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1 Applications of semidefinite programming to combinatorial op-
timization

We consider the Max Cut problem and the Lovasz’s theta function (discussed in the next lecture).

1.1 Max Cut
Consider an undirected graph (G = (N, E), N = {1,...,n}, with edge weights w : E — Ry. We
desire a cut §(S) = {ij € E|i € S,j ¢ S} for some S C N of maximum weight, where the weight of
a cut is defined as
e€d(S)
We can assume this graph is complete by setting w(e) = 0 for all edges e that must be added to
complete the graph. This problem is known to be NP-hard.
1.2 Quadratic programming formulation
Let z; be a variable, i € {1,...,n}, where x; = 1ifi € S, and z; = —1if i ¢ S. Then, since 1 = 2,
1 .
w(d(S)) = 5 3D w(@,5) A - zixy).
i i

We define the Laplacian of the graph £ = £(G) as having entries

L — Wi, i F

ij =91 .

1 Zk;éi Wik, =173

observe that £ € M™. Then we can define a (nonconvex) quadratic program

max Zlijxixj (QP)
4,3
st. 2i=1, i=1,...,n.

(QP) is identical to the Max Cut problem, and so is also NP-hard.
We now consider three ways of relaxing (QP) to a semidefinite program.

1.3 Express (QP) as a linear function of xxT

We first write (QP) as

max L (xx")

s.t. diag(xxT) =1



and then re-write xxT as X, yielding

max L-X
s.t.  diag(X) =e
X*>0
rank(X) = 1.

The rank-one requirement is to ensure that X can be expressed as X = xx '

Prop. {zz’ € M"|z; = £1Vi} = {X € M"|X = 0, diag(X) = 1, rank(X) = 1}.

Proof. The C relation is trivial; we now show the D relation. Suppose that X € M" with diag(X) =
e, X > 0, and rank(X) = 1. All columns of X are multiples of the same vector, say u # 0, since
X is rank one; likewise, all rows are multiples of vT. Since X is symmetric, by considering any
nonzero column we can take v = u. So X = aquu? for some nonzero a > 0, since X > 0. Let
x = y/au and we have that X = xx'. Finally, since diag(X) = diag(xx’) = e, 2; = #1 for all
i. O

Observe that (QP) is equivalent to

max L-X
s.t.  diag(X) =e
X*>0
rank(X) =1,

and so the min-rank SDP problem is NP-hard. With this in mind, we relax the problem by
eliminating the rank constraint, yielding

max L-X
s.t. diag(X) =e (P)
X >=0.

1.4 Increase the dimension of the variables

The second relaxation technique we consider is increasing the dimension of each variable. We
replace the variable x; = 41 (a unit vector in R!) with a unit vector v; € R®. This yields the
program

max g ll-jvgfvj
0,

T, _ .
s.t. v,vi=11:=1,...,n,

v; € R™.

Let V = [vy,...,vy], and replace VTV with X € M"; this yields (P), as every X can be so factored.



1.5 The double dual of (QP)

The next technique we consider involves taking the dual of the dual of (QP). The standard La-
grangian dual of (QP) is
. T T .
- D - L)x).
min max (e"y —x (Diag(y) — £)x)

The inner maximization does not exist if Diag(y) — £ is not psd, yielding the implied constraint
Diag(y) = L; if it is psd, then the maximum is attained by choosing x = 0, yielding
min eTy
s.t. Diag(y)—L >0 (D)
y € R",

first noted by C. Delorme and S. Poljak in 1993. The dual of this sdp is (P).

1.6 Goemans-Williamson ’94

Theorem 1. Let v(-) be the optimal value of a program. Then v(QP) > .878 - v(P).

Proof. We show a randomized algorithm that, in expectation, yields a cut with value at least .878 of
the optimal value. Let X be given that is optimal to (P), and factor X into VIV, V = [vy,...,v,].
We wish to map each vector into a one-dimensional subspace. Let r € R™ be a random vector drawn
uniformly over the unit sphere in R™. Choose x; = sign(v’r), and let S be the cut defined by {z;};
Figure 1 is an example of this rounding scheme.
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Figure 1: An example in R? of the rounding scheme used. The vector r is chosen uniformly at
random from the unit sphere in R™. The vectors vi and vy are rounded to 1, while vs3, v4, and vs
are rounded to —1. We define the cut S as containing all nodes whose variables are rounded to 1.



We now show that E [w(4(S5))] > .878 - v(P). Observe that
E[w(d(S)] = > wypy,
(i,9)eS
where p;; is the probability that ¢j is in the cut. For a given i, j,
pij = Pr [I'TVZ' >0> rij] + Pr [rij >0> rTvi] .

Consider the plane that v; and v; lie in, along with the normalized projection of r in this plane;
see figure 2. For these two vectors to be separated by the randomized rounding, the vector r must
lie in the region indicated, which has size 2 arccos(v}v;); thus,

T
%

1
pij = arccos(v; v;).

By simple calculus, we can see that

1
— arccos(vj vj) > .878 - 2(1 —v}v));
s

then

wap” = wa— arccos( v ) > .878 - Zwu —-v; v])

1<j 1<j Z<j

vP)=L-X = Z lijvivi= Z wi; (1 —v}v)),
4,3

1<J

Recall that

and so E [w(d(s))] > .878 - v(P), as required. In addition, we have a .878-approximate randomized
algorithm.
O



Figure 2: The plane that any two vectors lie in. For these two vectors to be cut by the randomized

rounding, it must be that r lies in the region indicated. If the two vectors are v and vo, the total

size of this region in radians is 2 arccos(viva).



