## 1 Applications of semidefinite programming to combinatorial optimization

We consider the Max Cut problem and the Lovasz's theta function (discussed in the next lecture).

### 1.1 Max Cut

Consider an undirected graph $\left(G=(N, E), N=\{1, \ldots, n\}\right.$, with edge weights $w: E \rightarrow \mathbb{R}_{+}$. We desire a cut $\delta(S)=\{i j \in E \mid i \in S, j \notin S\}$ for some $S \subseteq N$ of maximum weight, where the weight of a cut is defined as

$$
w(\delta(S))=\sum_{e \in \delta(S)} w(e)
$$

We can assume this graph is complete by setting $w(e)=0$ for all edges $e$ that must be added to complete the graph. This problem is known to be NP-hard.

### 1.2 Quadratic programming formulation

Let $x_{i}$ be a variable, $i \in\{1, \ldots, n\}$, where $x_{i}=1$ if $i \in S$, and $x_{i}=-1$ if $i \notin S$. Then, since $1=x_{i}^{2}$,

$$
\left.w(\delta(S))=\frac{1}{4} \sum_{i} \sum_{j \neq i} w_{( }(i, j)\right)\left(1-x_{i} x_{j}\right) .
$$

We define the Laplacian of the graph $\mathcal{L}=\mathcal{L}(G)$ as having entries

$$
l_{i j}= \begin{cases}-\frac{1}{4} w_{i j}, & i \neq j \\ \frac{1}{4} \sum_{k \neq i} w_{i k}, & i=j\end{cases}
$$

observe that $\mathcal{L} \in \mathbb{M}^{n}$. Then we can define a (nonconvex) quadratic program

$$
\begin{align*}
\max & \sum_{i, j} l_{i j} x_{i} x_{j}  \tag{QP}\\
\text { s.t. } & x_{i}^{2}=1, \quad i=1, \ldots, n .
\end{align*}
$$

(QP) is identical to the Max Cut problem, and so is also NP-hard.
We now consider three ways of relaxing (QP) to a semidefinite program.

### 1.3 Express (QP) as a linear function of $\mathrm{xx}^{T}$

We first write (QP) as

$$
\begin{aligned}
\max & \mathcal{L} \cdot\left(\mathbf{x x}^{\mathrm{T}}\right) \\
\text { s.t. } & \operatorname{diag}\left(\mathbf{x x}^{\mathrm{T}}\right)=\mathbf{1}
\end{aligned}
$$

and then re-write $\mathbf{x x}^{\mathrm{T}}$ as $\mathbf{X}$, yielding

$$
\begin{aligned}
\max & \mathcal{L} \cdot \mathbf{X} \\
\text { s.t. } & \operatorname{diag}(\mathbf{X})
\end{aligned}=e=1 \text { (X)} \begin{aligned}
& \succeq 0 \\
\operatorname{rank}(\mathbf{X}) & =1
\end{aligned}
$$

The rank-one requirement is to ensure that $\mathbf{X}$ can be expressed as $\mathbf{X}=\mathbf{x x}^{T}$ :
Prop. $\left\{\boldsymbol{x} \boldsymbol{x}^{T} \in \mathbb{M}^{n} \mid x_{i}= \pm 1 \forall i\right\}=\left\{\boldsymbol{X} \in \mathbb{M}^{n} \mid \boldsymbol{X} \succeq 0, \operatorname{diag}(\boldsymbol{X})=\mathbf{1}, \operatorname{rank}(\boldsymbol{X})=1\right\}$.
Proof. The $\subseteq$ relation is trivial; we now show the $\supseteq$ relation. Suppose that $\mathbf{X} \in \mathbb{M}^{n}$ with $\operatorname{diag}(\mathbf{X})=$ $e, \mathbf{X} \succ 0$, and $\operatorname{rank}(\mathbf{X})=1$. All columns of $\mathbf{X}$ are multiples of the same vector, say $\mathbf{u} \neq 0$, since $\mathbf{X}$ is rank one; likewise, all rows are multiples of $\mathbf{v}^{\mathrm{T}}$. Since $\mathbf{X}$ is symmetric, by considering any nonzero column we can take $\mathbf{v}=\mathbf{u}$. So $\mathbf{X}=\alpha \mathbf{u u}^{\mathrm{T}}$ for some nonzero $\alpha>0$, since $\mathbf{X} \succeq 0$. Let $\mathbf{x}=\sqrt{\alpha} \mathbf{u}$ and we have that $\mathbf{X}=\mathbf{x} \mathbf{x}^{\mathrm{T}}$. Finally, since $\operatorname{diag}(\mathbf{X})=\operatorname{diag}\left(\mathbf{x x}^{\mathrm{T}}\right)=\mathbf{e}, x_{i}= \pm 1$ for all $i$.

