Today, we will talk about control theory. For more information, please see Carsten Scherer's notes (see the link on the home page). Consider the linear system

$$\dot{x} = Rx, \quad x = x(t) \in \mathbb{R}^n, R \in \mathbb{R}^{n \times n}.$$

Is x(t) bounded for all t, whatever  $x_0 = x(0)$ ? If we can find  $v(x) = x^T Y x$  with  $Y \succ 0$  such that v is nonincreasing, then we're done. Let's compute  $\dot{v}$ , which is

$$\dot{v} = \dot{x}^T Y x + x^T Y \dot{x} = x^T R^T Y x + x^T Y R x.$$

Hence, if we have  $Y \succ 0$  with  $R^T Y + Y R \preceq 0$ , then x remains bounded.

This condition is also necessary if R can be diagonalized. Let  $R = P\Lambda P^{-1}$  where  $P \in \mathbb{C}^{n \times n}$ is the matrix of eigenvectors and  $\Lambda = \text{Diag}(\lambda)$  for  $\lambda \in \mathbb{C}^n$ , the vector of eigenvalues. Since xremains bounded, each  $\text{Re}(\lambda_i) \leq 0$ . But

$$P^{-1}RP = \Lambda$$
  

$$\Rightarrow P^{-1}RP + P^{H}R^{T}P^{-H} = \Lambda + \Lambda^{H} = 2\text{Diag}\left(Re(\lambda)\right) \preceq 0$$
  

$$\Rightarrow (P^{-H}P^{-1})R + R^{T}(P^{-H}P^{-1}) = 2P^{-H}\text{Diag}\left(Re(\lambda)\right)P^{-1} \preceq 0.$$

Now  $P^{-H}P^{-1}$  is Hermitian and positive definite, and in fact it is real. Let  $Y = P^{-H}P^{-1}$  and we're done. Note that, since the conditions are homogeneous, we can replace  $Y \succ 0$  by  $Y \succeq I$ , so we can find such a Y by solving, say,

$$\max_{Y} \begin{array}{cc} -I \bullet Y \\ R^{T}Y + YR & \preceq & 0 \\ Y & \succ & I \end{array}$$

What if x evolves according to  $\dot{x} \in \operatorname{conv}\{R_1, \dots, R_k\}x$  (a differential inclusion)? Certainly for x to remain bounded it is sufficient if there is a nonincreasing Lyapounov function

$$v(x) := x^T Y x, \qquad Y \succ 0.$$

Hence,  $R_i^T Y + Y R_i \leq 0$ ,  $i = 1, \dots, k$ , and  $I - Y \leq 0$  is a sufficient condition.

Suppose instead we have the system  $\dot{x} = Rx + Bu$  with  $B \in \mathbb{R}^{n \times k}$  and  $u \in \mathbb{R}^k$ . Can we choose u to control x? In particular, can we choose  $u = Px, P \in \mathbb{R}^{r \times n}$ ? If we choose such a feedback control,  $\dot{x} = (R + BP)x$ , so we want P and Y such that

$$(R + BP)^{T}Y + Y(R + BP) \leq 0 \text{ and } Y \succ 0$$
  

$$\Leftrightarrow \quad R^{T}Y + YR + P^{T}B^{T}Y + YBP \leq 0 \text{ and } Y \succ 0$$
  

$$\Leftrightarrow \quad Y^{-1}R^{T} + RY^{-1} + Y^{-1}P^{T}B^{T} + BPY^{-1} \leq 0 \text{ and } Y \succ 0.$$

Note that, by using  $Y^{-1}$  instead of Y, we have put the two variables together, so we can change variables and get linear constraints. Indeed, in terms of  $Z = Y^{-1}$  and  $Q = PY^{-1}$ , we have the following constraints

$$ZR^T + RZ + Q^T B^T + BQ \preceq 0$$
$$Z \succeq I.$$

(Note, the last constraint is not equivalent to  $Y \succeq I$ , but ensures that Z and  $Y = Z^{-1}$  are positive definite.) Having solved this system, we can set  $Y = Z^{-1}$  and P = QY. There is an obvious extension of this to get sufficient conditions for a linear feedback control to keep x bounded when  $\dot{x} \in \operatorname{conv}\{R_1, \dots, R_k\}x + Bu$ .

Next, we will talk about Euclidean distance matrices.

