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1 Shannon Capacity - Motivation

Suppose you have a channel where you can send one “symbol” per time interval, from a finite
set of n symbols. Upon proper encoding, without any further constraint, you would be able to
transmit log n bits of information per time interval (all logs are base 2).

The problem is that some of the symbols are very much alike, and their difference may be
lost during the communication. To formalize this, let’s say that there is a graph G = (V, E)
where V is the set of nodes, and ij ∈ E if symbols i and j can be confused.

One way to solve this problem is by selecting a stable set S (i.e., ij 6∈ E for all i, j ∈ S) and
only send symbols from this set, since they can’t be confused with each other. If the two sides
of the communication channel know what is the set S, we can send log |S| bits of information
per time interval. The size of the maximum (cardinality) stable set in G is called α(G), and
we have a limit of log α(G) bits per time interval.

But we can certainly try to do something smarter. Suppose that instead of symbols, we
communicate by “pairs of symbols”. Two pairs of symbols can be confused if each of the
two elements can be confused (or are equal). To make it formal, we will define the graph
G2 = (V × V, E2) where (ik, jl) ∈ E if (i = j or ij ∈ E) and (k = l or kl ∈ E). Now, if we
find any stable set S of G2 we can send an element of S per two time intervals, giving a limit
of 1

2
log α(G2) bits per time interval.

Of course we can generalize this to get something called the Shannon Capacity. We define
ρ(G) = supk

1
k

log α(Gk), and Θ(G) = 2ρ(G) = supk
k
√

α(Gk). Θ(G) is the Shannon Capacity of
G.

2 Examples

Consider G = K2 = ⇒ Gk = K2k , and α(Gk) = 1, ρ(G) = 0 and Θ(G) = 1.

Now consider G = K̄n the graph with n vertices and no edges. Gk = K̄nk , α(Gk) = nk,
ρ(G) = log n and Θ(G) = n, as expected (if there is no confusion, we can send log n bits of
information).
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Finally, let G = C5 = . Clearly α(G) = 2. Also, α(G2) = 5 (e.g. aa, bc, ce, ed, db),
therefore ρ(G) ≥ 1

2
log 5 and Θ(G) ≥

√
5. This is actually the value of Θ(C5) (as we will see).

As a note, Θ(C7) is still unknown.

3 The Lovász Theta Function

In 1979 Lovász introduced a function of a graph ϑ(G) which can be computed in polynomial
time. He also proved that Θ(G) ≤ ϑ(G). Also, ϑ(C5) ≤

√
5, giving Θ(C5) = ϑ(C5) =

√
5. To

define ϑ(G) we need another definition first.

Definition 1 (c, u1, . . . , un) is an orthonormal representation of a graph G = (N, E),
N = {1, . . . , n} if c, u1, . . . , un ∈ Rn are unit vectors with uT

i uj = 0 if ij 6∈ E.

As an example, suppose G = Kn. Then any set of unit vectors, e.g., c = u1 = . . . = un is
an orthonormal representation. On the other hand, if G = K̄n then u1, . . . , un should form an
orthonormal basis of Rn. For instance, ui = ei and c = e√

n
.

Definition 2 The Lovász Theta Function of a graph is defined as:

ϑ(G) = min
(c,u1,...,un)

max
1≤i≤n

1

(cT ui)2

where the minimum ranges over all orthonormal representations of G.

Note that ϑ(G) ≥ 1, since |cT ui| ≤ 1. Also, note that the example of orthonormal repre-
sentation that we gave for K̄n is valid for all possible graphs, and has a value of n. Therefore,
1 ≤ ϑ(G) ≤ n.

Remark 1 Since the optimal orthonormal representation has |cT ui| ≥ 1/
√

n for all i, we can
restrict ourselves to these. Then we are minimizing a continuous function over a compact set,
therefore the minimum is attained.

4 Main Result

The goal of the rest of this lecture is to prove that Θ(G) ≤ ϑ(G). We will prove this via three
lemmas.

Definition 3 Suppose that G = (V, E) and H = (W, F ) are graphs. Then G×H, the strong
product of G and H is defined on the node set V × W by two nodes v1w1 and v2w2 being
adjacent if (v1 = v2 or v1v2 ∈ E) and (w1 = w2 or w1w2 ∈ F ).
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Lemma 1 α(G×H) ≥ α(G)α(H).

Proof: If S and T are maximum stable sets of G and H, then S × T is a stable set of G×H.
ut
Corollary 1 α(Gk) ≥ (α(G))k, so Θ(G) = supk

k
√

α(Gk) = limk
k
√

α(Gk).
ut

Lemma 2 ϑ(G×H) ≤ ϑ(G)ϑ(H).

Proof: Let (c, u1, . . . , um) and (d, v1, . . . , vn) be orthonormal representations of G and H at-
taining ϑ(G) and ϑ(H). To find a representation of G×H we use the Kronecker product, which
when applied to vectors can be defined as u⊗ v = vec(uvT ). Note that:

(u⊗ v)T (ū⊗ v̄) = vec(uvT )T vec(ūv̄T ) = uvT • ūv̄T = trace (vuT ūv̄T ) = (uT ū)(vT v̄).

Hence, (c⊗d, ui⊗ vj, 1 ≤ i ≤ m, 1 ≤ j ≤ n) is an orthonormal representation of G×H. So:

ϑ(G×H) ≤ max
i,j

1

[(c⊗ d)T (ui ⊗ vj)]2

= max
i,j

1

(cT ui)2(dT vj)2

= ϑ(G)ϑ(H).

ut

Lemma 3 ϑ(G) ≥ α(G).

Proof: Let S be the maximum stable set of G, say (w.l.o.g.) S = {1, . . . , k}, with k = α(G).
Let (c, u1, . . . , un) be any orthonormal representation of G. Then u1, . . . , uk are orthonormal.
Extend it with vectors vk+1, . . . , vn such that u1, . . . uk, vk+1, . . . , vn is an orthonormal basis of
Rn. Then:

1 = ‖c‖2 =
k∑

i=1

(cT ui)
2 +

n∑
j=k+1

(cT vj)
2

≥
k∑

i=1

(cT ui)
2

≥ k min
i

(cT ui)
2.

Therefore, maxi
1

(cT ui)2
≥ k and ϑ(G) ≥ α(G). ut

Finally, we have the theorem.

Theorem 1 Θ(G) ≤ ϑ(G).

Proof: For any k we have that α(Gk) ≤ ϑ(Gk) ≤ ϑ(G)k. So k
√

α(Gk) ≤ ϑ(G) and Θ(G) ≤
ϑ(G). ut

3


