
Semidefinite Programming Lecture 10
OR 6327 Spring 2012 February 23, 2012
Scribe: Alex Fix

1 Concluding discussion of the Lovász ϑ-Function

We will use the insights of the previous lectures to end up with a general way to use SDP for
combinatorial optimization problems. But first, we’ll we will further explore the relationship
between the ϑ-function and the stability and clique covering numbers of a graph.

Recall the two problem formulations for the ϑ function:

max eT Xe min λmax(ee
T + F)

(P) I •X = 1, (D) fij = 0, ij /∈ E.
xij = 0, ij ∈ E,
X � 0;

We showed last time that the optimal solution to both problems is equal to ϑ(G). Since
we have characterized ϑ by both a minimization problem and a minimization problem, we can
prove the following Sandwich Theorem:

Theorem 1 For all graphs G, if α(G) is the size of the largest stable set of G, and χ(G) is
the size of the smallest clique cover of G, then we have

α(G) ≤ ϑ(G) ≤ χ(G).

Proof:

• For the left hand inequality: We will find a feasible solution to (P) with objective value

at least α(G). If S is any stable set of G, then we claim that X := χS(χS)T

|S| is a feasible

solution to (P) with eT Xe ≥ |S|.

Here, χS is the characteristic vector of S, i.e., (χS)i =

{
1 i ∈ S
0 i /∈ S

. So, χS has 1s

corresponding to the stable set.

Because of the fact that S is stable, for any ij ∈ E, we have either (χS)i or (χS)j is 0, so
xij = 0 whenever ij ∈ E. Then, it’s clear that I •X = 1, since X has a 1

|S| on the diagonal
for each xii with i ∈ S. Finally, since X is an outer product, we have that X � 0, so X
is feasible for (P) with value |S|.

• For the right hand inequality, we’ll use the second formulation and construct a feasible
solution to (D).

Suppose C1, . . . , Cp form a clique covering of G. Without loss, we can assume they
partition V . For concreteness, renumber the vertices so that

C1 = {1, . . . , n1}, C2 = {n1 + 1, . . . , n1 + n2}, . . . , Cp = {np−1 + 1, . . . , n1 + · · ·+ np = n}.

1

We want to end up with some feasible F with λmax(ee
T + F) ≤ p. That is, we want

pI − eeT − F � 0.

Our proposed solution is to somehow choose F so that we end up with

pI − eeT − F =

(p− 1)en1e

T
n1

−1 · · · −1
−1 (p− 1)en2e

T
n2

−1
...

. . .
...

−1 −1 · · · (p− 1)enpe
T
np

 .

We can choose such an F as follows: let F be 0 along the diagonal, and inside each ni×ni

block, set F to be −p off the diagonal. Outside the blocks, set F to be 0.

Then, we have that F is feasible for (D) since for every ij /∈ E we have that i and j are
not in the same clique, so the ijth entry is outside a block, so fij = 0.

Furthermore, we can write this same matrix as the following sum:

pI − eeT − F =
∑
i<j

(χCi − χCj)(χCi − χCj)T .

This equality holds, since within a clique we get p−1 cases of 1 times 1, and for anything
that’s an edge not in a clique, we will get a single instance of 1 times -1 giving -1 for all
entries outside the blocks.

Now, since we’ve added up a bunch of psd matrices, this matrix is psd. Therefore,
ϑ(G) ≤ χ(G).

ut
Remark: Perfect Graphs are graphs where α(G) = χ(G), and where the same equality

holds for all induced subgraphs of G. So, if G is perfect, by computing ϑ(G) we know both
α(G) and χ(G). However, just knowing the size of the maximum stable set doesn’t directly
give an actual stable set of size α(G).

The old method for computing such a stable set is as follows: compute ϑ(G). This will give
an integer, since G is perfect. Now, remove a vertex v and compute ϑ(G) again. If it went
down, then v is in every stable set, so we can remove it and its neighbors from the graph and
recur. Similarly, if ϑ(G) does not go down, there is at least one stable set not containing v, so
we can remove it from the graph and recur again.

The inefficiency of this method will motivate the next section: trying to find formulations of
ϑ where the optimal solution gives us information about the associated combinatorial problems.