Observe that (QP) is equivalent to

$$
\begin{aligned}
& \max \quad \mathcal{L} \cdot \mathbf{X} \\
& \text { s.t. } \operatorname{diag}(\mathbf{X})=\mathbf{e} \\
& \mathbf{X} \succeq 0 \\
& \operatorname{rank}(\mathbf{X})=1,
\end{aligned}
$$

and so the min-rank SDP problem is NP-hard. With this in mind, we relax the problem by eliminating the rank constraint, yielding

$$
\begin{align*}
& \max \mathcal{L} \cdot \mathbf{X} \\
& \text { s.t. } \operatorname{diag}(\mathbf{X})  \tag{P}\\
&=\mathbf{e} \\
& \mathbf{X} \succeq 0 .
\end{align*}
$$

### 1.4 Increase the dimension of the variables

The second relaxation technique we consider is increasing the dimension of each variable. We replace the variable $x_{i}= \pm 1$ (a unit vector in $\mathbb{R}^{1}$ ) with a unit vector $\mathbf{v}_{i} \in \mathbb{R}^{n}$. This yields the program

$$
\begin{aligned}
\max & \sum_{i, j} l_{i j} \mathbf{v}_{i}^{\mathrm{T}} \mathbf{v}_{j} \\
\text { s.t. } & \mathbf{v}_{i}^{\mathrm{T}} \mathbf{v}_{i}=1, i=1, \ldots, n, \\
& \mathbf{v}_{i} \in \mathbb{R}^{n} .
\end{aligned}
$$

Let $\mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$, and replace $\mathbf{V}^{\mathrm{T}} \mathbf{V}$ with $\mathbf{X} \in \mathbb{M}^{n}$; this yields $(\mathrm{P})$, as every $\mathbf{X}$ can be so factored.

### 1.5 The double dual of (QP)

The next technique we consider involves taking the dual of the dual of (QP). The standard Lagrangian dual of (QP) is

$$
\min _{\mathbf{y} \in \mathbb{R}^{n}} \max _{\mathbf{x} \in \mathbb{R}^{n}}\left(\mathbf{e}^{\mathrm{T}} \mathbf{y}-\mathbf{x}^{\mathrm{T}}(\operatorname{Diag}(\mathbf{y})-\mathcal{L}) \mathbf{x}\right) .
$$

The inner maximization does not exist if $\operatorname{Diag}(\mathbf{y})-\mathcal{L}$ is not psd, yielding the implied constraint $\operatorname{Diag}(\mathbf{y}) \succeq \mathcal{L}$; if it is psd , then the maximum is attained by choosing $\mathbf{x}=0$, yielding

$$
\begin{align*}
\min & \mathbf{e}^{\mathrm{T}} \mathbf{y} \\
\text { s.t. } & \operatorname{Diag}(\mathbf{y})-\mathcal{L} \succeq 0  \tag{D}\\
& \mathbf{y} \in \mathbb{R}^{n},
\end{align*}
$$

first noted by C. Delorme and S. Poljak in 1993. The dual of this sdp is (P).

