Convex Quadratically-Constrained Quadratic Programming

Consider the problem

$$
\begin{array}{ll}
\min _{y} & f_{0}(y) \\
& f_{i}(y) \leq 0, \quad i=1, \ldots, n,
\end{array}
$$

where each f_{i} is a convex quadratic function of $y \in \mathbb{R}^{m}$.
We can assume the objective is linear, so we have

$$
\begin{array}{cc}
\max _{y} & b^{T} y \\
& f_{i}(y) \leq 0, \quad i=1, \ldots, n,
\end{array}
$$

where each $f_{i}(y)=y^{T} C_{i} y-d_{i}^{T} y-\epsilon_{i}$ with C_{i} psd. We can write $C_{i}=G_{i}^{T} G_{i}$ where $G_{i} \in \mathbb{R}^{r_{i} \times m}$. Then

$$
\begin{aligned}
f_{i}(y) \leq 0 & \Longleftrightarrow d_{i}^{T} y+\epsilon_{i} \geq\left(G_{i} y\right)^{T}\left(G_{i} y\right) \\
& \Longleftrightarrow M_{i}=\left[\begin{array}{cc}
d_{i}^{T} y+\epsilon & \left(G_{i} y\right)^{T} \\
G_{i} y & I
\end{array}\right] \succeq 0
\end{aligned}
$$

(this follows from Schur complements, but we have to consider the two cases when $d_{i}^{T} y+\epsilon$ is zero and when it is positive). So our problem can be formulated as

$$
\begin{array}{ll}
\max _{y} & b^{T} y \\
& \operatorname{Diag}\left(M_{1}, \ldots, M_{n}\right) \succeq 0 .
\end{array}
$$

Alternatively

$$
\begin{aligned}
f_{i}(y) \leq 0 & \Longleftrightarrow\left(d_{i}^{T} y+\epsilon_{i}+1\right)^{2} \geq\left(d_{i}^{T}+\epsilon_{i}-1\right)^{2}+\left(2 G_{i} y\right)^{T}\left(2 G_{i} y\right) \\
& \Longleftrightarrow\left(d_{i}^{T} y+\epsilon_{i}+1\right) \geq\left\|\begin{array}{c}
d d_{i}^{T} y+\epsilon_{i}-1 \\
2 G_{i} y
\end{array}\right\|_{2} \\
& \Longleftrightarrow d_{i}^{T} y+\epsilon_{i}+1 \geq \frac{1}{d_{i}^{T} y+\epsilon_{i}+1}\left\|\begin{array}{cc}
d_{i}^{T} y+\epsilon_{i}-1 \\
2 G_{i} y
\end{array}\right\|_{2}^{2} \\
& \Longleftrightarrow W_{i}=\left[\begin{array}{ccc}
d_{i}^{T} y+\epsilon_{i}+1 & d_{i}^{T} y+\epsilon_{i}-1 & \left(2 G_{i} y\right)^{T} \\
d_{i}^{T} y+\epsilon_{i}-1 & d_{i}^{T} y+\epsilon_{i}+1 & 0 \\
2 G_{i} y & 0 & \left(d_{i}^{T} y+\epsilon_{i}+1\right) I
\end{array}\right] \succeq 0
\end{aligned}
$$

(several steps of this argument need to ensure that $d_{i}^{T} y+\epsilon+1$ is positive, whichever the direction of the implications). So we could replace all the $M_{i} \mathrm{~s}$ with $W_{i} \mathrm{~s}$ in the formulation above.

However, this analysis also shows another formulation of the problem in dual conic programming form as

$$
\begin{array}{ll}
\max _{y} & b^{T} y \\
& d_{i}^{T} y+\epsilon_{i}+1 \geq\left\|\begin{array}{c}
d_{i}^{T} y+\epsilon_{i}-1 \\
2 G_{i} y
\end{array}\right\|_{2}, \quad \text { all } i,
\end{array}
$$

a second-order cone programming problem, which will typically be much more efficient to solve.
In fact, we have used

Proposition 1

$$
\left[\begin{array}{cc}
\gamma & v^{T} \\
v & \gamma I
\end{array}\right] \succeq 0 \quad \text { iff } \gamma \geq\|v\|_{2} .
$$

Truss topology design is the problem of choosing where and what size rods to use in a framework to support one or more loads.

For more details in what follows, see Ben-Tal \& Nemirovskii, Lectures on Modern Convex Optimization.

Suppose we put a rod in potential link j with crosssectional area y_{j}. This gives a stiffness matrix

$$
A(y)=\sum y_{j} b_{j} b_{j}^{T} \succeq 0
$$

and "determines" displacements d (indexed by 2 or 3 components for each free node) that can support a load vector f by

$$
A(y) d=f \quad(\text { Hooke's Law })
$$

We may also have constraints $a \leq y \leq b$ and $l^{T} y \leq w$
 and we also want the "maximum stiffness" or "minimum compliance" (proportional to the work done)

$$
\min f^{T} d
$$

So the problem is

$$
\begin{aligned}
\min & f^{T} d \\
A(y) d & =f \\
l^{T} y & \leq w, \quad a \leq y \leq b .
\end{aligned}
$$

This is nonlinear in the variables d and y. If $A(y) \succ 0$, we could eliminate d and the first set of constraints and minimize $f^{T} A(y)^{-1} f$ to get

$$
\min \begin{array}{cc}
\eta \\
{\left[\begin{array}{cc}
\eta & f^{T} \\
f & A(y)
\end{array}\right] \succeq 0, \quad a \leq y \leq b, \quad l^{T} y \leq w .}
\end{array}
$$

In fact, this works even if $A(y)$ might be singular at the solution.

