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Today we talk about SDP formulations of the Lovász theta function.

1 SDP formulations of the Lovász theta function

Recall that in the last lecture, we introduced ϑ(G), which satisfies α(G) ≤ Θ(G) ≤ ϑ(G). Here we
recall the notation

ϑ := ϑ(G) := min max
i

1
(cT ui)2

subject to cT c = 1;

uT
i ui = 1, for i = 1, . . . , n;

uT
i uj = 0, for ij 6∈ E, i 6= j.

Thus we derive the following SDP formulation.

1√
ϑ

= max t

subject to Diag (X̄) = ē;

x̄ij = 0, for ij 6∈ E, i 6= j;

x̄0i ≥ t, for i = 1, . . . , n;

X̄ � 0;

here X̄ ∈ M1+n corresponds to [c, u1, . . . , un]T [c, u1, . . . , un] and ē ∈ R1+n is a vector of ones.

Remark: we can assume that c lies in the span of {u1, . . . , un} in any such factorization of X̄, since
replacing c by a scaled version of its projection into this span can only increase the objective function.
So we can take all these vectors in Rn rather than R1+n without loss of generality.

Notice that we can write
X̄ = Ī −

∑
ij∈E

yijF̄ij −
∑

i

ziF̄0i,

where F̄ij := ēiē
T
j + ēj ē

T
i and Ī denotes the identity matrix of dimension 1 + n; then the SDP can be

reformulated as follows:

1√
ϑ

= max
y,z,t

t

subject to Ī −
∑
ij∈E

yijF̄ij −
∑

i

ziF̄0i � 0;

−zi − t ≥ 0, for i = 1, . . . , n.
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By taking the dual, we get

1√
ϑ

= min
V̄ ,w

Ī • V̄

subject to F̄ij • V̄ = 0, ij ∈ E;

F̄0i • V̄ + wi = 0, i = 1, . . . , n;

eT w = 1;

V̄ � 0;

w ≥ 0, w ∈ Rn.

The last two lines of the above formulation can also be written as:[
V̄ 0

0 Diag (w)

]
� 0.

From the constraint
F̄0i • V̄ + wi = 0, i = 1, . . . , n,

we can let

V̄ =

[
v00 −1

2wT

−1
2w V

]
,

where V ∈ Mn. Thus, we can reformulate the SDP as:

(∗)

1√
ϑ

= min v00 + I • V

subject to vij = 0, for ij ∈ E;

eT w = 1, w ≥ 0;[
v00 −1

2wT

−1
2w V

]
� 0.

Remarks:
1. Note that we can find strictly feasible solutions to both the primal and the dual, so, as we will see
soon, there is no duality gap.
2. In fact, we can remove the nonnegativity constraints on w. Suppose w is not nonnegative; then
if it is replaced by |w|, and we correspondingly change the signs of some rows and columns of V , we
can get another solution to (∗) which is feasible except that eT |w| > 1. By scaling down v00, |w|, and
V , we obtain a feasible solution to (∗) with a smaller objective function. So, it is safe to remove the
constraint w ≥ 0.

Consider any feasible solution to (∗). Since w is non–zero, we must have that v00 > 0. Then by
the Schur complement theorem,

V − 1
4v00

wwT � 0.
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So,

eT V e ≥ 1
4v00

(eT w)2 =
1

4v00
> 0.

Thus, v00 ≥ 1
4eT V e

. In fact, we can achieve v00 = 1
4eT V e

by setting w = V e
eT V e

, since 1
4eT V e

− (V e)T

2eT V e

− (V e)T

2eT V e
V

 =

[
eT

2eT V e

−I

]
V

[
e

2eT V e
−I

]
� 0.

So, (∗) is equivalent to

min I • V +
1

4eT V e

subject to (eT V e > 0; )

vij = 0, ij ∈ E;

V � 0.

Let V = λX, with I •X = 1, λ ≥ 0; then we can get

min
X

min
λ≥0

(
λ +

1
4λeT Xe

)
subject to I •X = 1;

(eT Xe > 0; )

xij = 0, ij ∈ E;

X � 0.

The inner minimization gives λ = 1

2
√

eT Xe
. So, we have

1√
ϑ

= min
X

1√
eT Xe

subject to I •X = 1;

(eT Xe > 0; )

xij = 0, ij ∈ E;

X � 0.

So,

(P )

ϑ = max eeT •X

subject to I •X = 1;

xij = 0, ij ∈ E;

X � 0.
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Here the constraint eT Xe > 0 is dropped, because it is satisfied by any feasible solution at least as
good as X = 1

nI. The dual to (P ) is

(D)

min λ

subject to eeT − λI −
∑

ij∈E yijFij � 0;

(i.e. λI � eeT −
∑

ij∈E yijFij),

or

min
F

λmax

(
eeT + F

)
subject to fij = 0, for ij 6∈ E.

Again there is no duality gap, because both problems have strictly feasible solutions.
Here is another derivation of (P ) as an SDP relaxation of finding a maximum stable set:

α(G) = max
{
eT x : xixj = 0, ij ∈ E; x ∈ {0, 1}n

}
= max

{
(eT x)2

xT x
: xixj = 0, ij ∈ E; x ∈ {0, 1}n

}
≤ max

{
(eT x)2

xT x
: xixj = 0, ij ∈ E; x ≥ 0; x 6= 0

}
= max

{
(eT x)2 : xT x = 1; xixj = 0, ij ∈ E; x ≥ 0

}
≤ max

{
eeT • xxT : I • xxT = 1; (xxT )ij = 0, ij ∈ E; xxT ≥ 0

}
(where xxT ≥ 0 means that all entries are nonnegative)

≤ max
{
eeT •X : I •X = 1; xij = 0, ij ∈ E; X � 0; X ≥ 0

}
=: ϑ′(G)

(where X ≥ 0 means that all entries are nonnegative)

≤ v(P ) = ϑ(G).

(This derivation shows that ϑ′(G) might give a better bound on α(G) than ϑ(G); but if the graph
is sparse, it has many more constraints in its SDP formulation than does ϑ(G).) In fact, ϑ(G) is
sandwiched between the stability number α(G) and the clique covering number χ̄(G) — the minimal
number of cliques (sets of mutually adjacent nodes) required to cover all the nodes of G.

Lovász’s sandwich theorem:

α(G) ≤ ϑ(G) ≤ χ̄(G).
↑ ↑ ↑

NP–hard SDP computable NP–hard
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