂ • (A∗y + S) = yTAX̂ + X̂ • S ≥ bT y > 0, which is a contradiction. We conclude that λ > 0,
and by scaling y, S, λ, and η, we can assume that λ = 1. Consequently we obtain

A∗y + S = C,

S � 0,

and bT y ≥ ζ − ε− η > ζ − ε. Hence the value of the dual is no smaller than ζ − ε. ut
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