**Definition 1** (Euclidean Distance Matrix) We say  $D \in \mathbb{M}^n$  is a Euclidean distance matrix (EDM) (of dimension  $\leq r$ ) iff there are points  $x_1, \dots, x_n$  (in  $\mathbb{R}^r$ ) with  $||x_i - x_j||^2 = d_{ij}$ .

We want to characterize EDMs. We use  $P \in \mathbb{R}^{n \times (n-1)}$  with  $\left[\frac{e}{\sqrt{n}}, P\right]$  orthogonal where  $e = [1; \cdots; 1] \in \mathbb{R}^n$ .

**Theorem 1** The matrix  $D \in \mathbb{M}^n$  is an EDM (of dimension  $\leq r$ ) iff there is  $U \in \mathbb{M}^{n-1}_+$  (of rank  $\leq r$ ) with

$$D = \operatorname{diag} \left( PUP^T \right) e^T + e(\operatorname{diag} \left( PUP^T \right) \right)^T - 2PUP^T$$

**Proof:** Suppose there is such a U (of rank r). Then there is  $Q \ (\in \mathbb{R}^{(n-1)\times r})$  with  $U = QQ^T$ . Let  $x_i^T$  be the *i*th row of PQ (in  $\mathbb{R}^r$ ). Then

$$d_{ij} = (x_i^T x_i) \cdot 1 + 1 \cdot (x_j^T x_j) - 2x_i^T x_j = ||x_i - x_j||^2.$$

Conversely, suppose D is the EDM corresponding to  $x_1, \dots, x_n$  (in  $\mathbb{R}^r$ ). Then, since  $\left[\frac{e}{\sqrt{n}}, P\right]$  is orthogonal,  $PP^T = I - \frac{ee^T}{n}$ . Let  $X = [x_1, \dots, x_n]$  and  $Y = XPP^T = X - \frac{Xee^T}{n} = [x_1 - \frac{\sum x_i}{n}, \dots, x_n - \frac{\sum x_i}{n}]$ . Hence, D is also the EDM corresponding to Y, so

$$D = \operatorname{diag} (Y^T Y) e^T + e(\operatorname{diag} (Y^T Y))^T - 2Y^T Y$$

Also,  $Y^T Y = P P^T X^T X P P^T$ , so taking  $U = P^T X^T X P$  does the trick (and has rank at most r).  $\Box$ 

This motivates the "SDPs" (in primal form):

$$\min_{U \in \mathbb{M}^{n-1}} ||D - \operatorname{diag} (PUP^T)e^T + e(\operatorname{diag} (PUP^T))^T - 2PUP^T||_F^2$$
s.t.  $U \succeq 0,$ 

if there is noise in the distance measurements D, or

$$\min_{U \in \mathbb{M}^{n-1}} \quad I \bullet U$$
  
s.t. 
$$\operatorname{diag} (PUP^T)e^T + e(\operatorname{diag} (PUP^T))^T - 2PUP^T = D$$
$$U \succeq 0.$$

(The latter tends to give a low rank solution.)

A related problem is the sensor localization problem (see e.g. the paper by So and Ye, with a link on the home page): there are some known locations called "anchors" and n unknown locations called "sensors". And we also know  $||x_i - x_j||^2$  for some pairs  $ij \in E_x$  and  $||x_j - a_k||^2$  for some pairs  $jk \in E_a$ .



Figure 1: Sensor localization problem

Then, with 
$$X := [x_1, \cdots, x_n],$$
  
 $||x_i - x_j||^2 = (e_i - e_j)^T X^T X(e_i - e_j), \qquad ||x_j - a_k||^2 = \begin{pmatrix} a_k \\ -e_j \end{pmatrix}^T \begin{pmatrix} I & X \\ X^T & X^T X \end{pmatrix} \begin{pmatrix} a_k \\ -e_j \end{pmatrix}$ 

Then we have

**T** 7

$$(e_i - e_j)^T Y(e_i - e_j) = d_{ij}, \ ij \in E_x$$
$$\begin{pmatrix} a_k \\ -e_j \end{pmatrix}^T \begin{pmatrix} I & X \\ X^T & Y \end{pmatrix} \begin{pmatrix} a_k \\ -e_j \end{pmatrix} = f_{kj}, \ kj \in E_a$$
$$Y = X^T X.$$

The last constraint is nonlinear, but we can relax it to  $Y \succeq X^T X$ , or equivalently

$$\begin{pmatrix} I & X \\ X^T & Y \end{pmatrix} \succeq 0.$$

This will give an SDP formulation for the problem.