2 Programs for ϑ(G) that give combinatorially meaning-

ful solutions

Here is another characterization of ϑ(G) (for more information see Knuth’s paper on the web-
site).

2

maxx,W∈Mn eT x

(P)

(
1 xT

x W

)
� 0,

diag (W) = x,
wij = 0, ij ∈ E.

The reason for considering this program is that it has a vector that’s “like” the characteristic
vector of a stable set.

[As a side-note, looking at the submatrix

(
1 xi

xi xi

)
which must be psd, we have that

0 ≤ xi ≤ 1. Thus, we can at least interpret the xi as fractional values on the vertices of G.]

Theorem 2 v(P) = ϑ(G).

Proof: Note first that v(P) > 0, since we can choose W = 1
n
I and x = 1

n
e. Similarly, v(P) > 0

since we already know it’s between 1 and n.
So, suppose (x, W) is feasible in (P) with eT x > 0. Then, set X = 1

eT x
W . We want to show

that this X is feasible for (P) with at least the same value. First, we have

I •X =
I •W

eT x
=

eT diag (W)

eT x
=

eT x

eT x
= 1.

We also have X � 0 since W � 0, and finally, xij = 0 for ij ∈ E since the same holds for
W . Thus, X is feasible.

As for the objective value, we have that W − xxT � 0 by Schur complements, so pre- and
post-multiplying by e gives eT We ≥ (eT x)2, and hence

eT Xe =
(eT x)2

eT x
≥ eT x.

Therefore, v(P) ≤ v(P) = ϑ(G).

Now, suppose conversely that X is a feasible solution to (P) with eT Xe > 0. We’re going
to factor X as Y T Y with Y = [y1, . . . , yn].

Let T be the set of indices i where yi 6= 0. Define vi = yi

||yi|| for i ∈ T and let {vj, j /∈ T} be

any set of n− |T | orthonormal vectors orthogonal to the vi for i ∈ T .
Also, let d = Y e

||Y e|| = Y e√
eT Xe

.

Note that (d, v1, . . . , vn) is an orthonormal representation of G.
Now, we’ll define Z := [d, v1, . . . , vn]T [d, v1, . . . , vn] ∈ Mn. We can see that

Z =

(
1 dT V

V T d V T V

)
where V = [v1, . . . , vn].

We do have that diag (V T V) = e, since all the vi are unit vectors, but V T d might not be e.
So, let Λ = Diag ([1; V T d]). Then (writing (V T d)2 for the vector ((dT vi)

2)))

ΛZΛ =

(
1 ((V T d)2)T

(V T d)2 W

)
and wii = (dT vi) · 1 · (dT vi) = (dT vi)

2.

3

So, this is feasible for (P) with x = (V T d)2, xi = (dT vi)
2.

For the objective value, we have:

eT x =
∑

i

(dT vi)
2

= (I •X)
∑

i

(dT vi)
2

=

(∑
i

||yi||2
)∑

i

(dT vi)
2.

And by Cauchy-Schwarz, this last line is at least(∑
i

||yi||dT vi

)2

=

(
dT
∑

i

||yi||vi

)2

= (dT Y e)2 =

(
eT Y T Y e√

eT Xe

)2

= eT Xe.

(For the second equality, recall that yi is zero for i /∈ T .) Therefore, v(P) ≥ ϑ(G). ut

Question: What if we want to know what x satisfies (P) for some W?
We could define TH(G) = {x ∈ Rn

+ | ∃W, (x, W) feasible in P}, and then try to find
max{eT x | x ∈ TH(G)} = ϑ(G).

In fact, Lovász and Schrijver have given another representation of TH(G):

TH(G) = {x ∈ Rn
+ |
∑

i

(cT ui)
2x ≤ 1 for all orthonormal rep’ns. (c, u1, . . . , un) of G}.

This is a semi-infinite formulation of the set, in that it has a finite number of variables, but in-
finitely many constraints. We’ll prove just the one inclusion, ⊆. To do so, we’ll have to “reverse
engineer” an orthonormal representation of G from x, W and then show that all inequalities
hold.

