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Convex Quadratically-Constrained Quadratic Programming

Consider the problem
min, fo(y)
fZ(y) Soa i:]-v"'ana

where each f; is a convex quadratic function of y € R™.
We can assume the objective is linear, so we have

max, b’y
fz(y) §07 7::17...,TL,

where each fi(y) =y Cyy — d¥y — ¢; with C; psd. We can write C; = GTG; where G; € Rmi*™,
Then
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(this follows from Schur complements, but we have to consider the two cases when dly + € is
zero and when it is positive). So our problem can be formulated as

max, b'y
Diag (M, ..., M,) = 0.

Alternatively
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(several steps of this argument need to ensure that d? y+e+1 is positive, whichever the direction
of the implications). So we could replace all the M;s with W;s in the formulation above.



However, this analysis also shows another formulation of the problem in dual conic pro-
gramming form as
max, by
dly+e —1 .
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a second-order cone programming problem, which will typically be much more efficient to solve.
In fact, we have used

dl'y+6+1>
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Truss topology design is the problem of choosing
where and what size rods to use in a framework to
support one or more loads.
For more details in what follows, see Ben-Tal & Ne-
mirovskii, Lectures on Modern Convex Optimization.
Suppose we put a rod in potential link j with cross-
sectional area y;. This gives a stiffness matrix

Aly) =Dyl =0

and “determines” displacements d (indexed by 2 or 3
components for each free node) that can support a load
vector f by

A(y)d = f (Hooke’s Law).

We may also have constraints a < y < b and [Ty < w
and we also want the “maximum stiffness” or “mini-
mum compliance” (proportional to the work done)

min f7d.
So the problem is
min  f7d

Aly)d = f
Ty <w, a<y<hb.

This is nonlinear in the variables d and y. If A(y) > 0, we could eliminate d and the first set
of constraints and minimize fZA(y)"'f to get

min

n
77fT T
L?A@J =0, a<y<db, ly<w

In fact, this works even if A(y) might be singular at the solution.
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Proposition 2 Suppose A = 0. Then
(i) fTd is the same for all solutions to Ad = f;
., min f7d min Ui
1 = T .
(W) da=y AL
Proof:
(i) Suppose Ad; = Ady = f. Then fTd, = dt Ad, = d¥ Ady = fTd,.

(ii) Suppose first f ¢ Range(A), so the left-hand minimum is co. Since there is no d with
Ad = f, so there exists v with Av = 0 and fTv < 0. Then

s Ao

for any 1 by choosing 5 > 0 small enough. Thus the right-hand minimum is also co.

Now assume there is some d with Ad = f. Then the left-hand minimum is f”d for such

a d. Also,
dTAd d¥A dr
[Ad 14}._[[}/1w 1] =o0.
So we can choose n = d¥ Ad = fd, and the right-hand minimum is at most the left-hand
minimum.
o ST
Also, if [f A} > 0, then

T
1 n fr Ly our T
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So the right-hand minimum is at least the left-hand minimum. O

So the TTD problem can be formulated as

min 7 .
n o f
[f A<y>] ="

a<y<b, y<w.

In fact, it can be formulated as a linear programming problem!! (See Ben-Tal & Nemirovskii.)
But in practice, the truss has to withstand different load vectors and then we got the robust
TTD problem with constraints
T
{” /i 15@ i=1,...,n,

fi Aly)

not known to be reducible to linear programming (although it can in fact be reduced to a
second-order cone programming problem).



Robust Mathematical Programming

Consider the problem
max bly
a;frygcj, j=1...,n,

where some or all of the (a;; c;)s are not known exactly. Change variables to (y; —1) to get the
constraints

aly<0, foralla;€&;, j=1,...,k,
a]TySCj, j=k+1,...,n,

where the last “certain” set of constraints forces the final component of y to be —1. This is
a semi-infinite set of linear constraints (infinite number of constraints in a finite number of
variables).

Assume each &; is “ellipsoid-like”, i.e., of the form {a; + G,u; : ||u;||2 < 1}. Consider some
7=1,...,k. Then

aJTy <0 alla; €

<— max a;ry <0
ajégj

< Hm‘élii{l(dj + Gjuj)Ty <0
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—=a;y+ ||£2|E|1§1 u; (Giy) <0

=aly+1|GTyl < 0.

So the robust linear programming problem is equivalent to the dual form conic programming
problem

max by
—aly > |GTyls, G=1,... .k,
a?ygcj’ j=k+1,...,n.

This is a SOCP (second order conic programming) problem.



