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1 Applications of semidefinite programming to combinatorial op-
timization

We consider the Max Cut problem and the Lovasz’s theta function (discussed in the next lecture).

1.1 Max Cut

Consider an undirected graph (G = (N,E), N = {1, . . . , n}, with edge weights w : E → �
+. We

desire a cut δ(S) = {ij ∈ E|i ∈ S, j 6∈ S} for some S ⊆ N of maximum weight, where the weight of
a cut is defined as

w(δ(S)) =
∑

e∈δ(S)

w(e).

We can assume this graph is complete by setting w(e) = 0 for all edges e that must be added to
complete the graph. This problem is known to be NP-hard.

1.2 Quadratic programming formulation

Let xi be a variable, i ∈ {1, . . . , n}, where xi = 1 if i ∈ S, and xi = −1 if i 6∈ S. Then, since 1 = x2
i ,

w(δ(S)) =
1

4

∑

i

∑

j 6=i

w((i, j))(1 − xixj).

We define the Laplacian of the graph L = L(G) as having entries

lij =

{

−1
4wij , i 6= j

1
4

∑

k 6=i wik, i = j;

observe that L ∈ � n. Then we can define a (nonconvex) quadratic program

max
∑

i,j

lijxixj (QP)

s.t. x2
i = 1, i = 1, . . . , n.

(QP) is identical to the Max Cut problem, and so is also NP-hard.
We now consider three ways of relaxing (QP) to a semidefinite program.

1.3 Express (QP) as a linear function of xxT

We first write (QP) as

max L · (xxT)

s.t. diag(xxT) = 1
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and then re-write xxT as X, yielding

max L ·X
s.t. diag(X) = e

X � 0

rank(X) = 1.

The rank-one requirement is to ensure that X can be expressed as X = xxT:

Prop.
{

xx
T ∈ � n|xi = ±1∀i

}

= {X ∈ � n|X � 0, diag(X) = 1, rank(X) = 1}.

Proof. The ⊆ relation is trivial; we now show the ⊇ relation. Suppose that X ∈ � n with diag(X) =
e, X � 0, and rank(X) = 1. All columns of X are multiples of the same vector, say u 6= 0, since
X is rank one; likewise, all rows are multiples of vT. Since X is symmetric, by considering any
nonzero column we can take v = u. So X = αuuT for some nonzero α > 0, since X � 0. Let
x =

√
αu and we have that X = xxT. Finally, since diag(X) = diag(xxT) = e, xi = ±1 for all

i.

Observe that (QP) is equivalent to

max L ·X
s.t. diag(X) = e

X � 0

rank(X) = 1,

and so the min-rank SDP problem is NP-hard. With this in mind, we relax the problem by
eliminating the rank constraint, yielding

max L · X
s.t. diag(X) = e (P)

X � 0.

1.4 Increase the dimension of the variables

The second relaxation technique we consider is increasing the dimension of each variable. We
replace the variable xi = ±1 (a unit vector in

� 1) with a unit vector vi ∈ � n. This yields the
program

max
∑

i,j

lijv
T
i vj

s.t. vT
i vi = 1, i = 1, . . . , n,

vi ∈
� n.

Let V = [v1, . . . ,vn], and replace VTV with X ∈ � n; this yields (P), as every X can be so factored.
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1.5 The double dual of (QP)

The next technique we consider involves taking the dual of the dual of (QP). The standard La-
grangian dual of (QP) is

min
y∈ � n

max
x∈ � n

(

eTy − xT (Diag(y) −L)x
)

.

The inner maximization does not exist if Diag(y) − L is not psd, yielding the implied constraint
Diag(y) � L; if it is psd, then the maximum is attained by choosing x = 0, yielding

min eTy

s.t. Diag(y) −L � 0 (D)

y ∈ � n,

first noted by C. Delorme and S. Poljak in 1993. The dual of this sdp is (P).

1.6 Goemans-Williamson ’94

Theorem 1. Let v(·) be the optimal value of a program. Then v(QP) ≥ .878 · v(P).

Proof. We show a randomized algorithm that, in expectation, yields a cut with value at least .878 of
the optimal value. Let X be given that is optimal to (P), and factor X into VTV, V = [v1, . . . ,vn].
We wish to map each vector into a one-dimensional subspace. Let r ∈ � n be a random vector drawn
uniformly over the unit sphere in

� n. Choose xi = sign(vT
i r), and let S be the cut defined by {xi};

Figure 1 is an example of this rounding scheme.

Figure 1: An example in
� 3 of the rounding scheme used. The vector r is chosen uniformly at

random from the unit sphere in
� n. The vectors v1 and v2 are rounded to 1, while v3, v4, and v5

are rounded to −1. We define the cut S as containing all nodes whose variables are rounded to 1.
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We now show that E [w(δ(S))] ≥ .878 · v(P ). Observe that

E [w(δ(S))] =
∑

(i,j)∈S

wijpij,

where pij is the probability that ij is in the cut. For a given i, j,

pij = Pr
[

rTvi ≥ 0 > rTvj

]

+ Pr
[

rTvj ≥ 0 > rTvi

]

.

Consider the plane that vi and vj lie in, along with the normalized projection of r in this plane;
see figure 2. For these two vectors to be separated by the randomized rounding, the vector r must
lie in the region indicated, which has size 2 arccos(vT

i vj); thus,

pij =
1

π
arccos(vT

i vj).

By simple calculus, we can see that

1

π
arccos(vT

i vj) ≥ .878 · 1

2
(1 − vT

i vj);

then

E [w(δ(S))] =
∑

i<j

wijpij =
∑

i<j

wij
1

π
arccos(vT

i vj) ≥ .878 · 1

2

∑

i<j

wij(1 − vT
i vj).

Recall that

v(P) = L ·X =
∑

i,j

lijv
T
i vj =

1

2

∑

i<j

wij(1 − vT
i vj),

and so E [w(δ(s))] ≥ .878 · v(P), as required. In addition, we have a .878-approximate randomized
algorithm.
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Figure 2: The plane that any two vectors lie in. For these two vectors to be cut by the randomized
rounding, it must be that r lies in the region indicated. If the two vectors are v1 and v2, the total
size of this region in radians is 2 arccos(vT

1 v2).
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