Proof: Let Λ = Diag ([1;
√

x1; . . . ,
√

xn]), and Z = Λ−1

(
1 x
xT W

)
Λ−1. Then Z � 0

since we’re pre- and post-multiplying a psd matrix by an invertible matrix. Note that we have
diag (Z) = e so we can write it as

Z = [d, v1, . . . , vn]T [d, v1, . . . , vn].

We now have an “orthonormal representation” of G (that is, all vectors have unit length,
since the diagonal of Z is all 1s, and they have the appropriate dot products, the only problem
being that d, v1, . . . , vn ∈ Rn+1).

Note that xi = (dT vi)
2 for all i. We have to show that x satisfies all the inequalities

above, so let (c, u1, . . . , un) be any orthonormal representation of G. We have to show that∑
(cT ui)

2xi ≤ 1. So, using the fact that (u⊗ v)T (u⊗ v) = uT uvT v, we have

∑
(cT ui)

2xi =
∑

(cT ui)
2(dT vi)

2

=
∑[

(c⊗ d)T (ui ⊗ vi)
]2

.

4

Then, we have by the same fact that ||c⊗ d|| = ||c||||d|| = 1. Similarly, (ui ⊗ vi)
T (ui ⊗ vi) = 1,

whereas for i 6= j, (ui ⊗ vi)
T (uj ⊗ vj) = (uT

i uj)(v
T
i vj) is equal to 0, since ij is either an edge in

G or an edge in G, so that one or the other of (uT
i uj), (v

T
i vj) is 0.

Therefore, we have that
∑[

(c⊗ d)T (ui ⊗ vi)
]2

is the first several terms of the length squared
of (c⊗d) measured by an orthonormal basis including the ui⊗vi, and therefore the entire sum is
at most ||c⊗ d||2 = 1. Overall, we get that

∑
(cT ui)xi ≤ 1 for all orthonormal representations.

ut

3 Generalization of this approach to general 0-1 pro-

gramming

Let P I be the convex hull of an integer programming problem, i.e, P I = conv({x ∈ {0, 1}n |
Ax ≤ b}). We have P I ⊆ P := {x | Ax ≤ b, 0 ≤ x ≤ e}, its linear programming relaxation.

We want to get a tighter relaxation of P I that is still tractable. The main idea is called
“lift-and-project” — we’ll get our relaxation as a projection of a simpler higher-dimensional
object.

As an example, consider the unit ball in the 1-norm: {x ∈ Rn | ||x||1 ≤ 1}. This has 2n

facets, so requires exponentially many constraints to describe as the feasible set of a linear
programming problem. However, this set can also be written as

{y − z | y, z ∈ Rn
+, eT y + eT z ≤ 1}

which has 2n + 1 inequalities in 2n dimensional space.
So now, given the general problem above, we’ll get a tighter relaxation of P I by “lifting” to

M1+n and get constraints by taking any constraint cT x− δ ≥ 0 from the description of P and
multiplying it by xj ≥ 0 or by 1− xj ≥ 0 for all j. These can be viewed as linear constraints

in

(
1 xT

x xxT

)
.

Let M(P) be the set of matrices X in M1+n satisfying all these inequalities as well as x00 = 1
and Xe0 = diag (X).

Then, define N(P) =

{
x ∈ Rn

+ |
(

1
x

)
= Xe0 for some X ∈ M(P)

}
. This is our projec-

tion back into Rn. The claim is that the following holds:

P I ⊆ N(P) ⊆ P.

Furthermore, we can iterate this process to get N2(P), N3(P), In fact we have the
following theorem.

Theorem 3 (Lovász-Schrijver) Nn(P) = P I .

Similarly, we can define M+(P) as the set of M1+n
+ that satisfy the same constraints, and

N+(P) analogously, and we get

P I ⊆ N+(P) ⊆ N(P) ⊆ P.

5

For any fixed r, optimizing a linear function over N r(P) (N r
+(P)) is a linear (semidefinite)

programming problem of polynomial size, but this grows fast with r. Luckily, the relaxations
are quite good even for small r.

Bringing this back to the stable set problem, we have N+(FRAC(G)) ⊆ TH(G), where
FRAC(G) is the natural LP relaxation of the stable set polytope with constraints xi + xj ≤ 1
for all ij ∈ E, 0 ≤ x ≤ e.

6