### 1.6 Goemans-Williamson '94

Theorem 1. Let $v(\cdot)$ be the optimal value of a program. Then $v(Q P) \geq .878 \cdot v(P)$.
Proof. We show a randomized algorithm that, in expectation, yields a cut with value at least .878 of the optimal value. Let $\mathbf{X}$ be given that is optimal to (P), and factor $\mathbf{X}$ into $\mathbf{V}^{\mathrm{T}} \mathbf{V}, \mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$. We wish to map each vector into a one-dimensional subspace. Let $\mathbf{r} \in \mathbb{R}^{n}$ be a random vector drawn uniformly over the unit sphere in $\mathbb{R}^{n}$. Choose $x_{i}=\operatorname{sign}\left(\mathbf{v}_{i}^{T} \mathbf{r}\right)$, and let $S$ be the cut defined by $\left\{x_{i}\right\}$; Figure 1 is an example of this rounding scheme.


Figure 1: An example in $\mathbb{R}^{3}$ of the rounding scheme used. The vector $\mathbf{r}$ is chosen uniformly at random from the unit sphere in $\mathbb{R}^{n}$. The vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are rounded to 1 , while $\mathbf{v}_{3}, \mathbf{v}_{4}$, and $\mathbf{v}_{5}$ are rounded to -1 . We define the cut $S$ as containing all nodes whose variables are rounded to 1 .

We now show that $\mathrm{E}[w(\delta(S))] \geq .878 \cdot v(P)$. Observe that

$$
\mathrm{E}[w(\delta(S))]=\sum_{(i, j) \in S} w_{i j} p_{i j},
$$

where $p_{i j}$ is the probability that $i j$ is in the cut. For a given $i, j$,

$$
p_{i j}=\operatorname{Pr}\left[\mathbf{r}^{\mathrm{T}} \mathbf{v}_{i} \geq 0>\mathbf{r}^{\mathrm{T}} \mathbf{v}_{j}\right]+\operatorname{Pr}\left[\mathbf{r}^{\mathrm{T}} \mathbf{v}_{j} \geq 0>\mathbf{r}^{\mathrm{T}} \mathbf{v}_{i}\right] .
$$

Consider the plane that $\mathbf{v}_{i}$ and $\mathbf{v}_{j}$ lie in, along with the normalized projection of $\mathbf{r}$ in this plane; see figure 2 . For these two vectors to be separated by the randomized rounding, the vector $\mathbf{r}$ must lie in the region indicated, which has size $2 \arccos \left(\mathbf{v}_{i}^{\mathrm{T}} \mathbf{v}_{j}\right)$; thus,

$$
p_{i j}=\frac{1}{\pi} \arccos \left(\mathbf{v}_{i}^{T} \mathbf{v}_{j}\right)
$$

By simple calculus, we can see that

$$
\frac{1}{\pi} \arccos \left(\mathbf{v}_{i}^{T} \mathbf{v}_{j}\right) \geq .878 \cdot \frac{1}{2}\left(1-\mathbf{v}_{i}^{\mathrm{T}} \mathbf{v}_{j}\right) ;
$$

then

$$
\mathrm{E}[w(\delta(S))]=\sum_{i<j} w_{i j} p_{i j}=\sum_{i<j} w_{i j} \frac{1}{\pi} \arccos \left(\mathbf{v}_{i}^{\mathrm{T}} \mathbf{v}_{j}\right) \geq .878 \cdot \frac{1}{2} \sum_{i<j} w_{i j}\left(1-\mathbf{v}_{i}^{\mathrm{T}} \mathbf{v}_{j}\right)
$$

Recall that

$$
v(\mathrm{P})=\mathcal{L} \cdot \mathbf{X}=\sum_{i, j} l_{i j} \mathbf{v}_{i}^{\mathrm{T}} \mathbf{v}_{j}=\frac{1}{2} \sum_{i<j} w_{i j}\left(1-\mathbf{v}_{i}^{\mathrm{T}} \mathbf{v}_{j}\right)
$$

and so $\mathrm{E}[w(\delta(s))] \geq .878 \cdot v(\mathrm{P})$, as required. In addition, we have a .878 -approximate randomized algorithm.


Figure 2: The plane that any two vectors lie in. For these two vectors to be cut by the randomized rounding, it must be that $\mathbf{r}$ lies in the region indicated. If the two vectors are $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$, the total size of this region in radians is $2 \arccos \left(\mathbf{v}_{1}^{\mathrm{T}} \mathbf{v}_{2}\right)$.

