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Today, we will talk about control theory. For more information, please see Carsten Scherer’s
notes (see the link on the home page). Consider the linear system

ẋ = Rx, x = x(t) ∈ Rn, R ∈ Rn×n.

Is x(t) bounded for all t, whatever x0 = x(0)? If we can find v(x) = xT Y x with Y � 0 such
that v is nonincreasing, then we’re done. Let’s compute v̇, which is

v̇ = ẋT Y x + xT Y ẋ = xT RT Y x + xT Y Rx.

Hence, if we have Y � 0 with RT Y + Y R � 0, then x remains bounded.
This condition is also necessary if R can be diagonalized. Let R = PΛP−1 where P ∈ Cn×n

is the matrix of eigenvectors and Λ = Diag(λ) for λ ∈ Cn, the vector of eigenvalues. Since x
remains bounded, each Re(λi) ≤ 0. But

P−1RP = Λ

⇒ P−1RP + PHRT P−H = Λ + ΛH = 2Diag (Re(λ)) � 0

⇒ (P−HP−1)R + RT (P−HP−1) = 2P−HDiag (Re(λ))P−1 � 0.

Now P−HP−1 is Hermitian and positive definite, and in fact it is real. Let Y = P−HP−1 and
we’re done. Note that, since the conditions are homogeneous, we can replace Y � 0 by Y � I,
so we can find such a Y by solving, say,

maxY −I • Y
RT Y + Y R � 0

Y � I.

What if x evolves according to ẋ ∈ conv{R1, · · · , Rk}x (a differential inclusion)? Certainly for
x to remain bounded it is sufficient if there is a nonincreasing Lyapounov function

v(x) := xT Y x, Y � 0.

Hence, RT
i Y + Y Ri � 0, i = 1, · · · , k, and I − Y � 0 is a sufficient condition.

Suppose instead we have the system ẋ = Rx + Bu with B ∈ Rn×k and u ∈ Rk. Can we
choose u to control x? In particular, can we choose u = Px, P ∈ Rr×n? If we choose such a
feedback control, ẋ = (R + BP )x, so we want P and Y such that

(R + BP )T Y + Y (R + BP ) � 0 and Y � 0

⇔ RT Y + Y R + P T BT Y + Y BP � 0 and Y � 0

⇔ Y −1RT + RY −1 + Y −1P T BT + BPY −1 � 0 and Y � 0.
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Note that, by using Y −1 instead of Y , we have put the two variables together, so we can change
variables and get linear constraints. Indeed, in terms of Z = Y −1 and Q = PY −1, we have the
following constraints

ZRT + RZ + QT BT + BQ � 0

Z � I.

(Note, the last constraint is not equivalent to Y � I, but ensures that Z and Y = Z−1 are
positive definite.) Having solved this system, we can set Y = Z−1 and P = QY . There is
an obvious extension of this to get sufficient conditions for a linear feedback control to keep x
bounded when ẋ ∈ conv{R1, · · · , Rk}x + Bu.

Next, we will talk about Euclidean distance matrices.

Definition 1 (Euclidean Distance Matrix) We say D ∈ Mn is a Euclidean distance matrix
(EDM) (of dimension ≤ r) iff there are points x1, · · · , xn (in Rr) with ||xi − xj||2 = dij.

We want to characterize EDMs. We use P ∈ Rn×(n−1) with [ e√
n
, P ] orthogonal where e =

[1; · · · ; 1] ∈ Rn.

Theorem 1 The matrix D ∈ Mn is an EDM (of dimension ≤ r) iff there is U ∈ Mn−1
+ (of

rank ≤ r) with
D = diag (PUP T )eT + e(diag (PUP T ))T − 2PUP T .

Proof: Suppose there is such a U (of rank r). Then there is Q (∈ R(n−1)×r) with U = QQT .
Let xT

i be the ith row of PQ (in Rr). Then

dij = (xT
i xi).1 + 1.(xT

j xj)− 2xT
i xj = ||xi − xj||2.

Conversely, suppose D is the EDM corresponding to x1, · · · , xn (in Rr). Then, since [ e√
n
, P ]

is orthogonal, PP T = I − eeT

n
. Let X = [x1, · · · , xn] and Y = XPP T = X − XeeT

n
= [x1 −P

xi

n
, · · · , xn −

P
xi

n
]. Hence, D is also the EDM corresponding to Y , so

D = diag (Y T Y )eT + e(diag (Y T Y ))T − 2Y T Y.

Also, Y T Y = PP T XT XPP T , so taking U = P T XT XP does the trick (and has rank at most
r). ut

This motivates the “SDPs” (in primal form):

minU∈Mn−1 ||D − diag (PUP T )eT + e(diag (PUP T ))T − 2PUP T ||2F
s.t. U � 0,

if there is noise in the distance measurements D, or

minU∈Mn−1 I • U
s.t. diag (PUP T )eT + e(diag (PUP T ))T − 2PUP T = D

U � 0.
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(The latter tends to give a low rank solution.)
A related problem is the sensor localization problem (see e.g. the paper by So and Ye, with

a link on the home page): there are some known locations called “anchors” and n unknown
locations called “sensors”. And we also know ||xi−xj||2 for some pairs ij ∈ Ex and ||xj − ak||2
for some pairs jk ∈ Ea.
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Figure 1: Sensor localization problem

Then, with X := [x1, · · · , xn],

||xi − xj||2 = (ei − ej)
T XT X(ei − ej), ||xj − ak||2 =

(
ak

−ej

)T (
I X

XT XT X

) (
ak

−ej

)
.

Then we have
(ei − ej)

T Y (ei − ej) = dij, ij ∈ Ex(
ak

−ej

)T (
I X

XT Y

) (
ak

−ej

)
= fkj, kj ∈ Ea

Y = XT X.

The last constraint is nonlinear, but we can relax it to Y � XT X, or equivalently(
I X

XT Y

)
� 0.

This will give an SDP formulation for the problem.
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