
Semidefinite Programming Lecture 5
OR 6327 Spring 2012 February 7, 2012
Scribe: Chaoxu Tong

Convex Quadratically-Constrained Quadratic Programming .

Consider the problem
miny f0(y)

fi(y) ≤ 0, i = 1, . . . , n,

where each fi is a convex quadratic function of y ∈ ℝm.
We can assume the objective is linear, so we have

maxy bTy
fi(y) ≤ 0, i = 1, . . . , n,

where each fi(y) = yTCiy− dTi y− �i with Ci psd. We can write Ci = GT
i Gi where Gi ∈ ℝri×m.

Then

fi(y) ≤ 0⇐⇒ dTi y + �i ≥ (Giy)T (Giy)

⇐⇒Mi =

[
dTi y + � (Giy)T

Giy I

]
ર 0

(this follows from Schur complements, but we have to consider the two cases when dTi y + � is
zero and when it is positive). So our problem can be formulated as

maxy bTy
Diag (M1, . . . ,Mn) ર 0.

Alternatively

fi(y) ≤ 0⇐⇒ (dTi y + �i + 1)2 ≥ (dTi + �i − 1)2 + (2Giy)T (2Giy)

⇐⇒ (dTi y + �i + 1) ≥
∥∥∥∥dTi y + �i − 1

2Giy

∥∥∥∥
2

⇐⇒ dTi y + �i + 1 ≥ 1

dTi y + �i + 1

∥∥∥∥dTi y + �i − 1
2Giy

∥∥∥∥2
2

⇐⇒ Wi =

⎡⎣dTi y + �i + 1 dTi y + �i − 1 (2Giy)T

dTi y + �i − 1 dTi y + �i + 1 0
2Giy 0 (dTi y + �i + 1)I

⎤⎦ ર 0

(several steps of this argument need to ensure that dTi y+�+1 is positive, whichever the direction
of the implications). So we could replace all the Mis with Wis in the formulation above.

1

However, this analysis also shows another formulation of the problem in dual conic pro-
gramming form as

maxy bTy

dTi y + �i + 1 ≥
∥∥∥∥dTi y + �i − 1

2Giy

∥∥∥∥
2

, all i,

a second-order cone programming problem, which will typically be much more efficient to solve.
In fact, we have used

Proposition 1 [

 vT

v
I

]
ર 0 iff
 ≥ ∥v∥2.

Truss topology design is the problem of choosing
where and what size rods to use in a framework to
support one or more loads.

For more details in what follows, see Ben-Tal & Ne-
mirovskii, Lectures on Modern Convex Optimization.

Suppose we put a rod in potential link j with cross-
sectional area yj. This gives a stiffness matrix

A(y) =
∑

yjbjb
T
j ર 0

and “determines” displacements d (indexed by 2 or 3
components for each free node) that can support a load
vector f by

A(y)d = f (Hooke’s Law).

We may also have constraints a ≤ y ≤ b and lTy ≤ w
and we also want the “maximum stiffness” or “mini-
mum compliance” (proportional to the work done)

min fTd.

So the problem is
min fTd

A(y)d = f
lTy ≤ w, a ≤ y ≤ b.

This is nonlinear in the variables d and y. If A(y) ≻ 0, we could eliminate d and the first set
of constraints and minimize fTA(y)−1f to get

min �[
� fT

f A(y)

]
ર 0, a ≤ y ≤ b, lTy ≤ w.

In fact, this works even if A(y) might be singular at the solution.

2

Proposition 2 Suppose A ર 0. Then

(i) fTd is the same for all solutions to Ad = f ;

(ii)
min fTd

Ad = f
=

min �

[� f
T

f A
] ર 0

.

Proof:

(i) Suppose Ad1 = Ad2 = f . Then fTd1 = dT2Ad1 = dT1Ad2 = fTd2.

(ii) Suppose first f ∕∈ Range(A), so the left-hand minimum is ∞. Since there is no d with
Ad = f , so there exists v with Av = 0 and fTv < 0. Then[

�
v

]T [
� fT

f A

] [
�
v

]
= ��2 + 2fTv� < 0

for any � by choosing � > 0 small enough. Thus the right-hand minimum is also ∞.

Now assume there is some d with Ad = f . Then the left-hand minimum is fTd for such
a d. Also, [

dTAd dTA
Ad A

]
=

[
dT

I

]
A
[
d I

]
ર 0.

So we can choose � = dTAd = fTd, and the right-hand minimum is at most the left-hand
minimum.

Also, if

[
� fT

f A

]
ર 0, then

0 ≤
[

1
−d

]T [
� fT

f A

] [
1
−d

]
= � − 2fTd+ dTAd

= � − fTd.

So the right-hand minimum is at least the left-hand minimum. ⊓⊔

So the TTD problem can be formulated as

min �[
� fT

f A(y)

]
ર 0

a ≤ y ≤ b, lTy ≤ w.

In fact, it can be formulated as a linear programming problem!! (See Ben-Tal & Nemirovskii.)
But in practice, the truss has to withstand different load vectors and then we got the robust

TTD problem with constraints [
� fTi
fi A(y)

]
ર 0, i = 1, . . . , n,

not known to be reducible to linear programming (although it can in fact be reduced to a
second-order cone programming problem).

3

Robust Mathematical Programming .

Consider the problem
max bTy

aTj y ≤ cj, j = 1, . . . , n,

where some or all of the (aj; cj)s are not known exactly. Change variables to (y;−1) to get the
constraints

aTj y ≤ 0, for all aj ∈ ℰj, j = 1, . . . , k,

aTj y ≤ cj, j = k + 1, . . . , n,

where the last “certain” set of constraints forces the final component of y to be −1. This is
a semi-infinite set of linear constraints (infinite number of constraints in a finite number of
variables).

Assume each ℰj is “ellipsoid-like”, i.e., of the form {āj +Gjuj : ∥uj∥2 ≤ 1}. Consider some
j = 1, . . . , k. Then

aTj y ≤ 0 all aj ∈ ℰj
⇐⇒max

aj∈ℰj
aTj y ≤ 0

⇐⇒ max
∥uj∥≤1

(āj +Gjuj)
Ty ≤ 0

⇐⇒āTj y + max
∥uj∥≤1

uTj (GT
j y) ≤ 0

⇐⇒āTj y + ∥GT
j y∥2 ≤ 0.

So the robust linear programming problem is equivalent to the dual form conic programming
problem

max bTy
−āTj y ≥ ∥GT

j y∥2, j = 1, . . . , k,
aTj y ≤ cj, j = k + 1, . . . , n.

This is a SOCP (second order conic programming) problem.

4