Proposition 2 Suppose $A \succeq 0$. Then
(i) $f^{T} d$ is the same for all solutions to $A d=f$;
(ii) $\begin{array}{ll}\min & f^{T} d \\ & A d=f\end{array}=\begin{gathered}\min \end{gathered} \begin{gathered}\eta \\ {\left[\begin{array}{ll}\eta & f^{T} \\ f & A\end{array}\right] \succeq 0}\end{gathered}$.

Proof:

(i) Suppose $A d_{1}=A d_{2}=f$. Then $f^{T} d_{1}=d_{2}^{T} A d_{1}=d_{1}^{T} A d_{2}=f^{T} d_{2}$.
(ii) Suppose first $f \notin \operatorname{Range}(A)$, so the left-hand minimum is ∞. Since there is no d with $A d=f$, so there exists v with $A v=0$ and $f^{T} v<0$. Then

$$
\left[\begin{array}{l}
\beta \\
v
\end{array}\right]^{T}\left[\begin{array}{ll}
\eta & f^{T} \\
f & A
\end{array}\right]\left[\begin{array}{l}
\beta \\
v
\end{array}\right]=\eta \beta^{2}+2 f^{T} v \beta<0
$$

for any η by choosing $\beta>0$ small enough. Thus the right-hand minimum is also ∞.
Now assume there is some d with $A d=f$. Then the left-hand minimum is $f^{T} d$ for such a d. Also,

$$
\left[\begin{array}{cc}
d^{T} A d & d^{T} A \\
A d & A
\end{array}\right]=\left[\begin{array}{c}
d^{T} \\
I
\end{array}\right] A\left[\begin{array}{ll}
d & I
\end{array}\right] \succeq 0
$$

So we can choose $\eta=d^{T} A d=f^{T} d$, and the right-hand minimum is at most the left-hand minimum.
Also, if $\left[\begin{array}{cc}\eta & f^{T} \\ f & A\end{array}\right] \succeq 0$, then

$$
\begin{aligned}
0 \leq\left[\begin{array}{c}
1 \\
-d
\end{array}\right]^{T}\left[\begin{array}{cc}
\eta & f^{T} \\
f & A
\end{array}\right]\left[\begin{array}{c}
1 \\
-d
\end{array}\right] & =\eta-2 f^{T} d+d^{T} A d \\
& =\eta-f^{T} d
\end{aligned}
$$

So the right-hand minimum is at least the left-hand minimum.
So the TTD problem can be formulated as

$$
\begin{aligned}
\min & \eta \\
& {\left[\begin{array}{lc}
\eta & f^{T} \\
f & A(y)
\end{array}\right] \succeq 0 } \\
& a \leq y \leq b, \quad l^{T} y \leq w .
\end{aligned}
$$

In fact, it can be formulated as a linear programming problem!! (See Ben-Tal \& Nemirovskii.)
But in practice, the truss has to withstand different load vectors and then we got the robust TTD problem with constraints

$$
\left[\begin{array}{cc}
\eta & f_{i}^{T} \\
f_{i} & A(y)
\end{array}\right] \succeq 0, \quad i=1, \ldots, n
$$

not known to be reducible to linear programming (although it can in fact be reduced to a second-order cone programming problem).

Robust Mathematical Programming

Consider the problem

$$
\begin{array}{ll}
\max & b^{T} y \\
& a_{j}^{T} y \leq c_{j}, \quad j=1, \ldots, n
\end{array}
$$

where some or all of the $\left(a_{j} ; c_{j}\right) \mathrm{s}$ are not known exactly. Change variables to $(y ;-1)$ to get the constraints

$$
\begin{aligned}
& a_{j}^{T} y \leq 0, \quad \text { for all } a_{j} \in \mathcal{E}_{j}, \quad j=1, \ldots, k, \\
& a_{j}^{T} y \leq c_{j}, \quad j=k+1, \ldots, n
\end{aligned}
$$

where the last "certain" set of constraints forces the final component of y to be -1 . This is a semi-infinite set of linear constraints (infinite number of constraints in a finite number of variables).

Assume each \mathcal{E}_{j} is "ellipsoid-like", i.e., of the form $\left\{\bar{a}_{j}+G_{j} u_{j}:\left\|u_{j}\right\|_{2} \leq 1\right\}$. Consider some $j=1, \ldots, k$. Then

$$
\begin{aligned}
& a_{j}^{T} y \leq 0 \quad \text { all } a_{j} \in \mathcal{E}_{j} \\
\Longleftrightarrow & \max _{a_{j} \in \mathcal{E}_{j}} a_{j}^{T} y \leq 0 \\
\Longleftrightarrow & \max _{\left\|u_{j}\right\| \leq 1}\left(\bar{a}_{j}+G_{j} u_{j}\right)^{T} y \leq 0 \\
\Longleftrightarrow & \bar{a}_{j}^{T} y+\max _{\left\|u_{j}\right\| \leq 1} u_{j}^{T}\left(G_{j}^{T} y\right) \leq 0 \\
\Longleftrightarrow & \bar{a}_{j}^{T} y+\left\|G_{j}^{T} y\right\|_{2} \leq 0 .
\end{aligned}
$$

So the robust linear programming problem is equivalent to the dual form conic programming problem

$$
\begin{array}{cll}
\max & b^{T} y \\
& -\bar{a}_{j}^{T} y \geq\left\|G_{j}^{T} y\right\|_{2}, & j=1, \ldots, k, \\
a_{j}^{T} y \leq c_{j}, & j=k+1, \ldots, n .
\end{array}
$$

This is a SOCP (second order conic programming) problem.

